Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Enzyme Immobilization on Nanomaterials for Biosensor and Biocatalyst in Food and Biomedical Industry

Author(s): Sundaresan Bhavaniramya*, Ramar Vanajothi, Selvaraju Vishnupriya, Kumpati Premkumar, Mohammad S. Al-Aboody, Rajendran Vijayakumar and Dharmar Baskaran*

Volume 25, Issue 24, 2019

Page: [2661 - 2676] Pages: 16

DOI: 10.2174/1381612825666190712181403

Price: $65

conference banner
Abstract

Enzymes exhibit a great catalytic activity for several physiological processes. Utilization of immobilized enzymes has a great potential in several food industries due to their excellent functional properties, simple processing and cost effectiveness during the past decades. Though they have several applications, they still exhibit some challenges. To overcome the challenges, nanoparticles with their unique physicochemical properties act as very attractive carriers for enzyme immobilization. The enzyme immobilization method is not only widely used in the food industry but is also a component methodology in the pharmaceutical industry. Compared to the free enzymes, immobilized forms are more robust and resistant to environmental changes. In this method, the mobility of enzymes is artificially restricted to changing their structure and properties. Due to their sensitive nature, the classical immobilization methods are still limited as a result of the reduction of enzyme activity. In order to improve the enzyme activity and their properties, nanomaterials are used as a carrier for enzyme immobilization. Recently, much attention has been directed towards the research on the potentiality of the immobilized enzymes in the food industry. Hence, the present review emphasizes the different types of immobilization methods that is presently used in the food industry and other applications. Various types of nanomaterials such as nanofibers, nanoflowers and magnetic nanoparticles are significantly used as a support material in the immobilization methods. However, several numbers of immobilized enzymes are used in the food industries to improve the processing methods which not only reduce the production cost but also the effluents from the industry.

Keywords: Enzyme immobilization, covalent bonding, Amylase, nanostructure, HNFs, biosensor.

[1]
Whitehurst RJ, Van Oort M. Enzymes in food technology 2009.
[http://dx.doi.org/10.1002/9781444309935]
[2]
Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Curr Opin Biotechnol 2002; 13(4): 345-51.
[http://dx.doi.org/10.1016/S0958-1669(02)00328-2] [PMID: 12323357]
[3]
Mateo C, Palomo JM, Fernandez-Lorente G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 2007; 40: 1451-63.
[http://dx.doi.org/10.1016/j.enzmictec.2007.01.018]
[4]
Sheldon RA. Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 2007; 349: 1289-307.
[http://dx.doi.org/10.1002/adsc.200700082]
[5]
Delcea M, Yashchenok A, Videnova K, Kreft O, Möhwald H, Skirtach AG. Multicompartmental micro- and nanocapsules: hierarchy and applications in biosciences. Macromol Biosci 2010; 10(5): 465-74.
[http://dx.doi.org/10.1002/mabi.200900359] [PMID: 20166231]
[6]
Jia H, Zhu G, Wang P. Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 2003; 84(4): 406-14.
[http://dx.doi.org/10.1002/bit.10781] [PMID: 14574697]
[7]
Jeong SI, Kim BS, Kang SW, et al. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-epsilon-caprolactone) scaffolds. Biomaterials 2004; 25(28): 5939-46.
[http://dx.doi.org/10.1016/j.biomaterials.2004.01.057] [PMID: 15183608]
[8]
Jeong SI, Kim BS, Lee YM, Ihn KJ, Kim SH, Kim YH. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Biomacromolecules 2004; 5(4): 1303-9.
[http://dx.doi.org/10.1021/bm049921i] [PMID: 15244444]
[9]
Hayami JW, Surrao DC, Waldman SD, Amsden BG. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 2010; 92(4): 1407-20.
[PMID: 19353565]
[10]
Kong HJ, Kaigler D, Kim K, Mooney DJ. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 2004; 5(5): 1720-7.
[http://dx.doi.org/10.1021/bm049879r] [PMID: 15360280]
[11]
Salem AK, Stevens R, Pearson RG, et al. Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 2002; 61(2): 212-7.
[http://dx.doi.org/10.1002/jbm.10195] [PMID: 12007201]
[12]
Narmoneva DA, Oni O, Sieminski AL, et al. Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 2005; 26(23): 4837-46.
[http://dx.doi.org/10.1016/j.biomaterials.2005.01.005] [PMID: 15763263]
[13]
Sharma A, Goud K, Hayat A, Bhand S, Marty J. Recent advances in electrochemical-based sensing platforms for aflatoxins detection. Chemosensors (Basel) 2016; 5: 1.
[http://dx.doi.org/10.3390/chemosensors5010001]
[14]
Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem 2016; 60(1): 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[15]
Caygill RL, Blair GE, Millner PA. A review on viral biosensors to detect human pathogens. Anal Chim Acta 2010; 681(1-2): 8-15.
[http://dx.doi.org/10.1016/j.aca.2010.09.038] [PMID: 21035597]
[16]
Tromberg BJ, Sepaniak MJ, Vo-Dinh T. Development of antibody based fiber-optic sensors. Proceeding SPTE 1998; 30-8.
[17]
Skottrup PD, Nicolaisen M, Justesen AF. Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 2008; 24: 339-48.
[18]
Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ. Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 2009; 20(1): 10-26.
[http://dx.doi.org/10.1016/j.semcdb.2009.01.010] [PMID: 19429487]
[19]
Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 2012; 30(3): 512-23.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.005] [PMID: 21963605]
[20]
Ispas CR, Crivat G, Andreescu S. Review: Recent developments in enzyme-based biosensors for biomedical analysis. Anal Lett 2012; 45: 168-86.
[http://dx.doi.org/10.1080/00032719.2011.633188]
[21]
Liu J. Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Mater 2011; 7: 6757-67.
[http://dx.doi.org/10.1039/c1sm05284e]
[22]
Sefah K, Phillips JA, Xiong X, et al. Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst (Lond) 2009; 134(9): 1765-75.
[http://dx.doi.org/10.1039/b905609m] [PMID: 19684896]
[23]
Han L, Lu X, Wang M, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 2017; 13(2): 13.
[http://dx.doi.org/10.1002/smll.201601916] [PMID: 27779812]
[24]
Wang P, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and its application in biomedicine. Sens Actuator B 2005; 108: 576-84.
[http://dx.doi.org/10.1016/j.snb.2004.11.056]
[25]
Hussain M, Wackerlig J, Lieberzeit PA. Biomimetic strategies for sensing biological species. Biosensors (Basel) 2013; 3(1): 89-107.
[http://dx.doi.org/10.3390/bios3010089] [PMID: 25587400]
[26]
Mecke A, Dittrich C, Meier W. Biomimetic membranes designed from amphiphilic block copolymers. Soft Matter 2006; 2: 751-9.
[http://dx.doi.org/10.1039/b605165k]
[27]
Hermanson GT. Zero-Length Crosslinkers. Bioconjugate Techniques 2013; pp. 259-74.
[http://dx.doi.org/10.1016/B978-0-12-382239-0.00004-2]
[28]
Rother D, Sen T, East D, Bruce IJ. Silicon, silica and its surface patterning/activation with alkoxy- and amino-silanes for nanomedical applications. Nanomedicine (Lond) 2011; 6(2): 281-300.
[http://dx.doi.org/10.2217/nnm.10.159] [PMID: 21385130]
[29]
Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M. Application of iron magnetic nanoparticles in protein immobilization. Molecules 2014; 19(8): 11465-86.
[http://dx.doi.org/10.3390/molecules190811465] [PMID: 25093986]
[30]
Segura JL, Mancheno MJ, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev 2016; 45: 5635-71.
[31]
Ducker RE, Montague MT, Leggett GJ. A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents. Biointerphases 2008; 3(3): 59-65.
[http://dx.doi.org/10.1116/1.2976451] [PMID: 20408701]
[32]
Betancor L, López-Gallego F, Hidalgo A, et al. Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions. Enzyme Microb Technol 2006; 39: 877-82.
[http://dx.doi.org/10.1016/j.enzmictec.2006.01.014]
[33]
Nelson J, Griffin E. Adsorption of invertase. J Am Chem Soc 1916; 38: 1109-15.
[http://dx.doi.org/10.1021/ja02262a018]
[34]
Onda M, Lvov Y, Ariga K, Kunitake TJ. Molecular recognition of nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers. A comparison of microscopic and macroscopic interfaces. Ferment Bioeng 1996; 82: 502.
[35]
Okahata Y, Tsuruta T, Ijiro K, Ariga K. Porous glass plate immobilized with the adsorbed monolayer of dialkylsilane amphiphiles. Permeation control by a phase transition of the adsorbed monolayer. Langmuir 1986; 2: 538.
[http://dx.doi.org/10.1021/la00070a028]
[36]
Fraas R, Franzreb M. Reversible covalent enzyme immobilization methods for reuse of carriers. Biocatal Biotransform 2017; 35: 337-45.
[http://dx.doi.org/10.1080/10242422.2017.1344229]
[37]
Guisan JM. Immobilization of enzymes as the 21st century begins. Immobilization of enzymes and cells 2nd ed. In: 2006; pp. 1-13.
[http://dx.doi.org/10.1007/978-1-59745-053-9_1]
[38]
Obzturk B. Immobilization of lipase from Candida rugosa on hydrophobic and hydrophilic supports. MSc dissertation 2001; 40
[39]
Patel SK, Selvaraj C, Mardina P, et al. Enhancement of methanol production from synthetic gas mixture by Methylosinussporium through covalentimmobilization. Appl Energy 2016; 171: 383-91.
[http://dx.doi.org/10.1016/j.apenergy.2016.03.022]
[40]
Kim TS, Patel SK, Selvaraj C, et al. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci Rep 2016; 6: 33438.
[http://dx.doi.org/10.1038/srep33438] [PMID: 27633501]
[41]
Mardina P, Li J, Patel SK, Kim IW, Lee JK, Selvaraj C. Potential of immobilized whole-cell methylocella tundrae as a biocatalyst for methanol production from methane. J Microbiol Biotechnol 2016; 26(7): 1234-41.
[http://dx.doi.org/10.4014/jmb.1602.02074] [PMID: 27012239]
[42]
Selvaraj C, Krishnasamy G, Jagtap SS, et al. Structural insights into the binding mode of d-sorbitol with sorbitol dehydrogenase using QM-polarized ligand docking and molecular dynamics simulations. Biochem Eng J 2016; 114: 244-56.
[http://dx.doi.org/10.1016/j.bej.2016.07.008]
[43]
Bhat MK. Cellulase and related enzymes in biotechonology. Biotechnol Adv 2000; 18: 355-88.
[44]
Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol 2003; 30(5): 279-91.
[http://dx.doi.org/10.1007/s10295-003-0049-x] [PMID: 12698321]
[45]
Jang Z, Cong Q, Yan Q, Kumar N, Du X. Characterization of a thermostable xylanase from Chaetomium sp. and its application in Chinese steamed bread. Food Chem 2010; 120: 457-62.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.038]
[46]
Liébana S, Drago GA. Bioconjugation and stabilisation of biomolecules in biosensors. Essays Biochem 2016; 60(1): 59-68.
[http://dx.doi.org/10.1042/EBC20150007] [PMID: 27365036]
[47]
Pemberton RM, Cox T, Tuffin R, et al. Microfabricated glucose biosensor for culture well operation. Biosens Bioelectron 2013; 42: 668-77.
[http://dx.doi.org/10.1016/j.bios.2012.11.032] [PMID: 23265827]
[48]
Metters JP, Kadara RO, Banks CE. New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 2011; 136(6): 1067-76.
[http://dx.doi.org/10.1039/c0an00894j] [PMID: 21283890]
[49]
Alegret S, Merkoci A, Eds. Electrochemical Sensor Analysis. 2007.Elsevier Science.
[http://dx.doi.org/10.1016/S0166-526X(06)49041-3]
[50]
Brady D, Jordaan J. Advances in enzyme immobilisation. Biotechnol Lett 2009; 31(11): 1639-50.
[http://dx.doi.org/10.1007/s10529-009-0076-4] [PMID: 19590826]
[51]
Christen P, López-Munguía A. Enzymes and food iklavor - a review. Food Biotechnol 1994; 8: 167-90.
[http://dx.doi.org/10.1080/08905439409549874]
[52]
Pividori MI, Alegret S. Electrochemical genosensing of food pathogens based on graphite-epoxi composite. Electrochemical Sensor Analysis 2007; pp. 439-66.
[53]
Nimse SB, Song K, Sonawane MD, Sayyed DR, Kim T. Immobilization techniques for microarray: challenges and applications. Sensors (Basel) 2014; 14(12): 22208-29.
[http://dx.doi.org/10.3390/s141222208] [PMID: 25429408]
[54]
Mohamad NR, Marzuki NH, Buang NA, Huyop F, Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 2015; 29(2): 205-20.
[http://dx.doi.org/10.1080/13102818.2015.1008192] [PMID: 26019635]
[55]
Roy I, Gupta MN. Bioaffinity immobilization. Methods in Biotechnology: Immobilization of Enzymes and Cells 2006; 107-6.
[http://dx.doi.org/10.1007/978-1-59745-053-9_10]
[56]
Iyer PV, Ananthanarayan L. Enzyme stability and stabilization – aqueous and non-aqueous environment. Process Biochem 2008; 43: 1019-32.
[http://dx.doi.org/10.1016/j.procbio.2008.06.004]
[57]
Nguyen HH, Kim M. An Overview of Techniques in Enzyme Immobilization. Appl Sci Converg Technol 2017; 26: 157-63.
[58]
Vakurov A, Simpson CE, Daly CL, Gibson TD, Millner PA. Acetylecholinesterase-based biosensor electrodes for organophosphate pesticide detection. II. Immobilization and stabilization of acetylecholinesterase. Biosens Bioelectron 2005; 20(11): 2324-9.
[http://dx.doi.org/10.1016/j.bios.2004.07.022] [PMID: 15797334]
[59]
Lundb[acaron]ck H, Olsson B. Amperometric Determination of Galactose, Lactose and Dihydroxyacetone Using Galactose Oxidase in a Flow Injection System with Immobilized Enzyme Reactors and On-Line Dialysis. Anal Lett 1985; 18: 879-85.
[60]
Nilsson H, Mosbach R, Mosbach K. The use of bead polymerization of acrylic monomers for immobilization of enzymes. Biochim Biophys Acta 1972; 268(1): 253-6.
[http://dx.doi.org/10.1016/0005-2744(72)90222-7] [PMID: 5018278]
[61]
van Leemputten E, Horisberger M. Immbolization of enzymes on magnetic particles. Biotechnol Bioeng 1974; 16: 385.
[http://dx.doi.org/10.1002/bit.260160308]
[62]
Nakajima N, Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem 1995; 6(1): 123-30.
[http://dx.doi.org/10.1021/bc00031a015] [PMID: 7711098]
[63]
Ricci F, Adornetto G, Palleschi G. A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 2012; 84: 74-84.
[http://dx.doi.org/10.1016/j.electacta.2012.06.033]
[64]
Homaei AA, Sariri R, Vianello F, Stevanato R. Enzyme immobilization: an update. J Chem Biol 2013; 6(4): 185-205.
[http://dx.doi.org/10.1007/s12154-013-0102-9] [PMID: 24432134]
[65]
Breguet V, Vojinovic V, Marison IW. Encapsulation technologies for active food ingredients and food processing 2010; 367
[http://dx.doi.org/10.1007/978-1-4419-1008-0_14]
[66]
Gupta K, Jana AK, Kumar S, Maiti M. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioprocess Biosyst Eng 2013; 36(11): 1715-24.
[http://dx.doi.org/10.1007/s00449-013-0946-y] [PMID: 23572179]
[67]
Torabizadeh H, Tavakoli M, et al. Immobilization of thermostable α-amylase from Bacillus licheniformis by cross-linked enzyme aggregates method using calcium and sodium ions as additives. J Mol Catal, B Enzym 2014; 108: 13-20.
[http://dx.doi.org/10.1016/j.molcatb.2014.06.005]
[68]
Numanoğlu Y, Sungur S. β-Galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using a cellulose– gelatin carrier system. Process Biochem 2014; 39: 705-11.
[http://dx.doi.org/10.1016/S0032-9592(03)00183-3]
[69]
Dhavale RP, Parit SB, Sahoo SC, et al. α-amylase immobilized on magnetic nanoparticles: reusable robust nano-biocatalyst for starch hydrolysis. Mater Res Express 2018; 5(7)
[http://dx.doi.org/10.1088/2053-1591/aacef1]
[70]
Park JM, Kim M, Park HS, Jang A, Min J, Kim YH. Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Biol Macromol 2013; 54: 37-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.025] [PMID: 23201775]
[71]
Wei L, Zhang W, Lu H, Yang P. Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta 2010; 80(3): 1298-304.
[http://dx.doi.org/10.1016/j.talanta.2009.09.029] [PMID: 20006091]
[72]
Zhang W, Nü N, Sun Y. Changqing. Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sens Actuators B Chem 2005; 109(2): 367-74.
[http://dx.doi.org/10.1016/j.snb.2005.01.003]
[73]
Pundir CS, Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal Biochem 2012; 429(1): 19-31.
[http://dx.doi.org/10.1016/j.ab.2012.06.025] [PMID: 22759777]
[74]
Yi S, Dai F, Zhao C, Si Y. A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci Rep 2017; 7(1): 9806.
[http://dx.doi.org/10.1038/s41598-017-10453-4] [PMID: 28852219]
[75]
Bellino MG, Regazzoni AE, Soler-Illia GJ. Amylase-functionalized mesoporous silica thin films as robust biocatalyst platforms. ACS Appl Mater Interfaces 2010; 2(2): 360-5.
[http://dx.doi.org/10.1021/am900645b] [PMID: 20356181]
[76]
Chen W, Chen H, Xia Y, et al. Immobilization of recombinant thermostable β-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. J Dairy Sci 2009; 92(2): 491-8.
[http://dx.doi.org/10.3168/jds.2008-1618] [PMID: 19164659]
[77]
Brígida A, Amaral P, Coelho M, Gonçalves L. Lipase from Yarrowialipolytica: Production, characterization and application as an industrial biocatalyst. J Mol Catal, B Enzym 2014; 101: 148-58.
[http://dx.doi.org/10.1016/j.molcatb.2013.11.016]
[78]
Martins A, da Silva A, Schein M, et al. Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. J Mol Catal, B Enzym 2014; 105: 18-25.
[http://dx.doi.org/10.1016/j.molcatb.2014.03.021]
[79]
Kosugi Y, Suzuki H. Fixation of cell-bound lipase and the properties of fixed lipase as an Immobilized enzyme. J Ferment Technol 1973; 51: 895-903.
[80]
Hernandez K, Fernandez-Lafuente R. Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 2011; 48(2): 107-22.
[http://dx.doi.org/10.1016/j.enzmictec.2010.10.003] [PMID: 22112819]
[81]
Feng X, Patterson D, Balaban M, et al. Characterization of tributyrin hydrolysis by immobilized lipase on woolen cloth using conventional batch and novel spinning cloth disc reactors. Chem Eng Res Des 2013; 91: 1684-92.
[http://dx.doi.org/10.1016/j.cherd.2013.06.009]
[82]
Mendes A, Oliveira P, de Castro H. Properties and biotechnological applications of porcine pancreatic lipase. J Mol Catal, B Enzym 2012; 78: 119-34.
[http://dx.doi.org/10.1016/j.molcatb.2012.03.004]
[83]
Ozyilmaz G, Yağız E. Isoamylacetate production by entrapped and covalently bound Candida rugosa and porcine pancreatic lipases. Food Chem 2012; 135(4): 2326-32.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.062] [PMID: 22980809]
[84]
Tran DN, Balkus KJ. Enzyme immobilization via electrospinning. Top Catal 2012; 55: 1057-69.
[http://dx.doi.org/10.1007/s11244-012-9901-4]
[85]
Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater 2004; 16: 1151-70.
[http://dx.doi.org/10.1002/adma.200400719]
[86]
Hwang ET, Gu MB. Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 2013; 13: 49-61.
[http://dx.doi.org/10.1002/elsc.201100225]
[87]
Kim BC, Nair S, Kim J, et al. Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 2005; 16(7): S382-8.
[http://dx.doi.org/10.1088/0957-4484/16/7/011] [PMID: 21727456]
[88]
Ye P, Xu ZK, Wu J, et al. Nanofibrous membranes containing reactive groups: electrospinning from poly (acrylonitrile-co-maleic acid) for lipase immobilization. Macromolecules 2006; 39: 1041-5.
[http://dx.doi.org/10.1021/ma0517998]
[89]
Li SF, Chen JP, Wu WT. Electrospun polyacrylonitrile nanofibrous membranes for lippase immobilization. J Mol Catal, B Enzym 2007; 47: 117-24.
[http://dx.doi.org/10.1016/j.molcatb.2007.04.010]
[90]
Wu L, Yuan X, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 2005; 250: 167-73.
[http://dx.doi.org/10.1016/j.memsci.2004.10.024]
[91]
Netto CG, Toma HE, Andrade LH. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal, B Enzym 2013; 85: 71-92.
[http://dx.doi.org/10.1016/j.molcatb.2012.08.010]
[92]
Korehei R, Kadla JF. Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydr Polym 2014; 100: 150-7.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.079] [PMID: 24188849]
[93]
Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18: 6679-86.
[http://dx.doi.org/10.1021/la0202374]
[94]
Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 2011; 22: 408-13.
[http://dx.doi.org/10.1016/j.foodcont.2010.09.011]
[95]
Tan H, Ma R, Lin C, Liu Z, Tang T. Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 2013; 14(1): 1854-69.
[http://dx.doi.org/10.3390/ijms14011854] [PMID: 23325051]
[96]
Kang S, Mauter MS, Elimelech M. Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 2009; 43(7): 2648-53.
[http://dx.doi.org/10.1021/es8031506] [PMID: 19452930]
[97]
Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 2012; 30(3): 512-23.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.005] [PMID: 21963605]
[98]
Sugappriya M, Sudarsanam D, Joseph J, Mir MA, Selvaraj C. Applications of Polyhydroxyalkanoates Based Nanovehicles as Drug Carriers. Biotechnol App Polyhydroxyalkanoates 2019; pp. 125-69.
[99]
Huang SH, Liao MH, Chen DH. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 2003; 19(3): 1095-100.
[http://dx.doi.org/10.1021/bp025587v] [PMID: 12790688]
[100]
Kodama R. Magnetic nanoparticles. J Magn Magn Mater 2009; 200: 359-72.
[http://dx.doi.org/10.1016/S0304-8853(99)00347-9]
[101]
Charles SW. The preparation of magnetic fluids. Ferrofluids 2002; pp. 3-18.
[http://dx.doi.org/10.1007/3-540-45646-5_1]
[102]
DeCastro CL, Mitchell BS. Nanoparticles from mechanical attrition. Synthesis, functionalization, and surface treatment of nanoparticles 2002; 1-15.
[103]
Amendola V, Riello P, Meneghetti M. Magnetic nanoparticles of iron carbide, iron oxide, iron@ iron oxide, and metal iron synthesized by laser ablation in organic solvents. J Phys Chem C 2012; 115: 5140-6.
[http://dx.doi.org/10.1021/jp109371m]
[104]
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26(18): 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[105]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[106]
Oh JK, Park JM. Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 2011; 36: 168-89.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.08.005]
[107]
Timko M, Molcan M, Hashim A, et al. Hyperthermic effect in suspension of magnetosomes prepared by various methods. IEEE Trans Magn 2013; 49: 250-4.
[http://dx.doi.org/10.1109/TMAG.2012.2224098]
[108]
Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One 2013; 8(3)e57070
[http://dx.doi.org/10.1371/journal.pone.0057070] [PMID: 23520462]
[109]
Kouassi GK, Irudayaraj J, McCarty G. Examination of Cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnology 2005; 3(1): 1.
[http://dx.doi.org/10.1186/1477-3155-3-1] [PMID: 15661076]
[110]
Kalkan NA, Aksoy S, Aksoy EA, Hasirci N. Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 2012; 123: 707-16.
[http://dx.doi.org/10.1002/app.34504]
[111]
Namdeo M, Bajpai S. Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal, B Enzym 2009; 59: 134-9.
[http://dx.doi.org/10.1016/j.molcatb.2009.02.005]
[112]
Seenuvasan M, Malar CG, Preethi S, et al. Fabrication, characterization and application of pectin degrading Fe3O4-SiO2 nanobiocatalyst. Mater Sci Eng C 2013; 33(4): 2273-9.
[http://dx.doi.org/10.1016/j.msec.2013.01.050] [PMID: 23498258]
[113]
Lin J, Qu W, Zhang S. Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal Biochem 2007; 360(2): 288-93.
[http://dx.doi.org/10.1016/j.ab.2006.10.030] [PMID: 17134672]
[114]
Ma Z, Ding T. Bioconjugates of glucose oxidase and gold nanorods based on electrostatic interaction with enhanced thermostability. Nanoscale Res Lett 2009; 4(10): 1236-40.
[http://dx.doi.org/10.1007/s11671-009-9385-8] [PMID: 20596428]
[115]
Ling YP, Heng LY. A potentiometric formaldehyde biosensor based on immobilization of alcohol oxidase on acryloxysuccinimide-modified acrylic microspheres. Sensors (Basel) 2010; 10(11): 9963-81.
[http://dx.doi.org/10.3390/s101109963] [PMID: 22163450]
[116]
Yang K, Xu N-S, Su WW. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J Biotechnol 2010; 148(2-3): 119-27.
[http://dx.doi.org/10.1016/j.jbiotec.2010.05.001] [PMID: 20580753]
[117]
Dong Q, Ouyang LM, Yu HL, Xu JH. Efficient biosynthesis of uridine diphosphate glucose from maltodextrin by multiple enzymes immobilized on magnetic nanoparticles. Carbohydr Res 2010; 345(11): 1622-6.
[http://dx.doi.org/10.1016/j.carres.2010.04.025] [PMID: 20627237]
[118]
Li Y, Fei X, Liang L. The influence of synthesis conditions on enzymatic activity of enzyme-inorganic hybrid nanoflowers. J Mol Catal, B Enzym 2016; 133: 92-7.
[http://dx.doi.org/10.1016/j.molcatb.2016.08.001]
[119]
Zhang X, Chen L, Xu Y, Wang H, Zeng Q, Zhao Q. Determination of b-lactam antibiotics in milk based on magnetic molecularly imprinted polymer extraction coupled with liquid chromatographyetandem mass spectrometry. J Chromatography B 2010; 878: 3421e-6.
[120]
Ge J, Lei J, Zare RN. Protein-inorganic hybrid nanoflowers. Nat Nanotechnol 2012; 7(7): 428-32.
[http://dx.doi.org/10.1038/nnano.2012.80] [PMID: 22659609]
[121]
Yu Y, Fei X, Tian J, Xu L, Wang X, Wang Y. Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification. Colloids Surf B Biointerfaces 2015; 130: 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.033] [PMID: 25935264]
[122]
Li M, Luo M, Li F, et al. Biomimetic copper-based inorganic–protein nanoflower assembly constructed on the nanoscale fibrous membrane with enhanced stability and durability. J Phys Chem C 2016; 120: 17348-56.
[http://dx.doi.org/10.1021/acs.jpcc.6b03537]
[123]
Huang Y, Ran X, Lin Y, Ren J, Qu X. Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chem Commun (Camb) 2015; 51(21): 4386-9.
[http://dx.doi.org/10.1039/C5CC00040H] [PMID: 25676383]
[124]
Altinkaynak C, Yilmaz I, Koksal Z, Özdemir H, Ocsoy I, Özdemir N. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int J Biol Macromol 2016; 84: 402-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.018] [PMID: 26712698]
[125]
Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol 2016; 86: 134-42.
[http://dx.doi.org/10.1016/j.enzmictec.2015.09.005] [PMID: 26992802]
[126]
Mozafari MR, Khosravi-Darani K, Borazan GG, et al. Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop 2008; 11: 833-44.
[http://dx.doi.org/10.1080/10942910701648115]
[127]
Peng T, Wang J, Zhao S, et al. A fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen. Mikrochim Acta 2018; 185(8): 366.
[http://dx.doi.org/10.1007/s00604-018-2889-0] [PMID: 29982940]
[128]
Ye R, Zhu C, Song Y, et al. Bioinspired synthesis of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 2016; 12: 3094-100.
[http://dx.doi.org/10.1002/smll.201600273]
[129]
Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C. Nanoliposomes and their applications in food nanotechnology. J Liposome Res 2008; 18(4): 309-27.
[http://dx.doi.org/10.1080/08982100802465941] [PMID: 18951288]
[130]
Meesters GM. Encapsulation of enzymes and peptides. Encapsulation technologies for active food ingredients and food processing 2010; 253-68.
[http://dx.doi.org/10.1007/978-1-4419-1008-0_9]
[131]
Fathi M, Mozafari M-R, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 2012; 23: 13-27.
[http://dx.doi.org/10.1016/j.tifs.2011.08.003]
[132]
Olson NF, Richardson T. Symposium: Immobilized enzymes in food systems: Immobilized enzymes in food processing and analysis. J Food Sci 1974; 39: 653.
[http://dx.doi.org/10.1111/j.1365-2621.1974.tb17950.x]
[133]
Colas JC, Shi W, Rao VSNM, Omri A, Mozafari MR, Singh H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 2007; 38(8): 841-7.
[http://dx.doi.org/10.1016/j.micron.2007.06.013] [PMID: 17689087]
[134]
Law BA, King JS. Use of liposomes for proteinase addition to cheddar cheese. J Dairy Res 1985; 52: 183-8.
[http://dx.doi.org/10.1017/S0022029900024006]
[135]
Garg SK, Johri BN. Immobilization of milk-clotting proteases. World J Microbiol Biotechnol 1993; 9(2): 139-44.
[http://dx.doi.org/10.1007/BF00327823] [PMID: 24419933]
[136]
Hopkins FG, Cole SW. A contribution to the chemistry of proteids: Part II. The constitution of tryptophane, and the action of bacteria upon it. J Physiol 1903; 29(4-5): 451-66.
[http://dx.doi.org/10.1113/jphysiol.1903.sp000968] [PMID: 16992682]
[137]
Fox PF, Singh TK, McSweeney PLH. Proteolysis in cheese during ripening.In: Varley J, Andrew AT, Eds Biochemistry of Milk Products. 1994; pp. 1-31.
[138]
Horvath C, Solomon BA. Open tubular heterogeneous enzyme reactors: preparation and kinetic behavior. Biotechnol Bioeng 1972; 14(6): 885-914.
[http://dx.doi.org/10.1002/bit.260140604] [PMID: 4345988]
[139]
Visser S. Proteolytic enzymes and their relation to cheese ripening and flavor: An overview. J Dairy Sci 1993; 76: 329-50.
[http://dx.doi.org/10.3168/jds.S0022-0302(93)77354-3]
[140]
Kethireddipalli P, Hill AR, Arthur R. Rennet Coagulation and Cheesemaking Properties of Thermally Processed Milk: Overview and Recent Developments. J Agric Food Chem 2015; 63(43): 9389-403.
[http://dx.doi.org/10.1021/jf504167v] [PMID: 25607716]
[141]
de Souza PM, de Oliveira Magalhães P. Application of microbial α-amylase in industry - A review. Braz J Microbiol 2010; 41(4): 850-61.
[http://dx.doi.org/10.1590/S1517-83822010000400004] [PMID: 24031565]
[142]
Kim JY, Park DJ, Lim ST. Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem 2008; 85: 182-7.
[http://dx.doi.org/10.1094/CCHEM-85-2-0182]
[143]
Hayami JW, Surrao DC, Waldman SD, Amsden BG. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 2010; 92(4): 1407-20.
[PMID: 19353565]
[144]
Pappel ICE, Kostner AI, Letunova EV, Tikhomirova AS. Beta galactosidase immobilization on silochrome. Appl Biochem Microbiol 1976; 12: 328.
[145]
Pitcher WH Jr, For JR, Weetall HH. The preparation, characterization, and scale-up of a lactase system immobilized to inorganic supports for the hydrolysis of acid whey. Methods Enzymol 1976; 44: 792-809.
[http://dx.doi.org/10.1016/S0076-6879(76)44057-0]
[146]
Jakubowski JR, Giacin DH, Kleyn S, Gilbert G, Leeder JG. Effect of calcium, magnesium and whey proteins onthe activity of beta-galactosidase (A, niger) immobilized on collagen. J Food Sci 1975; 40: 467.
[http://dx.doi.org/10.1111/j.1365-2621.1975.tb12506.x]
[147]
Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 2012; 30(3): 512-23.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.005] [PMID: 21963605]
[148]
Zhang J, Zhang SY, Xu JJ, Chen HY. A new method for the synthesis of selenium nanoparticles and the application to construction of H2O2 biosensor. Chin Chem Lett 2004; 15: 1345-8.
[149]
Portetelle D, Thonart P. Fixation de la ß-galactosidase sur un support inerte et étude des propriétés de l’enzymefixée. II. Applications technologiques de la ß-galactosidase. Lebensm Wiss Technol 1975; 8: 278-81.
[150]
Lee EC, Senyk GF, Shipe WFJ. Preparation and stability of trypsin immobilized on porous glass. Food Sci (New York) 1974; 39: 927.
[http://dx.doi.org/10.1111/j.1365-2621.1974.tb07278.x]
[151]
Sun J, Xu B, Shi Y, Yang L. Activity and stability of trypsin immobilized onto chitosan magnetic nanoparticles. Adv Mater Sci Eng 2017; •••: 1-10.
[152]
Lee EC, Senyk GF, Shipe WFJ. Performance of an immobilized trypsin system for improving oxidative stability of milk. Dairy Sci 1975; 58: 473.
[http://dx.doi.org/10.3168/jds.S0022-0302(75)84593-0]
[153]
Wilson GS, Hu Y. Enzyme-based biosensors for in vivo measurements. Chem Rev 2000; 100(7): 2693-704.
[http://dx.doi.org/10.1021/cr990003y] [PMID: 11749301]
[154]
Zhang Q, Qiao Y, Hao F, et al. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chemistry 2010; 16(27): 8133-9.
[http://dx.doi.org/10.1002/chem.201000684] [PMID: 20583058]
[155]
Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 2008; 108(7): 2482-505.
[http://dx.doi.org/10.1021/cr068069y] [PMID: 18465900]
[156]
Wang Y, Liu XC, Zhao J, et al. Degradable PLGA scaffolds with basic fibroblast growth factor: experimental studies in myocardial revascularization. Tex Heart Inst J 2009; 36(2): 89-97.
[PMID: 19436800]
[157]
Pohanka M, Skladal P. Electrochemical biosensors-principles and applications. J Appl Biomed 2008; 6: 57-64.
[http://dx.doi.org/10.32725/jab.2008.008]
[158]
Bartlett PN, Bradford VQ, Whitaker RG. Enzyme electrode studies of glucose oxidase modified with a redox mediator. Talanta 1991; 38(1): 57-63.
[http://dx.doi.org/10.1016/0039-9140(91)80009-O] [PMID: 18965105]
[159]
Chaubey A, Malhotra BD. Mediated biosensors. Biosens Bioelectron 2002; 17(6-7): 441-56.
[http://dx.doi.org/10.1016/S0956-5663(01)00313-X] [PMID: 11959464]
[160]
Prodromidis MI, Karayannis MI. Enzyme based amperometric biosensors for food analysis. Electroanalysis 2002; 14: 241-61.
[http://dx.doi.org/10.1002/1521-4109(200202)14:4<241:AID-ELAN241>3.0.CO;2-P]
[161]
Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 2015; 87(1): 230-49.
[http://dx.doi.org/10.1021/ac5039863] [PMID: 25354297]
[162]
Sharma SK, Sehgal N, Kumar A. Biomolecules for development of biosensors and their applications. Curr Appl Phys 2003; 3: 307-16.
[http://dx.doi.org/10.1016/S1567-1739(02)00219-5]
[163]
Idili A, Amodio A, Vidonis M, Feinberg-Somerson J, Castronovo M, Ricci F. Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity. Anal Chem 2014; 86(18): 9013-9.
[http://dx.doi.org/10.1021/ac501418g] [PMID: 24947124]
[164]
Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z. An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods 2014; 98: 94-8.
[http://dx.doi.org/10.1016/j.mimet.2014.01.003] [PMID: 24445115]
[165]
Liu Y, Du M, Zhu J, Hu X, Ji X, He Z. Three-Dimensional Immunosensing Platform Based on a Hybrid Nanoflower for Sensitive Detection of α-Fetoprotein and Enterovirus 71. ACS Appl Nano Mater 2018; 9: 4964-71.
[http://dx.doi.org/10.1021/acsanm.8b01109]
[166]
YJin-Lin H, Wen-Jing M, Ming S, Xin-An A. A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal Chim Acta 2009; 647: 159e-66.
[167]
Lin YH, Chen SH, Chuang YC, Lu YC, Shen TY, Chang CA. Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screenprinted carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosens Bioelectron 2008; 23: 1832e-7.
[168]
Viswanathan S, Radecka H, Radecki J. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 2009; 24: 2772e-7.
[http://dx.doi.org/10.1016/j.bios.2009.01.044]
[169]
Wang M, Li Z. Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensors and Actuators B 2008; 133: 607e-12.
[170]
Prakash-Deo R, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 2005; 530: 185e-9.
[171]
Ozdemir C, Yeni F. Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 2010; 119: 380e-5.
[172]
Antiochia R, Lavagnini I, Magno F. Amperometric mediated carbon nanotube paste biosensor for fructose determination. Anal Lett 2007; 37: 1657e-69.
[173]
Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 2008; 80: 2250e-4.
[174]
Sandros MG, Shete V, Benson DE. Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles. Analyst 2006; 131: 229e-35.
[http://dx.doi.org/10.1039/B511591D]
[175]
Hartmeier W. Immobilized biocatalysts-from simple to complex systems. Trends Biotechnol 1985; 3: 149-53.
[http://dx.doi.org/10.1016/0167-7799(85)90104-0]
[176]
Katchalski-Katzir E. Immobilized enzymes-learning from past successes and failures. Trends Biotechnol 1993; 11(11): 471-8.
[http://dx.doi.org/10.1016/0167-7799(93)90080-S] [PMID: 7764401]
[177]
Turcu MC. Lipase-Catalyzed Approaches Towards Secondary Alcohols: Intermediates For Enantiopure Drugs 2010.
[178]
Berglund P. Controlling lipase enantioselectivity for organic synthesis. Biomol Eng 2001; 18(1): 13-22.
[http://dx.doi.org/10.1016/S1389-0344(01)00081-8] [PMID: 11429309]
[179]
Thakur MS, Chouhan RS, Vinayaka AC. Biosensors for pesticides and food borne pathogens. Biosen Food Process Safety Qual Cont 2010; pp. 147-92.
[http://dx.doi.org/10.1201/b10466-8]
[180]
Brodelius P. Industrial applications of immobilized biocatalysts. Adv Biochem Eng 1978; 10: 75-129.
[http://dx.doi.org/10.1007/BFb0004472]
[181]
Bagherinejad MR, Korbekandi H, Tavakoli N, Abedi D. Immobilization of penicillin G acylase using permeabilized Escherichia coli whole cells within chitosan beads. Res Pharm Sci 2012; 7(2): 79-85.
[PMID: 23181084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy