Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Synthesis of Silver Nanoparticles and their Biomedical Applications - A Comprehensive Review

Author(s): Rajasree Shanmuganathan, Indira Karuppusamy, Muthupandian Saravanan, Harshiny Muthukumar, Kumar Ponnuchamy, Vijayan Sri Ramkumar and Arivalagan Pugazhendhi*

Volume 25, Issue 24, 2019

Page: [2650 - 2660] Pages: 11

DOI: 10.2174/1381612825666190708185506

Price: $65

conference banner
Abstract

Generally, silver is considered as a noble metal used for treating burn wound infections, open wounds and cuts. However, the emerging nanotechnology has made a remarkable impact by converting metallic silver into silver nanoparticles (AgNPs) for better applications. The advancement in technology has improved the synthesis of NPs using biological method instead of physical and chemical methods. Nonetheless, synthesizing AgNPs using biological sources is ecofriendly and cost effective. Till date, AgNPs are widely used as antibacterial agents; therefore, a novel idea is needed for the successful use of AgNPs as therapeutic agents to uncertain diseases and infections. In biomedicine, AgNPs possess significant advantages due to their physical and chemical versatility. Indeed, the toxicity concerns regarding AgNPs have created the need for non-toxic and ecofriendly approaches to produce AgNPs. The applications of AgNPs in nanogels, nanosolutions, silver based dressings and coating over medical devices are under progress. Still, an improvised version of AgNPs for extended applications in an ecofriendly manner is the need of the hour. Therefore, the present review emphasizes the synthesis methods, modes of action under dissipative conditions and the various biomedical applications of AgNPs in detail.

Keywords: Silver nanoparticles, antibacterial, larvicidal, insecticidal, antibiofilm, anticancer, biomedical.

[1]
Kaliamurthi S, Selvaraj G, Çakmak ZE, Çakmak T. Production and characterization of spherical thermostable silver nanoparticles from Spirulina platensis (Cyanophyceae). Phycologia 2016; 55: 568-76. [http://dx.doi.org/10.2216/15-98.1].
[2]
Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnology 2011; 9: 43. [http://dx.doi.org/10.1186/1477-3155-9-43]. [PMID: 21943321].
[3]
Satyavani K, Gurudeeban S, Deepak V, Ramanathan T. Heliotropium curassavicum mediated silver nanoparticles for environmental application. Res J Chem Environ 2013; 17: 27-33.
[4]
Satyavani K, Ramanathan T, Gurudeeban S. Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (Citrullus colocynthis). Dig J Nanomater Biostruct 2011; 6: 1019-24.
[5]
Satyavani K, Ramanathan T, Gurudeeban S. Plant mediated synthesis of biomedical silver nanoparticles by using leaf extract of Citrullus colocynthis. Res J Nanosci Nanotechnol 2011; 1: 95-101. [http://dx.doi.org/10.3923/rjnn.2011.95.101].
[6]
Satyavani K, Gurudeeban S, Ramanathan T. Influence of leaf broth concentration of Excoecaria agallocha as a process variable in silver nanoparticles synthesis. J Nanomed Res 2014; p. 1.
[7]
Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Ipomoea pes-caprae mediated silver nanoparticles and their antibacterial effect. Sci Int 2013; 1: 155-9. [http://dx.doi.org/10.5567/sciintl.2013.155.159].
[8]
LewisOscar F, Vismaya S, Arunkumar M, Thajuddin N, Dhanasekaran D, Nithya C. Algal nanoparticles: synthesis and biotechnological potentials. In: ed., Algae-Organisms for Imminent Biotechnology. InTech, In: 2016.
[9]
Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 2016; 115(1): 23-34. [http://dx.doi.org/10.1007/s00436-015-4800-9]. [PMID: 26541154].
[10]
Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res Lett 2014; 9(1): 229. [http://dx.doi.org/10.1186/1556-276X-9-229]. [PMID: 24910577].
[11]
Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 2015; 20(5): 595-601. [http://dx.doi.org/10.1016/j.drudis.2014.11.014]. [PMID: 25543008].
[12]
LewisOscar F, MubarakAli D, Nithya C, et al. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 2015; 31(4): 379-91. [http://dx.doi.org/10.1080/08927014.2015.1048686]. [PMID: 26057498].
[13]
Chari N, Felix L, Davoodbasha M, Ali AS, Nooruddin T. In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. Biocatal Agric Biotechnol 2017; 10: 336-41. [http://dx.doi.org/10.1016/j.bcab.2017.04.013].
[14]
MubarakAli D, Arunkumar J, Pooja P, Subramanian G, Thajuddin N, Alharbi NS. Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation. Saudi Pharm J 2015; 23(4): 421-8. [http://dx.doi.org/10.1016/j.jsps.2014.11.007]. [PMID: 27134545].
[15]
Shanmuganathan R. MubarakAli D, Prabakar D, Muthukumar H, Thajuddin N, Kumar SS, Pugazhendhi A. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res Int 2018; 25(11): 10362-70.
[16]
MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 2011; 85(2): 360-5. [http://dx.doi.org/10.1016/j.colsurfb.2011.03.009]. [PMID: 21466948].
[17]
Dhuper S, Panda D, Nayak P. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends: J Nanotech App 2012; 13: 16-22.
[18]
Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 2009; 84(4): 741-9. [http://dx.doi.org/10.1007/s00253-009-2032-6]. [PMID: 19488750].
[19]
Kumar V, Bano D, Mohan S, Singh DK, Hasan SH. Sunlight-induced green synthesis of silver nanoparticles using aqueous leaf extract of Polyalthia longifolia and its antioxidant activity. Mater Lett 2016; 181: 371-7. [http://dx.doi.org/10.1016/j.matlet.2016.05.097].
[20]
Kumar V, Gundampati RK, Singh DK, Bano D, Jagannadham MV, Hasan SH. Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. J Photochem Photobiol B 2016; 162: 374-85. [http://dx.doi.org/10.1016/j.jphotobiol.2016.06.037]. [PMID: 27424098].
[21]
Pulit-Prociak J, Banach M. Silver nanoparticles–a material of the future…? Open Chem 2016; 14: 76-91. [http://dx.doi.org/10.1515/chem-2016-0005].
[22]
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016; 7(1): 17-28. [http://dx.doi.org/10.1016/j.jare.2015.02.007]. [PMID: 26843966].
[23]
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014; 9(6): 385-406. [PMID: 26339255].
[24]
Tan G, Yu X. Capping the ball-milled CdSe nanocrystals for light excitation. J Phys Chem C 2009; 113: 8724-9. [http://dx.doi.org/10.1021/jp900670x].
[25]
El-Nour KMA. Eftaiha Aa, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arab J Chem 2010; 3: 135-40. [http://dx.doi.org/10.1016/j.arabjc.2010.04.008].
[26]
Natsuki J, Natsuki T, Hashimoto Y. A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl 2015; 4: 325-32. [http://dx.doi.org/10.11648/j.ijmsa.20150405.17].
[27]
Zewde B, Ambaye A, Stubbs J. A review of stabilized silver nanoparticles–synthesis, biological properties, characterization, and potential areas of applications. JSM Nanotechnol Nanomed 2016; 4: 1043.
[28]
Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 2010; 40(4): 328-46. [http://dx.doi.org/10.3109/10408440903453074]. [PMID: 20128631].
[29]
Rycenga M, Cobley CM, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 2011; 111(6): 3669-712. [http://dx.doi.org/10.1021/cr100275d]. [PMID: 21395318].
[30]
Kim S, Choi JE, Choi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 2009; 23(6): 1076-84. [http://dx.doi.org/10.1016/j.tiv.2009.06.001]. [PMID: 19508889].
[31]
Ren J, Tilley RD. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc 2007; 129(11): 3287-91. [http://dx.doi.org/10.1021/ja067636w]. [PMID: 17311381].
[32]
Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 2012; 438: 225-32. [http://dx.doi.org/10.1016/j.scitotenv.2012.08.066]. [PMID: 23000548].
[33]
Huang T, Nancy Xu XH. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem 2010; 20(44): 9867-76. [http://dx.doi.org/10.1039/c0jm01990a]. [PMID: 22707855].
[34]
Mahmoud MA, El-Sayed MA. Different plasmon sensing behavior of silver and gold nanorods. J Phys Chem Lett 2013; 4(9): 1541-5. [http://dx.doi.org/10.1021/jz4005015]. [PMID: 26282312].
[35]
Yeo CI, Choi JH, Kim JB, Lee JC, Lee YT. Spin-coated Ag nanoparticles for enhancing light absorption of thin film a-Si: H solar cells. Opt Mater Express 2014; 4: 346-51. [http://dx.doi.org/10.1364/OME.4.000346].
[36]
Jo YK, Seo JH, Choi B-H, et al. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl Mater Interfaces 2014; 6(22): 20242-53. [http://dx.doi.org/10.1021/am505784k]. [PMID: 25311392].
[37]
Bindumadhavan K, Chang P-Y, Doong R-a. Silver nanoparticles embedded boron-doped reduced graphene oxide as anode material for high performance lithium ion battery. Electrochim Acta 2017; 243: 282-90. [http://dx.doi.org/10.1016/j.electacta.2017.05.063].
[38]
Guo CF, Sun T, Cao F, Liu Q, Ren Z. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci Appl 2014; 3e161 [http://dx.doi.org/10.1038/lsa.2014.42].
[39]
Gerardo CD, Cretu E, Rohling R. Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications. Sensors (Basel) 2017; 17(6): 1420. [http://dx.doi.org/10.3390/s17061420]. [PMID: 28629134].
[40]
Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007.18v5103s.. [http://dx.doi.org/10.1088/0957-4484/18/22/225103]
[41]
Shankar PD, Shobana S, Karuppusamy I, et al. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme Microb Technol 2016; 95: 28-44. [http://dx.doi.org/10.1016/j.enzmictec.2016.10.015]. [PMID: 27866624].
[42]
Saratale GD, Saratale RG, Benelli G, et al. Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Cluster Sci 2017; 28: 1709-27. [http://dx.doi.org/10.1007/s10876-017-1179-z].
[43]
Wright JB, Lam K, Hansen D, Burrell RE. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 1999; 27(4): 344-50. [http://dx.doi.org/10.1016/S0196-6553(99)70055-6]. [PMID: 10433674].
[44]
Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect 2005; 60(1): 1-7. [http://dx.doi.org/10.1016/j.jhin.2004.11.014]. [PMID: 15823649].
[45]
Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 2018; 114: 41-5. [http://dx.doi.org/10.1016/j.micpath.2017.11.013]. [PMID: 29146498].
[46]
Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, et al. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Rep (Amst) 2017; 14: 1-7. [http://dx.doi.org/10.1016/j.btre.2017.02.001]. [PMID: 28459002].
[47]
Velayutham K, Ramanibai R. Larvicidal activity of synthesized silver nanoparticles using isoamyl acetate identified in Annona squamosa leaves against Aedes aegypti and Culex quinquefasciatus. J Basic Appl Zool 2016; 74: 16-22. [http://dx.doi.org/10.1016/j.jobaz.2016.02.002].
[48]
Araj S-EA, Salem NM, Ghabeish IH, Awwad AM. Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J Nanomater 2015; 2015: 5. [http://dx.doi.org/10.1155/2015/758132].
[49]
Mani AK, Seethalakshmi S, Gopal V. Evaluation of in-vitro anti-inflammatory activity of silver nanoparticles synthesised using piper nigrum extract. J Nanomed Nanotechnol 2015; 6: 1.
[50]
Rashid MMO, Ferdous J, Banik S, Islam MR, Uddin AH, Robel FN. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complement Altern Med 2016; 16: 242. [http://dx.doi.org/10.1186/s12906-016-1219-5]. [PMID: 27457362].
[51]
Khalil AT, Ovais M, Ullah I, Ali M, Khan Shinwari Z, Maaza M. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem Lett Rev 2017; 10: 186-201. [http://dx.doi.org/10.1080/17518253.2017.1339831].
[52]
Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP. A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J Microbiol 2017; 57(2): 188-94. [http://dx.doi.org/10.1007/s12088-017-0640-x]. [PMID: 28611496].
[53]
Veena S, Swetha D, Karthik L, Gaurav K, Rao BK. Antibiofouling activity of marine actinobacterial mediated titanium dioxide nanoparticles. Indian J Geo-Marine Sci 2016; pp. 583-90.
[54]
Rajakumar G, Abdul Rahuman A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 2011; 118(3): 196-203. [http://dx.doi.org/10.1016/j.actatropica.2011.03.003]. [PMID: 21419749].
[55]
Song JY, Kim BS. Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 2008; 25: 808-11. [http://dx.doi.org/10.1007/s11814-008-0133-z].
[56]
Durán N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 2010; 21: 949-59. [http://dx.doi.org/10.1590/S0103-50532010000600002].
[57]
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82. [http://dx.doi.org/10.1016/j.jcis.2004.02.012]. [PMID: 15158396].
[58]
Mohammed AE. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pac J Trop Biomed 2015; 5: 382-6. [http://dx.doi.org/10.1016/S2221-1691(15)30373-7].
[59]
Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2008; 2: 243-7. [http://dx.doi.org/10.1166/jbmb.2008.401].
[60]
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73(6): 1712-20. [http://dx.doi.org/10.1128/AEM.02218-06]. [PMID: 17261510].
[61]
Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 2014; 113(5): 1775-85. [http://dx.doi.org/10.1007/s00436-014-3823-y]. [PMID: 24647984].
[62]
Soni N, Prakash S. Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res 2014; 113(11): 4015-22. [http://dx.doi.org/10.1007/s00436-014-4069-4]. [PMID: 25132567].
[63]
Nunes FC, Leite JA, Oliveira LH, et al. The larvicidal activity of Agave sisalana against L4 larvae of Aedes aegypti is mediated by internal necrosis and inhibition of nitric oxide production. Parasitol Res 2015; 114(2): 543-9. [http://dx.doi.org/10.1007/s00436-014-4216-y]. [PMID: 25395257].
[64]
Velayutham K, Rahuman AA, Rajakumar G, et al. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 2013; 6(2): 95-101. [http://dx.doi.org/10.1016/S1995-7645(13)60002-4]. [PMID: 23339909].
[65]
Rajasekharreddy P, Rani PU. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater Sci Eng C 2014; 39: 203-12. [http://dx.doi.org/10.1016/j.msec.2014.03.003]. [PMID: 24863217].
[66]
Gnanadesigan M, Anand M, Ravikumar S, et al. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med 2011; 4(10): 799-803. [http://dx.doi.org/10.1016/S1995-7645(11)60197-1]. [PMID: 22014736].
[67]
Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 2009; 372(1-2): 105-11. [http://dx.doi.org/10.1016/j.ijpharm.2008.12.029]. [PMID: 19162149].
[68]
Elemike EE, Onwudiwe DC, Ekennia AC, Sonde CU, Ehiri RC. Green Synthesis of Ag/Ag2O Nanoparticles Using Aqueous Leaf Extract of Eupatorium odoratum and Its Antimicrobial and Mosquito Larvicidal Activities. Molecules 2017; 22: 674. [http://dx.doi.org/10.3390/molecules22050674].
[69]
Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas S. UV irradiation-induced silver nanoparticles as mosquito larvicides. J Appl Sci (Faisalabad) 2010; 10: 3132-6. [http://dx.doi.org/10.3923/jas.2010.3132.3136].
[70]
Karthiga P, Rajeshkumar S, Annadurai G. Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J Cluster Sci 2018; 29: 1233-41. [http://dx.doi.org/10.1007/s10876-018-1441-z].
[71]
Kumar D, Kumar G, Agrawal V. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wallbark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res 2018; 117(2): 377-89. [http://dx.doi.org/10.1007/s00436-017-5711-8]. [PMID: 29250727].
[72]
Vinoth S, Shankar SG, Gurusaravanan P, Janani B, Devi JK. Anti-larvicidal activity of silver nanoparticles synthesized from Sargassum polycystum against mosquito vectors. J Cluster Sci 2019; 30: 171-80. [http://dx.doi.org/10.1007/s10876-018-1473-4].
[73]
McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 1999; 12(1): 147-79. [http://dx.doi.org/10.1128/CMR.12.1.147]. [PMID: 9880479].
[74]
Youngs WJ, Knapp AR, Wagers PO, Tessier CA. Nanoparticle encapsulated silver carbene complexes and their antimicrobial and anticancer properties: a perspective. Dalton Trans 2012; 41(2): 327-36. [http://dx.doi.org/10.1039/C1DT11100K]. [PMID: 21975603].
[75]
Begum K, Kim H-S, Kumar V, Stojiljkovic I, Wataya Y. In vitro antimalarial activity of metalloporphyrins against Plasmodium falciparum. Parasitol Res 2003; 90(3): 221-4. [http://dx.doi.org/10.1007/s00436-003-0830-9]. [PMID: 12783311].
[76]
Hemmert C, Fabié A, Fabre A, Benoit-Vical F, Gornitzka H. Synthesis, structures, and antimalarial activities of some silver(I), gold(I) and gold(III) complexes involving N-heterocyclic carbene ligands. Eur J Med Chem 2013; 60: 64-75. [http://dx.doi.org/10.1016/j.ejmech.2012.11.038]. [PMID: 23287052].
[77]
Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2012; 2(7): 574-80. [http://dx.doi.org/10.1016/S2221-1691(12)60100-2]. [PMID: 23569974].
[78]
Roopan SM, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra T. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crops Prod 2013; 43: 631-5. [http://dx.doi.org/10.1016/j.indcrop.2012.08.013].
[79]
Suganya G, Karthi S, Shivakumar MS. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 2014; 113(3): 875-80. [http://dx.doi.org/10.1007/s00436-013-3718-3]. [PMID: 24337613].
[80]
Gavrilescu M. Fate of pesticides in the environment and its bioremediation. Eng Life Sci 2005; 5: 497-526. [http://dx.doi.org/10.1002/elsc.200520098].
[81]
Lin PC, Lin HJ, Liao YY, Guo HR, Chen KT. Acute poisoning with neonicotinoid insecticides: a case report and literature review. Basic Clin Pharmacol Toxicol 2013; 112(4): 282-6. [http://dx.doi.org/10.1111/bcpt.12027]. [PMID: 23078648].
[82]
Palmer W, Bromley P, Brandenburg R. Wildlife and pesticides-Peanuts 2007.
[83]
Palaniappan P, Sathishkumar G, Sankar R. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochim Acta A Mol Biomol Spectrosc 2015; 138: 885-90. [http://dx.doi.org/10.1016/j.saa.2014.10.072]. [PMID: 25467657].
[84]
Yasur J, Rani PU. Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 2015; 124: 92-102. [http://dx.doi.org/10.1016/j.chemosphere.2014.11.029]. [PMID: 25482980].
[85]
Awwad AM, Salem NM. Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci Nanotechnol 2012; 2: 125-8. [http://dx.doi.org/10.5923/j.nn.20120204.06].
[86]
Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA. Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopesticides 2012; 288: 95-102.
[87]
Miquel S, Lagrafeuille R, Souweine B, Forestier C. Anti-biofilm activity as a health issue. Front Microbiol 2016; 7: 592. [http://dx.doi.org/10.3389/fmicb.2016.00592]. [PMID: 27199924].
[88]
Baelo A, Levato R, Julián E, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release 2015; 209: 150-8. [http://dx.doi.org/10.1016/j.jconrel.2015.04.028]. [PMID: 25913364].
[89]
Nithya B, Jayachitra A. Improved antibacterial and antibiofilm activity of plant mediated gold nanoparticles using Garcinia cambogia. Int J Pure App Biosci 2016; 4: 201-10. [http://dx.doi.org/10.18782/2320-7051.2238].
[90]
Barapatre A, Aadil KR, Jha H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour Bioprocess 2016; 3: 8. [http://dx.doi.org/10.1186/s40643-016-0083-y].
[91]
Shahwany AWA, Tawfeeq HK, Hamed SE. Antibacterial and Anti-biofilm Activity of Three Phenolic Plant Extracts and Silver Nanoparticles on Staphylococcus aureus and Klebsiella pneumoniae. Biomed Biotechnol 2016; 4: 12-8.
[92]
Lameire N. Nephrotoxicity of recent anti-cancer agents. Clin Kidney J 2014; 7(1): 11-22. [http://dx.doi.org/10.1093/ckj/sft135]. [PMID: 25859345].
[93]
Kirtane AR, Kalscheuer SM, Panyam J. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev 2013; 65(13-14): 1731-47. [http://dx.doi.org/10.1016/j.addr.2013.09.001]. [PMID: 24036273].
[94]
Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 2016; 7(1): 11. [http://dx.doi.org/10.1186/s12645-016-0024-7]. [PMID: 28066513].
[95]
Tran TT, Tran PH, Wang Y, Li P, Kong L. Nanoparticulate drug delivery to colorectal cancer: formulation strategies and surface engineering. Curr Pharm Des 2016; 22(19): 2904-12. [http://dx.doi.org/10.2174/1381612822666160217140932]. [PMID: 26898738].
[96]
Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol 2018; 46(4): 838-52. [PMID: 28687045].
[97]
Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem 2017.In press. [http://dx.doi.org/10.1016/j.arabjc.2017.07.004].
[98]
Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv 2012; 751075: 12.
[99]
Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 2012; 41(7): 2943-70. [http://dx.doi.org/10.1039/c2cs15355f]. [PMID: 22388295].
[100]
Ovais M, Khalil AT, Raza A, et al. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 2016; 11(23): 3157-77. [http://dx.doi.org/10.2217/nnm-2016-0279]. [PMID: 27809668].
[101]
Saravanan M, Vemu AK, Barik SK. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B Biointerfaces 2011; 88(1): 325-31. [http://dx.doi.org/10.1016/j.colsurfb.2011.07.009]. [PMID: 21798729].
[102]
Khalil AT, Ovais M, Ullah I, et al. Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arab J Chem 2017. [http://dx.doi.org/10.1016/j.arabjc.2017.08.009].
[103]
Erathodiyil N, Ying JY. Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 2011; 44(10): 925-35. [http://dx.doi.org/10.1021/ar2000327]. [PMID: 21648430].
[104]
Sperling RA, Parak W. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society of London A: Mathematical, Phys. Eng Sci 2010; 368: 1333-83.
[105]
Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011; 31(5): 986-1000. [http://dx.doi.org/10.1161/ATVBAHA.110.207449]. [PMID: 21508345].
[106]
Jacob SJP, Finub JS, Narayanan A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B Biointerfaces 2012; 91: 212-4. [http://dx.doi.org/10.1016/j.colsurfb.2011.11.001]. [PMID: 22119564].
[107]
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J 2016; 24(4): 473-84. [http://dx.doi.org/10.1016/j.jsps.2014.11.013]. [PMID: 27330378].
[108]
Chuchawankul S, Khorana N, Poovorawan Y. Piperine inhibits cytokine production by human peripheral blood mononuclear cells. Genet Mol Res 2012; 11(1): 617-27. [http://dx.doi.org/10.4238/2012.March.14.5]. [PMID: 22535397].
[109]
Baskaran X, Geo Vigila AV, Parimelazhagan T, Muralidhara-Rao D, Zhang S. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. Int J Nanomedicine 2016; 11: 5789-806. [http://dx.doi.org/10.2147/IJN.S108208]. [PMID: 27895478].
[110]
Rajakannu S, Shankar S, Perumal S, Subramanian S, Dhakshinamoorthy GP. Biosynthesis of silver nanoparticles using Garcinia mangostana fruit extract and their antibacterial, antioxidant activity. Int J Curr Microbiol Appl Sci 2015; 4: 944-52.
[111]
Ahmad N, Bhatnagar S, Ali SS, Dutta R. Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int J Nanomedicine 2015; 10: 7019-30. [PMID: 26648715].
[112]
Kumaran NS. Biosynthesis of Silver Nanoparticles Using Abutilon indicum (Link): An Investigation of Anti-inflammatory and Antioxidant Potential against Carrageen Induced Paw Edema in Rats. Asian J Pharm 2017; p. 11.
[113]
Benakashani F, Allafchian A, Jalali S. Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala International J of Modern Sci 2016; 2: 251-8. [http://dx.doi.org/10.1016/j.kijoms.2016.08.004].
[114]
Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel S. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol 2017; 15(1): 31-9. [http://dx.doi.org/10.1016/j.jgeb.2017.04.005].
[115]
Buszewski B, Railean-Plugaru V, Pomastowski P, et al. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 2018; 51(1): 45-54.
[116]
Patra JK, Baek K-H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 2017; 8: 167.
[117]
Bhatia D, Mittal A, Malik DK. Antimicrobial activity of PVP coated silver nanoparticles synthesized by Lysinibacillus varians 3. Biotech 2016; 6: 196.
[118]
Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci 2016; 6: 755-66. [http://dx.doi.org/10.1007/s13204-015-0473-z].
[119]
Thomas R, Janardhanan A, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol 2015; 45(4): 1221-7. [http://dx.doi.org/10.1590/S1517-83822014000400012]. [PMID: 25763025].
[120]
He Y, Du Z, Ma S, et al. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. Nanoscale Res Lett 2016; 11(1): 300. [http://dx.doi.org/10.1186/s11671-016-1511-9]. [PMID: 27316741].
[121]
El-Rafie HM, Hamed MA-A. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Adv Nat Sci: Nanosci Nanotechnol 2014; 5035008
[122]
Kumaran N, Vijayaraj R. Swarnakala. Biosynthesis of silver nano particles from Leucas aspera (willd.) link and its anti-inflammatory potential against carrageen induced paw edema in rats. Int J Pharm Sci Res 2017; 8: 2588-93.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy