Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

GPCRs and Insulin Receptor Signaling in Conversation: Novel Avenues for Drug Discovery

Author(s): Manveen K. Gupta* and Neelakantan T. Vasudevan*

Volume 19, Issue 16, 2019

Page: [1436 - 1444] Pages: 9

DOI: 10.2174/1568026619666190712211642

Price: $65

Abstract

Type 2 diabetes is a major health issue worldwide with complex metabolic and endocrine abnormalities. Hyperglycemia, defects in insulin secretion and insulin resistance are classic features of type 2 diabetes. Insulin signaling regulates metabolic homeostasis by regulating glucose and lipid turnover in the liver, skeletal muscle and adipose tissue. Major treatment modalities for diabetes include the drugs from the class of sulfonyl urea, Insulin, GLP-1 agonists, SGLT2 inhibitors, DPP-IV inhibitors and Thiazolidinediones. Emerging antidiabetic therapeutics also include classes of drugs targeting GPCRs in the liver, adipose tissue and skeletal muscle. Interestingly, recent research highlights several shared intermediates between insulin and GPCR signaling cascades opening potential novel avenues for diabetic drug discovery.

Keywords: GPCRs, Insulin Signaling, Diabetes, Cross-talk, Drug Discovery, RTKs, IRs.

Graphical Abstract

[1]
Unnikrishnan, R.; Pradeepa, R.; Joshi, S.R.; Mohan, V. Type 2 diabetes: Demystifying the global epidemic. Diabetes, 2017, 66(6), 1432-1442.
[http://dx.doi.org/10.2337/db16-0766] [PMID: 28533294]
[2]
Tahrani, A.A.; Barnett, A.H.; Bailey, C.J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2016, 12(10), 566-592.
[http://dx.doi.org/10.1038/nrendo.2016.86] [PMID: 27339889]
[3]
Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[4]
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[5]
Yamanaka, Y.; Wilson, E.M.; Rosenfeld, R.G.; Oh, Y. Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J. Biol. Chem., 1997, 272(49), 30729-30734.
[http://dx.doi.org/10.1074/jbc.272.49.30729] [PMID: 9388210]
[6]
Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev., 2009, 30(6), 586-623.
[http://dx.doi.org/10.1210/er.2008-0047] [PMID: 19752219]
[7]
De Meyts, P. The insulin receptor: a prototype for dimeric, allosteric membrane receptors? Trends Biochem. Sci., 2008, 33(8), 376-384.
[http://dx.doi.org/10.1016/j.tibs.2008.06.003] [PMID: 18640841]
[8]
Cohen, P. The twentieth century struggle to decipher insulin signalling. Nat. Rev. Mol. Cell Biol., 2006, 7(11), 867-873.
[http://dx.doi.org/10.1038/nrm2043] [PMID: 17057754]
[9]
Ceresa, B.P.; Pessin, J.E. Insulin regulation of the Ras activation/inactivation cycle. Mol. Cell. Biochem., 1998, 182(1-2), 23-29.
[http://dx.doi.org/10.1023/A:1006819008507] [PMID: 9609111]
[10]
Dohlman, H.G. Thematic minireview Series: New directions in g protein-coupled receptor pharmacology. J. Biol. Chem., 2015, 290(32), 19469-19470.
[http://dx.doi.org/10.1074/jbc.R115.675728] [PMID: 26126823]
[11]
Vasudevan, N.T. cAMP assays in GPCR drug discovery. Methods Cell Biol., 2017, 142, 51-57.
[http://dx.doi.org/10.1016/bs.mcb.2017.07.014] [PMID: 28964339]
[12]
Vasudevan, N.T.; Mohan, M.L.; Gupta, M.K.; Hussain, A.K.; Naga Prasad, S.V. Inhibition of protein phosphatase 2A activity by PI3Kγ regulates β-adrenergic receptor function. Mol. Cell, 2011, 41(6), 636-648.
[http://dx.doi.org/10.1016/j.molcel.2011.02.025] [PMID: 21419339]
[13]
(a)Dalle, S.; Ricketts, W.; Imamura, T.; Vollenweider, P.; Olefsky, J.M. Insulin and insulin-like growth factor I receptors utilize different G protein signaling components. J. Biol. Chem., 2001, 276(19), 15688-15695.
[http://dx.doi.org/10.1074/jbc.M010884200] [PMID: 11278773]
(b)Zheng, H.; Shen, H.; Oprea, I.; Worrall, C.; Stefanescu, R.; Girnita, A.; Girnita, L. β-Arrestin-biased agonism as the central mechanism of action for insulin-like growth factor 1 receptor-targeting antibodies in Ewing’s sarcoma. Proc. Natl. Acad. Sci. USA, 2012, 109(50), 20620-20625.
[http://dx.doi.org/10.1073/pnas.1216348110] [PMID: 23188799]
(c)Luan, B.; Zhao, J.; Wu, H.; Duan, B.; Shu, G.; Wang, X.; Li, D.; Jia, W.; Kang, J.; Pei, G. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature, 2009, 457(7233), 1146-1149.
[http://dx.doi.org/10.1038/nature07617] [PMID: 19122674]
(d)Michel, G.; Matthes, H.W.; Hachet-Haas, M.; El Baghdadi, K.; de Mey, J.; Pepperkok, R.; Simpson, J.C.; Galzi, J.L.; Lecat, S. Plasma membrane translocation of REDD1 governed by GPCRs contributes to mTORC1 activation. J. Cell Sci., 2014, 127(Pt 4), 773-787.
[http://dx.doi.org/10.1242/jcs.136432] [PMID: 24338366]
[14]
Rozengurt, E.; Sinnett-Smith, J.; Kisfalvi, K. Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin. Cancer Res., 2010, 16(9), 2505-2511.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2229] [PMID: 20388847]
[15]
Rozengurt, E. Mechanistic target of rapamycin (mTOR): a point of convergence in the action of insulin/IGF-1 and G protein-coupled receptor agonists in pancreatic cancer cells. Front. Physiol., 2014, 5, 357.
[http://dx.doi.org/10.3389/fphys.2014.00357] [PMID: 25295009]
[16]
Law, N.C.; White, M.F.; Hunzicker-Dunn, M.E. G protein-coupled receptors (GPCRs) That signal via protein kinase A (PKA) cross-talk at insulin receptor substrate 1 (IRS1) to activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway. J. Biol. Chem., 2016, 291(53), 27160-27169.
[http://dx.doi.org/10.1074/jbc.M116.763235] [PMID: 27856640]
[17]
Nevzorova, J.; Evans, B.A.; Bengtsson, T.; Summers, R.J. Multiple signalling pathways involved in beta2-adrenoceptor-mediated glucose uptake in rat skeletal muscle cells. Br. J. Pharmacol., 2006, 147(4), 446-454.
[http://dx.doi.org/10.1038/sj.bjp.0706626] [PMID: 16415914]
[18]
Fu, Q.; Shi, Q.; West, T.M.; Xiang, Y.K. Cross-talk between insulin signaling and g protein-coupled receptors. J. Cardiovasc. Pharmacol., 2017, 70(2), 74-86.
[http://dx.doi.org/10.1097/FJC.0000000000000481] [PMID: 28328746]
[19]
Dalle, S.; Imamura, T.; Rose, D.W.; Worrall, D.S.; Ugi, S.; Hupfeld, C.J.; Olefsky, J.M. Insulin induces heterologous desensitization of G-protein-coupled receptor and insulin-like growth factor I signaling by downregulating beta-arrestin-1. Mol. Cell. Biol., 2002, 22(17), 6272-6285.
[http://dx.doi.org/10.1128/MCB.22.17.6272-6285.2002] [PMID: 12167719]
[20]
aAlghamdi, F.; Guo, M.; Abdulkhalek, S.; Crawford, N.; Amith, S.R.; Szewczuk, M.R. A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes. Cell. Signal., 2014, 26(6), 1355-1368.
[http://dx.doi.org/10.1016/j.cellsig.2014.02.015] [PMID: 24583283]
(b)Haxho, F.; Haq, S.; Szewczuk, M.R. Biased G protein-coupled receptor agonism mediates Neu1 sialidase and matrix metalloproteinase-9 crosstalk to induce transactivation of insulin receptor signaling. Cell. Signal., 2018, 43, 71-84.
[http://dx.doi.org/10.1016/j.cellsig.2017.12.006] [PMID: 29277445]
[21]
Moxham, C.M.; Malbon, C.C. Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature, 1996, 379(6568), 840-844.
[http://dx.doi.org/10.1038/379840a0] [PMID: 8587610]
[22]
Kreuzer, J.; Nürnberg, B.; Krieger-Brauer, H.I. Ligand-dependent autophosphorylation of the insulin receptor is positively regulated by Gi-proteins. Biochem. J., 2004, 380(Pt 3), 831-836.
[http://dx.doi.org/10.1042/bj20031659] [PMID: 15025562]
[23]
Rozengurt, E. Early signals in the mitogenic response. Science, 1986, 234(4773), 161-166.
[http://dx.doi.org/10.1126/science.3018928] [PMID: 3018928]
[24]
Wijkander, J.; Landström, T.R.; Manganiello, V.; Belfrage, P.; Degerman, E. Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase. Endocrinology, 1998, 139(1), 219-227.
[http://dx.doi.org/10.1210/endo.139.1.5693] [PMID: 9421418]
[25]
Husted, A.S.; Trauelsen, M.; Rudenko, O.; Hjorth, S.A.; Schwartz, T.W. GPCR-Mediated signaling of metabolites. Cell Metab., 2017, 25(4), 777-796.
[http://dx.doi.org/10.1016/j.cmet.2017.03.008] [PMID: 28380372]
[26]
Miller, W.P.; Yang, C.; Mihailescu, M.L.; Moore, J.A.; Dai, W.; Barber, A.J.; Dennis, M.D. Deletion of the Akt/mTORC1 repressor REDD1 prevents visual dysfunction in a rodent model of type 1 Diabetes. Diabetes, 2018, 67(1), 110-119.
[http://dx.doi.org/10.2337/db17-0728] [PMID: 29074598]
[27]
Kisfalvi, K.; Eibl, G.; Sinnett-Smith, J.; Rozengurt, E. Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res., 2009, 69(16), 6539-6545.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0418] [PMID: 19679549]
[28]
Zhu, L.; Rossi, M.; Cui, Y.; Lee, R.J.; Sakamoto, W.; Perry, N.A.; Urs, N.M.; Caron, M.G.; Gurevich, V.V.; Godlewski, G.; Kunos, G.; Chen, M.; Chen, W.; Wess, J. Hepatic β-arrestin 2 is essential for maintaining euglycemia. J. Clin. Invest., 2017, 127(8), 2941-2945.
[http://dx.doi.org/10.1172/JCI92913] [PMID: 28650340]
[29]
Leonard, S.; Kinsella, G.K.; Benetti, E.; Findlay, J.B.C. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci. Rep., 2016, 6, 27002.
[http://dx.doi.org/10.1038/srep27002] [PMID: 27243589]
[30]
(a)Ritter, K.; Buning, C.; Halland, N.; Pöverlein, C.; Schwink, L.G. Protein-coupled receptor 119 (GPR119) agonists for the treatment of diabetes: Recent progress and prevailing challenges. J. Med. Chem., 2016, 59(8), 3579-3592.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01198] [PMID: 26512410]
(b)Yang, J.W.; Kim, H.S. Im, J.H.; Kim, J.W.; Jun, D.W.; Lim, S.C.; Lee, K.; Choi, J.M.; Kim, S.K.; Kang, K.W. GPR119: A promising target for nonalcoholic fatty liver disease. FASEB J., 2016, 30(1), 324-335.
[http://dx.doi.org/10.1096/fj.15-273771] [PMID: 26399788]
[31]
Sassmann, A.; Gier, B.; Gröne, H.J.; Drews, G.; Offermanns, S.; Wettschureck, N. The Gq/G11-mediated signaling pathway is critical for autocrine potentiation of insulin secretion in mice. J. Clin. Invest., 2010, 120(6), 2184-2193.
[http://dx.doi.org/10.1172/JCI41541] [PMID: 20440069]
[32]
Nakagawa, H.; Daihara, M.; Tamakawa, H.; Nozue, T.; Kawahara, K. Effects of quinapril and losartan on insulin sensitivity in genetic hypertensive rats with different metabolic abnormalities. J. Cardiovasc. Pharmacol., 1999, 34(1), 28-33.
[http://dx.doi.org/10.1097/00005344-199907000-00005] [PMID: 10413063]
[33]
Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol., 2007, 292(1), C82-C97.
[http://dx.doi.org/10.1152/ajpcell.00287.2006] [PMID: 16870827]
[34]
Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; Takahashi, T.; Miyauchi, S.; Shioi, G.; Inoue, H.; Tsujimoto, G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun., 2013, 4, 1829.
[http://dx.doi.org/10.1038/ncomms2852] [PMID: 23652017]
[35]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[36]
Murata, M.; Okimura, Y.; Iida, K.; Matsumoto, M.; Sowa, H.; Kaji, H.; Kojima, M.; Kangawa, K.; Chihara, K. Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J. Biol. Chem., 2002, 277(7), 5667-5674.
[http://dx.doi.org/10.1074/jbc.M103898200] [PMID: 11724768]
[37]
a)Motley, E.D.; Eguchi, K.; Gardner, C.; Hicks, A.L.; Reynolds, C.M.; Frank, G.D.; Mifune, M.; Ohba, M.; Eguchi, S. Insulin-induced Akt activation is inhibited by angiotensin II in the vasculature through protein kinase C-alpha. Hypertension, 2003, 41(3 Pt 2), 775-780.
[http://dx.doi.org/10.1161/01.HYP.0000051891.90321.12] [PMID: 12623995]
(b)Taniyama, Y.; Ushio-Fukai, M.; Hitomi, H.; Rocic, P.; Kingsley, M.J.; Pfahnl, C.; Weber, D.S.; Alexander, R.W.; Griendling, K.K. Role of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol., 2004, 287(2), C494-C499.
[http://dx.doi.org/10.1152/ajpcell.00439.2003] [PMID: 15084475]
[38]
Oh, D.Y.; Olefsky, J.M. G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat. Rev. Drug Discov., 2016, 15(3), 161-172.
[http://dx.doi.org/10.1038/nrd.2015.4] [PMID: 26822831]
[39]
Riddy, D.M.; Delerive, P.; Summers, R.J.; Sexton, P.M.; Langmead, C.J.G. Protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol. Rev., 2018, 70(1), 39-67.
[http://dx.doi.org/10.1124/pr.117.014373] [PMID: 29233848]
[40]
Hamdouchi, C.; Kahl, S.D.; Patel Lewis, A.; Cardona, G.R.; Zink, R.W.; Chen, K.; Eessalu, T.E.; Ficorilli, J.V.; Marcelo, M.C.; Otto, K.A.; Wilbur, K.L.; Lineswala, J.P.; Piper, J.L.; Coffey, D.S.; Sweetana, S.A.; Haas, J.V.; Brooks, D.A.; Pratt, E.J.; Belin, R.M.; Deeg, M.A.; Ma, X.; Cannady, E.A.; Johnson, J.T.; Yumibe, N.P.; Chen, Q.; Maiti, P.; Montrose-Rafizadeh, C.; Chen, Y.; Reifel Miller, A. The discovery, preclinical, and early clinical development of potent and selective GPR40 agonists for the treatment of type 2 diabetes mellitus (LY2881835, LY2922083, and LY2922470). J. Med. Chem., 2016, 59(24), 10891-10916.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00892] [PMID: 27749056]
[41]
Park, B.O.; Kim, S.H.; Kong, G.Y.; Kim, D.H.; Kwon, M.S.; Lee, S.U.; Kim, M.O.; Cho, S.; Lee, S.; Lee, H.J.; Han, S.B.; Kwak, Y.S.; Lee, S.B.; Kim, S. Selective novel inverse agonists for human GPR43 augment GLP-1 secretion. Eur. J. Pharmacol., 2016, 771, 1-9.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.010] [PMID: 26683635]
[42]
Persaud, S.J. Islet G-protein coupled receptors: therapeutic potential for diabetes. Curr. Opin. Pharmacol., 2017, 37, 24-28.
[http://dx.doi.org/10.1016/j.coph.2017.08.001] [PMID: 28822846]
[43]
Nagasumi, K.; Esaki, R.; Iwachidow, K.; Yasuhara, Y.; Ogi, K.; Tanaka, H.; Nakata, M.; Yano, T.; Shimakawa, K.; Taketomi, S.; Takeuchi, K.; Odaka, H.; Kaisho, Y. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes, 2009, 58(5), 1067-1076.
[http://dx.doi.org/10.2337/db08-1233] [PMID: 19401434]
[44]
Burant, C.F.; Viswanathan, P.; Marcinak, J.; Cao, C.; Vakilynejad, M.; Xie, B.; Leifke, E. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet, 2012, 379(9824), 1403-1411.
[http://dx.doi.org/10.1016/S0140-6736(11)61879-5] [PMID: 22374408]
[45]
Li, Z.; Xu, X.; Huang, W.; Qian, H. Free fatty acid receptor 1 (FFAR1) as an emerging therapeutic target for type 2 diabetes mellitus: Recent progress and prevailing challenges. Med. Res. Rev., 2018, 38(2), 381-425.
[http://dx.doi.org/10.1002/med.21441] [PMID: 28328012]
[46]
Milligan, G. G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br. J. Pharmacol., 2018, 175(13), 2543-2553.
[http://dx.doi.org/10.1111/bph.14042] [PMID: 28940377]
[47]
Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell, 2010, 142(5), 687-698.
[http://dx.doi.org/10.1016/j.cell.2010.07.041] [PMID: 20813258]
[48]
Osborn, O.; Oh, D.Y.; McNelis, J.; Sanchez-Alavez, M.; Talukdar, S.; Lu, M.; Li, P.; Thiede, L.; Morinaga, H.; Kim, J.J.; Heinrichsdorff, J.; Nalbandian, S.; Ofrecio, J.M.; Scadeng, M.; Schenk, S.; Hadcock, J.; Bartfai, T.; Olefsky, J.M. G protein-coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice. J. Clin. Invest., 2012, 122(7), 2444-2453.
[http://dx.doi.org/10.1172/JCI61953] [PMID: 22653059]
[49]
Tudurí, E.; López, M.; Diéguez, C.; Nadal, A.; Nogueiras, R. GPR55 and the regulation of glucose homeostasis. Int. J. Biochem. Cell Biol., 2017, 88, 204-207.
[http://dx.doi.org/10.1016/j.biocel.2017.04.010] [PMID: 28457969]
[50]
Sundström, L.; Myhre, S.; Sundqvist, M.; Ahnmark, A.; McCoull, W.; Raubo, P.; Groombridge, S.D.; Polla, M.; Nyström, A.C.; Kristensson, L.; Någård, M.; Winzell, M.S. The acute glucose lowering effect of specific GPR120 activation in mice is mainly driven by glucagon-like peptide 1. PLoS One, 2017, 12(12)e0189060
[http://dx.doi.org/10.1371/journal.pone.0189060] [PMID: 29206860]
[51]
a)Shi, T.; Papay, R.S.; Perez, D.M. The role of α1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation. J. Recept. Signal Transduct. Res., 2017, 37(2), 124-132.
[http://dx.doi.org/10.1080/10799893.2016.1193522] [PMID: 27277698]
(b)Evans, B.A.; Broxton, N.; Merlin, J.; Sato, M.; Hutchinson, D.S.; Christopoulos, A.; Summers, R.J. Quantification of functional selectivity at the human α(1A)-adrenoceptor. Mol. Pharmacol., 2011, 79(2), 298-307.
[http://dx.doi.org/10.1124/mol.110.067454] [PMID: 20978120]
[52]
González-Manchón, C.; Ayuso, M.S.; Parrilla, R. Control of hepatic gluconeogenesis: Role of fatty acid oxidation. Arch. Biochem. Biophys., 1989, 271(1), 1-9.
[http://dx.doi.org/10.1016/0003-9861(89)90249-X] [PMID: 2712567]
[53]
(a)Nevzorova, J.; Bengtsson, T.; Evans, B.A.; Summers, R.J. Characterization of the beta-adrenoceptor subtype involved in mediation of glucose transport in L6 cells. Br. J. Pharmacol., 2002, 137(1), 9-18.
[http://dx.doi.org/10.1038/sj.bjp.0704845] [PMID: 12183326]
(b)Dehvari, N.; Hutchinson, D.S.; Nevzorova, J.; Dallner, O.S.; Sato, M.; Kocan, M.; Merlin, J.; Evans, B.A.; Summers, R.J.; Bengtsson, T. β(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br. J. Pharmacol., 2012, 165(5), 1442-1456.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01647.x] [PMID: 21883150]
(c)Sato, M.; Dehvari, N.; Oberg, A.I.; Dallner, O.S.; Sandström, A.L.; Olsen, J.M.; Csikasz, R.I.; Summers, R.J.; Hutchinson, D.S.; Bengtsson, T. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes, 2014, 63(12), 4115-4129.
[http://dx.doi.org/10.2337/db13-1860] [PMID: 25008179]
[54]
(a)Chu, C.A.; Sindelar, D.K.; Igawa, K.; Sherck, S.; Neal, D.W.; Emshwiller, M.; Cherrington, A.D. The direct effects of catecholamines on hepatic glucose production occur via alpha(1)- and beta(2)-receptors in the dog. Am. J. Physiol. Endocrinol. Metab., 2000, 279(2), E463-E473.
[http://dx.doi.org/10.1152/ajpendo.2000.279.2.E463] [PMID: 10913048]
(b)Evans, B.A.; Sato, M.; Sarwar, M.; Hutchinson, D.S.; Summers, R.J. Ligand-directed signalling at beta-adrenoceptors. Br. J. Pharmacol., 2010, 159(5), 1022-1038.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00602.x] [PMID: 20132209]
[55]
a)Neuman, J.C.; Schaid, M.D.; Brill, A.L.; Fenske, R.J.; Kibbe, C.R.; Fontaine, D.A.; Sdao, S.M.; Brar, H.K.; Connors, K.M.; Wienkes, H.N.; Eliceiri, K.W.; Merrins, M.J.; Davis, D.B.; Kimple, M.E. Enriching Islet Phospholipids With Eicosapentaenoic Acid Reduces Prostaglandin E2 Signaling and Enhances Diabetic β-Cell Function. Diabetes, 2017, 66(6), 1572-1585.
[http://dx.doi.org/10.2337/db16-1362] [PMID: 28193789]
(b)Robertson, R.P. The COX-2/PGE2/EP3/Gi/o/cAMP/GSIS Pathway in the Islet: The beat goes on. Diabetes, 2017, 66(6), 1464-1466.
[http://dx.doi.org/10.2337/dbi17-0017] [PMID: 28533298]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy