Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Free Radical Scavenging and Some Pharmaceutical Utilities of Nanoparticles in the Recent Scenario

Author(s): Xavier-Ravi Baskaran, Antony-Varuvel G. Vigila, Kilimas Rajan, Shouzhou Zhang and Wenbo Liao*

Volume 25, Issue 24, 2019

Page: [2677 - 2693] Pages: 17

DOI: 10.2174/1381612825666190716110330

Price: $65

conference banner
Abstract

Background: Nanopharmaceuticals have rapidly emerged as a means to cure several diseases. There are numerous reports describing the development and application of nanopharmaceuticals. Here, we discussed nanoparticle synthesis and the mechanisms to scavenge free radicals. We also discuss their major properties and list several commercially available nanomedicines.

Results: Reactive oxygen and hydrogen species are formed during normal metabolism, and excessive reactive species can damage proteins, lipids, and DNA and cause disease. Plant- and microbe-based nanoparticles, which can protect tissues from free radical damage, have recently gained research momentum because they are inexpensive and safe.

Conclusion: Synthetic and biocompatible nanoparticles exhibit antioxidant, antidiabetic, anti-inflammatory, and anticancer properties, which can be used to treat several diseases. Further studies are needed to investigate their sizes, dose-dependent activities, and mechanisms of action.

Keywords: Antioxidant, anticancer, DPPH, free radicals, reactive oxygen species, silver nanoparticles

« Previous
[1]
Yildirimer L, Nguyen TK, Thanh P, Loizidou M, Alexander R, Seifalian M. Toxicological considerations of clinically applicable nanoparticles. Nano Today 2011; 6: 585-607.
[http://dx.doi.org/10.1016/j.nantod.2011.10.001] [PMID: 23293661]
[2]
Prabu HJ, Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Modern Sci 2015; 1(4): 237-46.
[http://dx.doi.org/10.1016/j.kijoms.2015.12.003]
[3]
Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW, Mahdi MA. Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int J Nanomedicine 2011; 6: 71-5.
[http://dx.doi.org/10.2147/IJN.S14005] [PMID: 21289983]
[4]
Abid JP, Wark AW, Brevet PF, Girault HH. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun (Camb) 2002; 7(7): 792-3.
[http://dx.doi.org/10.1039/b200272h] [PMID: 12119726]
[5]
Kaliamurthi S, Selvaraj G, Çakmak ZE, Çakmak T. Production and characterization of spherical thermostable silver nanoparticles from Spirulina platensis (Cyanophyceae). Phycologia 2016; 55(5): 568-76.
[http://dx.doi.org/10.2216/15-98.1]
[6]
El-Baz AF, El-Batal AI, Abomosalam FM, Tayel AA, Shetaia YM, Yang ST. Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J Basic Microbiol 2016; 56(5): 531-40.
[http://dx.doi.org/10.1002/jobm.201500503] [PMID: 26515502]
[7]
Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M, Iravani S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 2016; 44(1): 235-9.
[http://dx.doi.org/10.3109/21691401.2014.937870] [PMID: 25101816]
[8]
Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, et al. Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicol 2009; 3: 109-38.
[http://dx.doi.org/10.1080/17435390902725914]
[9]
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2012; 112(4): 2373-433.
[http://dx.doi.org/10.1021/cr100449n] [PMID: 22204603]
[10]
Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnology 2011; 9(1): 43.
[http://dx.doi.org/10.1186/1477-3155-9-43] [PMID: 21943321]
[11]
Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003; 19: 1357-61.
[http://dx.doi.org/10.1021/la020835i]
[12]
Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 2003; 125(46): 13940-1.
[http://dx.doi.org/10.1021/ja029267j] [PMID: 14611213]
[13]
Satyavani K, Gurudeeban S, Deepak V, Ramanathan T. Heliotropium curassavicum mediated silver nanoparticles for environmental application. Res J Chem Environ 2013; 17: 27-33.
[14]
Satyavani K, Ramanathan T, Gurudeeban S. Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (C. colocynthis). Dig J Nanomater Biostruct 2011; 6(3): 1019-24.
[15]
Hoag GE, Collins JB, Holcom JL, Hoag JR, Nadagouda MN, Varma RS. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 2009; 19: 8671-7.
[http://dx.doi.org/10.1039/b909148c]
[16]
Satyavani K, Gurudeeban S, Ramanathan T. Influence of leaf broth concentration of Excoecaria agallocha as a process variable in silver nanoparticles synthesis. J Nanomed Res 2014; 1: 1-11.
[17]
Mahal A, Khullar P, Kumar H, et al. Green chemistry of zein protein toward the synthesis of bioconjugated nanoparticles: Understanding unfolding, fusogenic behavior, and hemolysis. ACS Sustain Chem& Eng 2013; 1: 627-39.
[http://dx.doi.org/10.1021/sc300176r]
[18]
Goshisht MK, Moudgil L, Rani M, et al. Lysozyme complexes for the synthesis of functionalized biomaterials to understand protein-protein interactions and their biological applications. J Phys Chem C 2014; 118: 28207-19.
[http://dx.doi.org/10.1021/jp5078054]
[19]
Satyavani K, Ramanathan T, Gurudeeban S. Plant mediated synthesis of biomedical silver nanoparticles by using leaf extract of Citrullus colocynthis. Res J Nanosci Nanotechnol 2011; 1(2): 95-101.
[http://dx.doi.org/10.3923/rjnn.2011.95.101]
[20]
Cazon P, Velazquez G, Ramirez JA, Vazquez M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll 2017; 68: 136-48.
[http://dx.doi.org/10.1016/j.foodhyd.2016.09.009]
[21]
Benito-González I, López-Rubio A, Martínez-Sanz M. Potential of lignocellulosic fractions from Posidonia oceanica to improve barrier and mechanical properties of bio-based packaging materials. Int J Biol Macromol 2018; 118(Pt A): 542-1.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.052] [PMID: 29935241]
[22]
Carvalho RA, Santos TA, Azevedo VM, Felix PHC, Dias MV, Borges SV. Bionanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical and barrier properties. Polym Int 2018; 67: 386-92.
[http://dx.doi.org/10.1002/pi.5518]
[23]
Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 2005; 15(11): 599-607.
[http://dx.doi.org/10.1016/j.tcb.2005.09.002] [PMID: 16202600]
[24]
Duthie GG. Lipid peroxidation. Eur J Clin Nutr 1993; 47(11): 759-64.
[PMID: 8287845]
[25]
Chung YC, Chang CT, Chao WW, Lin CF, Chou ST. Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 2002; 50(8): 2454-8.
[http://dx.doi.org/10.1021/jf011369q] [PMID: 11929313]
[26]
Kulisic T, Radonic A, Katalinic V, Milos M. Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 2004; 85: 633-40.
[http://dx.doi.org/10.1016/j.foodchem.2003.07.024]
[27]
Grice HC. Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium. Food Chem Toxicol 1988; 26(8): 717-23.
[http://dx.doi.org/10.1016/0278-6915(88)90072-5] [PMID: 3058561]
[28]
Moein MR, Moein S, Ahmadizadeh S. Radical scavenging and reducing power of Salvia mirzayanii subfractions. Molecules 2008; 13(11): 2804-13.
[http://dx.doi.org/10.3390/molecules13112804] [PMID: 19015620]
[29]
Anand KK, Ragini S, Payal S, Virendra BY, Gopal N. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurved Integrat Med 2018; pp. 1-8.
[30]
Hoda S, Masoud HT, Mozhgan S, et al. Green synthesis of gold nanoparticles using sumac aqueous extract and their antioxidant activity. Mater Res 2017; 20(1): 264-70.
[31]
Jiménez Pérez ZE, Mathiyalagan R, Markus J, et al. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. Int J Nanomedicine 2017; 12: 709-23.
[http://dx.doi.org/10.2147/IJN.S118373] [PMID: 28260881]
[32]
Jiménez-Pérez ZE, Singh P, Kim YJ, et al. Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. J Ginseng Res 2018; 42(3): 327-33.
[http://dx.doi.org/10.1016/j.jgr.2017.04.003] [PMID: 29983614]
[33]
Jung CH, Seog HM, Choi IW, Cho HY. Antioxidant activities of cultivated and wild Korean ginseng leaves. Food Chem 2005; 92: 535-40.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.021]
[34]
Ahn EY, Lee YJ, Choi SY, Im AR, Kim YS, Park Y. Highly stable gold nanoparticles green-synthesized by upcycling cartilage waste extract from yellow-nose skate (Dipturus chilensis) and evaluation of its cytotoxicity, haemocompatibility and antioxidant activity. Artif Cells Nanomed Biotechnol 2018; 46(sup2): 1108-9.
[http://dx.doi.org/10.1080/21691401.2018.1479710] [PMID: 29956560]
[35]
Vijayan R, Joseph S, Mathew B. Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol 2018; 12(6): 850-6.
[http://dx.doi.org/10.1049/iet-nbt.2017.0311] [PMID: 30104462]
[36]
Mona H, Kambiz V, Hojat V. Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential. J Photochem Photobiol B Biol 2018; p. 184.
[37]
Halevas E, Nday CM, Eleftheriadou D, et al. Synthesis and encapsulation of V(IV,V) compounds in silica nanoparticles targeting development of antioxidant and antiradical nanomaterials. J Inorg Biochem 2019; 194: 180-99.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.12.005] [PMID: 30875656]
[38]
Sutan NA, Manolescu DS, Fierascu I, et al. Phytosynthesis of gold and silver nanoparticles enhance in vitro antioxidant and mitostimulatory activity of Aconitum toxicum Reichenb. rhizomes alcoholic extracts. Mater Sci Eng C 2018; 93: 746-58.
[http://dx.doi.org/10.1016/j.msec.2018.08.042] [PMID: 30274108]
[39]
Rajan A, Rajan AR, Philip D. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. Open Nano 2017; 2: 1-8.
[http://dx.doi.org/10.1016/j.onano.2016.11.002]
[40]
Beurton J, Clarot I, Stein J, et al. Long-lasting and controlled antioxidant property of immobilized gold nanoparticles for intelligent packaging. Colloids Surf B Biointerfaces 2019; 176: 439-48.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.030] [PMID: 30669103]
[41]
Thomas B, Vithiya BSM, Prasad TAA, et al. Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using Passiflora edulis f. flavicarpa. J Nanosci Nanotechnol 2019; 19(5): 2640-8.
[http://dx.doi.org/10.1166/jnn.2019.16025] [PMID: 30501761]
[42]
Annu SA, Ahmed S, Kaur G, Sharma P, Singh S, Ikram S. Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of Punica granatum mediated silver nanoparticles. Toxicol Res (Camb) 2018; 7(5): 923-30.
[http://dx.doi.org/10.1039/C8TX00103K] [PMID: 30310669]
[43]
Moteriya P, Padalia H, Chanda S. Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract. J Genet Eng Biotechnol 2017; 15(2): 505-13.
[http://dx.doi.org/10.1016/j.jgeb.2017.06.010] [PMID: 30647693]
[44]
Nassima D, Hafida FH, Marina R, Maria CG. Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. Int J Biol Macromol 2019; 121: 508-23.
[45]
Elemike EE, Onwudiwe DC, Ekennia AC, Jordaan A. Synthesis and characterisation of silver nanoparticles using leaf extract of Artemisia afra and their in vitro antimicrobial and antioxidant activities. IET Nanobiotechnol 2018; 12(6): 722-6.
[http://dx.doi.org/10.1049/iet-nbt.2017.0297] [PMID: 30104444]
[46]
Goyal S, Gupta N, Kumar A, Chatterjee S, Nimesh S. Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract. IET Nanobiotechnol 2018; 12(4): 526-33.
[http://dx.doi.org/10.1049/iet-nbt.2017.0089] [PMID: 29768242]
[47]
Lateef A, Folarin BI, Oladejo SM, Akinola PO, Beukes LS, Gueguim-Kana EB. Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Prep Biochem Biotechnol 2018; 48(7): 646-52.
[http://dx.doi.org/10.1080/10826068.2018.1479864] [PMID: 29958093]
[48]
Moteriya P, Chanda S. Biosynthesis of silver nanoparticles formation from Caesalpinia pulcherrima stem metabolites and their broad spectrum biological activities. J Genet Eng Biotechnol 2018; 16(1): 105-13.
[http://dx.doi.org/10.1016/j.jgeb.2017.12.003] [PMID: 30647712]
[49]
Johnson AS, Obot IB, Ukpong US. Green synthesis of silver nanoparticles using Artemisia annua and Sida acuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials. J Mater Environ Sci 2014; 5(3): 899-906.
[50]
Lalitha A, Subbaiya R, Ponmurugan P. Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. Int J Curr Microbiol Appl Sci 2013; 2(6): 228-35.
[51]
Fatimah I, Faridhatunnisa A. Green synthesis of silver nanoparticle from photograph wastewater using Hylocereus undatus skin extract. Orient J Chem 2017; 33(3): 1235-40.
[http://dx.doi.org/10.13005/ojc/330322]
[52]
Guntur SR, Kumar NS, Hegde MM, Dirisala VR. In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of Desmostachya bipinnata. Anal Chem Insights 2018; 131177390118782877
[http://dx.doi.org/10.1177/1177390118782877] [PMID: 30013309]
[53]
Hastak V, Bandi S, Kashyap S, et al. Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. J Mater Sci Mater Med 2018; 29(10): 154.
[http://dx.doi.org/10.1007/s10856-018-6163-0] [PMID: 30269256]
[54]
Hussain M, Raja NI, Mashwani ZU, Naz F, Iqbal M, Aslam S. Green synthesis and characterisation of silver nanoparticles and their effects on antimicrobial efficacy and biochemical profiling in Citrus reticulata. IET Nanobiotechnol 2018; 12(4): 514-9.
[http://dx.doi.org/10.1049/iet-nbt.2017.0153] [PMID: 29768240]
[55]
Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 2018; 13: 8013-24.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[56]
Mousavi-Khattat M, Keyhanfar M, Razmjou A. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S1022-31.
[http://dx.doi.org/10.1080/21691401.2018.1527346] [PMID: 30449178]
[57]
Jayanta KP, Gitishree D, Anuj K, AbuZar A, Hojun K, Han-Seung S. Photo-mediated biosynthesis of silver nanoparticles using the non-edible accrescent fruiting calyx of Physalis peruviana l fruits and investigation of its radical scavenging potential and cytotoxicity activities. J Photochem Photobiol B 2018; 188: 116-25.
[58]
Swaha S, Arjun P, Bharti A, Muhammad DH. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberose. Artif Cells Nanomed Biotechnol 2018; 46(Supp 3)
[http://dx.doi.org/10.1080/21691401.2018.1489265]
[59]
Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 2019; 559: 23-36.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.019] [PMID: 30668991]
[60]
Jyoti S, Meenakshi M, Rajesh T, Sapna G, Santosh K. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. Int J Biol Macromol 2019; 125: 1069-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.095] [PMID: 30552929]
[61]
Baskaran X, Geo Vigila AV, Parimelazhagan T, Muralidhara-Rao D, Zhang S. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. Int J Nanomedicine 2016; 11: 5789-806.
[http://dx.doi.org/10.2147/IJN.S108208] [PMID: 27895478]
[62]
Yuying Z, Yan Y, Kai T, Xing H, Guolin Z. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J Appl Polym Sci 2008; 107: 891-7.
[http://dx.doi.org/10.1002/app.26402]
[63]
Huang YC, Li RY. Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 2014; 12(8): 4379-98.
[http://dx.doi.org/10.3390/md12084379] [PMID: 25089950]
[64]
Zhai X, Zhang C, Zhao G, Stoll S, Ren F, Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J Nanobiotechnology 2017; 15(1): 4.
[http://dx.doi.org/10.1186/s12951-016-0243-4] [PMID: 28056992]
[65]
Amro S, James K, Wael M. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biol Macromol 2019; 126: 731-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.161] [PMID: 30593811]
[66]
Mojgan H, Mohsen S, Ali F, Zahra N, Shiva T. Preparation and characterization of MnS2/chitosan sodium alginate and calcium alginate nanocomposites for degradation of analgesic drug: Photocorrosion, mechanical, antimicrobial and antioxidant properties studies. Int J Biol Macromol 2018; 118: 1494-500.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.176]
[67]
Doga K, Maryam I, Confidence O. Physiochemical characterization, antioxidative, anticancer cells proliferation and food pathogens antibacterial activity of chitosan nanoparticles loaded with Cyperus articulates rhizome essential oils. Int J Biol Macromol 2019; 123: 837-45.
[68]
Omidi S, Kakanejadifard A. Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: Synthesis, characterization, antibacterial, and antioxidant activities. Carbohyd Poly 2018; p. 208.
[69]
Saravanakumar K, Chelliah R. MubarakAli D, et al. Fungal enzyme- mediated synthesis of chitosan nanoparticles and its biocompatibility, antioxidant and bactericidal properties. Int J Biol Macromol 2018; 118(Pt B): 1542-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.198] [PMID: 30170364]
[70]
Hector P, David Q, Juan de Dios F, et al. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J Nanomater 2012; 145380: 1-12.
[71]
Feng L, Huimiao J, Jie X, et al. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res Int 2018; 111: 351-60.
[http://dx.doi.org/10.1016/j.foodres.2018.05.038]
[72]
Manuela S, Adriana P, Dana T, Teofil-Danut S, Dan Cristian V. Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta MetallSin Engl Lett 2016; 29(3): 228-36.
[73]
Ahmadi F, Ebrahimnezjad Y. Ghiasi ghalehkandi J, Maheri Sis N, The Effect of dietary zinc oxide nanoparticles on the antioxidant state and serum enzymes activity in broiler chickens during starter stage. Int Conf Biol Civil Environ Engg (BCEE-2014). March 17-18, 2014; Dubai.
[74]
Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine 2018; 14: 87-100.
[http://dx.doi.org/10.2147/IJN.S186888] [PMID: 30587987]
[75]
Subbaiya R, Selvam MM. Green synthesis of copper nanoparticles from Hibicus rosasinensis and their antimicrobial, antioxidant activities. Res J Pharm Biol Chem Sci 2015; 6(2): 1183-90.
[76]
Keerthana S, Priyanga J, Sirajunnisa AR, Pavitra S, Geethalakshmi R, Renganathan S. Biofabrication of manganese nanoparticle using Aegle marmelos fruit extract and assessment of its biological activities. Nanomed Res J 2017; 2(3): 171-8.
[77]
Wengang L, Xiuhua Z, Xiaoli S, Yuangang Z, Ying L, Yunlong G. Evaluation of antioxidant ability in vitro and bioavailability of trans-cinnamic acid nanoparticle by liquid antisolvent precipitate. J Nanomater 2016; 9518362: 1-11.
[78]
Tsai YH, Yang YN, Ho YC, Tsai ML, Mi FL. Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohydr Polym 2018; 180: 286-96.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.100] [PMID: 29103507]
[79]
Ilaiyaraja N, Ambica P, Farhath K. Thymoquinone-loaded PLGA nanoparticles: antioxidant and anti-microbial properties. Int Curr Pharm J 2013; 2(12): 202-7.
[http://dx.doi.org/10.3329/icpj.v2i12.17017]
[80]
Kora AJ. Tree gum stabilised selenium nanoparticles: characterisation and antioxidant activity. IET Nanobiotechnol 2018; 12(5): 658-62.
[http://dx.doi.org/10.1049/iet-nbt.2017.0310] [PMID: 30095429]
[81]
Silva-Buzanello RA, Souza MF, Oliveira DA, et al. Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of curcumin after encapsulation. Polímeros 2016; 26(3)
[http://dx.doi.org/10.1590/0104-1428.2246]
[82]
Laszlo K, Sakina B, Kristof C, et al. Nanostructured TiO2-induced photocatalytic stress enhances the antioxidant capacity and phenolic content in the leaves of Vitis vinifera on a genotype-dependent manner. J Photochem Photobiol B 2019; 190: 137-45.
[83]
Mattiazzi J, Sari MHM, Lautenchleger R, Dal Prá M, Braganhol E, Cruz L. Incorporation of 3,3′-diindolylmethane into nanocapsules improves its photostability, radical scavenging capacity, and cytotoxicity against glioma cells. AAPS PharmSciTech 2019; 20(2): 49.
[http://dx.doi.org/10.1208/s12249-018-1240-8] [PMID: 30617655]
[84]
Pool H, Campos-Vega R, Herrera-Hernández MG, et al. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am J Transl Res 2018; 10(8): 2306-23.
[PMID: 30210672]
[85]
Hassani A, Hussain SA, Abdullah N, Kamarudin S, Rosli R. Antioxidant potential and angiotensin-converting enzyme (ACE) inhibitory activity of orotic acid-loaded gum arabic nanoparticles. AAPS PharmSciTech 2019; 20(2): 53.
[http://dx.doi.org/10.1208/s12249-018-1238-2] [PMID: 30617521]
[86]
Shamima B. Ahmaruzzaman Md, Green synthesis of SnO2 quantum dots using Parkia speciosa Hassk pods extract for the evaluation of antioxidant and photocatalytic properties. J Photochem Photobiol B 2018; 184: 44-53.
[87]
Cuihua C, Thomas GM, Yujie S, et al. Encapsulation in egg white protein nanoparticles protects anti-oxidant activity of Curcumin. Food Chem 2019; 280: 65-72.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.124] [PMID: 30642508]
[88]
Mojtaba S, Mahboubeh AS, Tayebe MK, et al. Antimicrobial and antioxidant activity of the biologically synthesized tellurium nanorods; a preliminary in vitro study. Iranian J Biotechnol 2017; 15(4): 1580.
[89]
Azar UM, Abdul K, Shahab AAN, et al. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. J Photochem Photobiol B Biol 2018; 185: 262-74.
[90]
Li J, Zhao C, Wei L, et al. Preservation of cichoric acid antioxidant properties loaded in heat treated lactoferrin nanoparticles. Molecules 2018; 23(10): 2678.
[http://dx.doi.org/10.3390/molecules23102678] [PMID: 30340329]
[91]
Lucia M, Anna MP, Ludovica MS, Edy AS, Sebastiano I, Maria NM. Solid lipid nanoparticles loading idebenone ester with pyroglutamic acid: in vitro antioxidant activity and in vivo topical efficacy. Nanomat 2019; 9: 43.
[92]
Mehdi Z, Ali MD, Morteza J. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies. Spectrochim Acta Part A Mol Biomol Spect 2018; 201: 288-99.
[93]
Goodpaster BH, Bertoldo A, Ng JM, et al. Interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 Diabetes: studies with dynamic PET imaging. Diabetes 2014; 63(3): 1058-68.
[http://dx.doi.org/10.2337/db13-1249] [PMID: 24222345]
[94]
Mueckler M. Insulin resistance and the disruption of Glut4 trafficking in skeletal muscle. J Clin Invest 2001; 107(10): 1211-3.
[http://dx.doi.org/10.1172/JCI13020] [PMID: 11375407]
[95]
Ali N, Siamak AR. Comparative study of antidiabetic activity and oxidative stress induced by Zinc oxide nanoparticles and zinc sulfate in diabetic rats. AAPS PharmSciTech 2016; 17(4): 834-43.
[http://dx.doi.org/10.1208/s12249-015-0405-y] [PMID: 26349687]
[96]
Abolfazl B, Shadi P, Aziz HY, Shima RP. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artif Cells Nanomed Biotechnol 2017; 45: 730-9.
[http://dx.doi.org/10.1080/21691401.2017.1337025] [PMID: 28617629]
[97]
Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci 2014; 15(2): 2015-23.
[http://dx.doi.org/10.3390/ijms15022015] [PMID: 24477262]
[98]
Flora-Glad CE, Jessie Suneetha W, Uma Maheswari K, Prasad TNVKV. Zinc nanoparticulated bitter gourd extract: in-vitro antidiabetic efficacy. Int J Sci Nat In: 2015; 6: pp. (4)687-92.
[99]
Rehana D, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst Eng 2017; 40(6): 943-57.
[http://dx.doi.org/10.1007/s00449-017-1758-2]
[100]
Mai AE. Amelioration of streptozotocin induced diabetes in rats by eco-friendly composite nano-cinnamon extract. Pak J Zool 2016; 48(3): 645-50.
[101]
Husam ME, Ayman E, Yousif ME. Hypoglycemic and anti-inflammatory effect of gold nanoparticles in streptozotocin-induced type 1 diabetes in experimental rats. Int J Diabetes Res 2017; 6(1): 16-23.
[102]
Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 2012; 7: 1189-202.
[http://dx.doi.org/10.2147/IJN.S26650] [PMID: 22419867]
[103]
Akram A, Ali Akbar O, Layasadat K, Maryam K, Mohammad B. Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxid Med Cell Longev 2018; 7496936: 18.
[104]
Ghosh S, Piyush M, Rahul N, Soham J, Rohan C, Abhishek D, et al. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J Nanomed Nanotechnol 2015; S6: 7.
[105]
Swarnalatha L, Christina R, Shruti R, Payas B. Evaluation of in vitro antidiabetic activity of Sphaeranthus amaranthoides silver nanoparticles. Int J Nanomat Biostruct 2012; 2(3): 25-9.
[106]
Ariadna L, Marco AGC, Genaro CG, et al. Stevia rebaudiana loaded titanium oxide nanomaterials as an antidiabetic agent in rats. Rev Bras Farmacogn 2015; 25: 145-51.
[http://dx.doi.org/10.1016/j.bjp.2015.03.004]
[107]
Vishnu Kiran M, Murugesan S. Biogenic silver nanoparticles by Halymenia poryphyroides and its in vitro anti-diabetic efficacy. J Chem Pharm Res 2013; 5(12): 1001-8.
[108]
Kavitha K, Sujatha K, Manoharan S. Development, characterization and antidiabetic potentials of Nilgirianthus ciliatus Nees derived nanoparticles. J Nanomed Biother Discov 2017; 7: 152.
[http://dx.doi.org/10.4172/2155-983X.1000152]
[109]
Sandeep K, Gaurav B, Ritesh Kumar V, Dinesh D, Neeraj D, Ki-Hyun K. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol 2017; 69(2): 143-50.
[http://dx.doi.org/10.1111/jphp.12672] [PMID: 28033667]
[110]
Sarker S, Ali MA, Barman RK, et al. Preparation and antidiabetic effect of orally administered nifedipine-loaded solid lipid nanoparticles in fructose-induced diabetic rats. Pharmacol Pharm 2018; 9: 457-71.
[http://dx.doi.org/10.4236/pp.2018.910035]
[111]
Oh KS, Kim JY, Yoon BD, et al. Sol-gel transition of nanoparticles/polymer mixtures for sustained delivery of exenatide to treat type 2 diabetes mellitus. Eur J Pharm Biopharm 2014; 88(3): 664-9.
[http://dx.doi.org/10.1016/j.ejpb.2014.08.004] [PMID: 25152212]
[112]
Liu Y, Zeng S, Liu Y, et al. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol 2018; 114: 632-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.161] [PMID: 29601883]
[113]
Liao JC, Deng JS, Chiu CS, et al. Chemical compositions, anti-inflammatory, antiproliferative and radical-scavenging activities of Actinidia callosa var. ephippioides. Am J Chin Med 2012; 40(5): 1047-62.
[http://dx.doi.org/10.1142/S0192415X12500772] [PMID: 22928834]
[114]
Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int J Pharm Sci Rev Res 2010; 3(1): 91-100.
[115]
Vonkeman HE, Brouwers JR, van de Laar MA. Understanding the NSAID related risk of vascular events. BMJ 2006; 332(7546): 895-8.
[http://dx.doi.org/10.1136/bmj.332.7546.895] [PMID: 16613964]
[116]
Laroux FS. Mechanisms of inflammation: the good, the bad and the ugly. Front Biosci 2004; 9: 3156-62.
[http://dx.doi.org/10.2741/1468] [PMID: 15353345]
[117]
Barreiro O, Martín P, González-Amaro R, Sánchez-Madrid F. Molecular cues guiding inflammatory responses. Cardiovasc Res 2010; 86(2): 174-82.
[http://dx.doi.org/10.1093/cvr/cvq001] [PMID: 20053659]
[118]
Servat-Medina L, González-Gómez A, Reyes-Ortega F, et al. Chitosan-tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity. Int J Nanomedicine 2015; 10: 3897-909.
[http://dx.doi.org/10.2147/IJN.S83705] [PMID: 26089666]
[119]
Ahn EY, Hwang SJ, Choi MJ, Choc S, Lee HJ, Park Y. Upcycling of jellyfish (Nemopilema nomurai) sea wastes as highly valuable reducing agents for green synthesis of gold nanoparticles and their antitumor and anti-inflammatory activity. Artif Cells Nanomed Biotechnol 2018; 26;46(sup2): 1127-36.
[120]
Madhumathi K, Rubaiya Y, Doble M, Venkateswari R, Sampath Kumar TS. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. Drug Deliv Transl Res 2018; 8(5): 1066-77.
[http://dx.doi.org/10.1007/s13346-018-0532-6] [PMID: 29717475]
[121]
Borges RS, Keita H, Ortiz BLS, et al. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology 2018; 26(4): 1057-80.
[http://dx.doi.org/10.1007/s10787-017-0438-9] [PMID: 29404883]
[122]
Genari B, Ferreira MBC, Medeiros LF, et al. Anti-inflammatory effect of an adhesive resin containing indomethacin-loaded nanocapsules. Arch Oral Biol 2017; 84: 106-11.
[http://dx.doi.org/10.1016/j.archoralbio.2017.09.016] [PMID: 28982032]
[123]
Lee GH, Lee SJ, Jeong SW, et al. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf B Biointerfaces 2016; 143: 511-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.060] [PMID: 27038916]
[124]
Mohyeddin A, Ramzi S, Safa D, Mays S, Imad-Aldin A. Dexamethasone-diclofenac loaded polylactide nanoparticles: Preparation, release and anti-inflammatory activity. J Pharm Sci 2018; 122: 179-84.
[125]
de Almeida M, da Rocha BA, Francisco CRL, et al. Evaluation of the in vivo acute antiinflammatory response of curcumin-loaded nanoparticles. Food Funct 2018; 9(1): 440-9.
[http://dx.doi.org/10.1039/C7FO01616F] [PMID: 29226928]
[126]
Pivetta TP, Simões S, Araújo MM, Carvalho T, Arruda C, Marcato PD. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf B Biointerfaces 2018; 164: 281-90.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.053] [PMID: 29413607]
[127]
Ali SS, Morsy R, El-Zawawy NA, Fareed MF, Bedaiwy MY. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomedicine 2017; 12: 6059-73.
[http://dx.doi.org/10.2147/IJN.S141201] [PMID: 28860766]
[128]
Wu YR, Choi HJ, Kang YG, Kim JK, Shin JW. In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. Int J Nanomedicine 2017; 12: 7007-13.
[http://dx.doi.org/10.2147/IJN.S146296] [PMID: 29026297]
[129]
Siu FYK, Ye S, Lin H, Li S. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: Enhanced bioavailability and in vitro anti-inflammatory activity. Int J Nanomedicine 2018; 13: 4133-44.
[http://dx.doi.org/10.2147/IJN.S164235] [PMID: 30038494]
[130]
Kedi PBE, Meva FE, Kotsedi L, et al. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int J Nanomedicine 2018; 13: 8537-48.
[http://dx.doi.org/10.2147/IJN.S174530] [PMID: 30587976]
[131]
Liu X, Gao P, Du J, Zhao X, Wong KKY. Long-term anti-inflammatory efficacy in intestinal anastomosis in mice using silver nanoparticle-coated suture. J Pediatr Surg 2017; 52(12): 2083-7.
[http://dx.doi.org/10.1016/j.jpedsurg.2017.08.026] [PMID: 28958713]
[132]
Feng G, Dong S, Huang M, et al. Biogenic polyphosphate nanoparticles from a marine Cyanobacterium synechococcus sp. PCC 7002: production, characterization, and anti-inflammatory properties in vitro. Mar Drugs 2018; 16(9): 322.
[http://dx.doi.org/10.3390/md16090322] [PMID: 30201855]
[133]
Daneshmand S, Jaafari MR, Movaffagh J, et al. Preparation, characterization, and optimization of auraptene-loaded solid lipid nanoparticles as a natural anti-inflammatory agent: In vivo and in vitro evaluations. Colloids Surf B Biointerfaces 2018; 164: 332-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.054] [PMID: 29413613]
[134]
Kim GW, Kang C, Oh YB, Ko MH, Seo JH, Lee D. Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles. Theranostics 2017; 7(9): 2463-76.
[http://dx.doi.org/10.7150/thno.18922] [PMID: 28744328]
[135]
Lucca LG, de Matos SP, Kreutz T, Teixeira HF. Anti-inflammatory effect from a hydrogel containing nanoemulsified copaiba oil (Copaifera multijuga Hayne). AAPS PharmSciTech 2018; 19(2): 522-30.
[http://dx.doi.org/10.1208/s12249-017-0862-6] [PMID: 28828597]
[136]
Gonzalez-Pizarro R, Silva-Abreu M, Calpena AC, Egea MA, Espina M, García ML. Development of fluorometholone-loaded PLGA nanoparticles for treatment of inflammatory disorders of anterior and posterior segments of the eye. Int J Pharm 2018; 547(1-2): 338-46.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.050] [PMID: 29800741]
[137]
Juère E, Florek J, Bouchoucha M, et al. In vitro dissolution, cellular membrane permeability and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Mol Pharm 2017; 14(12): 4431-41.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00529] [PMID: 29094948]
[138]
Kang JP, Kim YJ, Singh P, et al. Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities. Artif Cells Nanomed Biotechnol 2018; 46(8): 1530-40.
[http://dx.doi.org/10.1080/21691401.2017.1376674] [PMID: 28918663]
[139]
Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis 2010; 31(1): 100-10.
[http://dx.doi.org/10.1093/carcin/bgp263] [PMID: 19934210]
[140]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[141]
Huang K, Ma H, Liu J, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012; 6(5): 4483-93.
[http://dx.doi.org/10.1021/nn301282m] [PMID: 22540892]
[142]
Rezaee Z, Yadollahpour A, Bayati V, Negad Dehbashi F. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study. Int J Nanomedicine 2017; 12: 1431-9.
[http://dx.doi.org/10.2147/IJN.S128996] [PMID: 28260889]
[143]
Fadel M, Kassab K, Abd El Fadeel DA, Nasr M, El Ghoubary NM. Comparative enhancement of curcumin cytotoxic photodynamic activity by nanoliposomes and gold nanoparticles with pharmacological appraisal in HepG2 cancer cells and Erlich solid tumor model. Drug Dev Ind Pharm 2018; 44(11): 1809-16.
[http://dx.doi.org/10.1080/03639045.2018.1496451] [PMID: 29969300]
[144]
Hasanzadeh M, Tagi S, Solhi E, Shadjou N, Jouyban A, Mokhtarzadeh A. Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. Int J Biol Macromol 2018; 118(Pt A): 1082-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.091] [PMID: 29936082]
[145]
Wu T, Duan X, Hu C, et al. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 512-23.
[http://dx.doi.org/10.1080/21691401.2018.1560305] [PMID: 30810403]
[146]
Ahn EY, Lee YJ, Choi SY, Im AR, Kim YS, Park Y. Highly stable gold nanoparticles green-synthesized by upcycling cartilage waste extract from yellow-nose skate (Dipturus chilensis) and evaluation of its cytotoxicity, haemocompatibility and antioxidant activity. Artif Cells Nanomed Biotechnol 2018; 46(sup2): 1108-9.
[http://dx.doi.org/10.1080/21691401.2018.1479710] [PMID: 29956560]
[147]
Annu AS, Ahmed S, Kaur G, Sharma P, Singh S, Ikram S. Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of Punica granatum mediated silver nanoparticles. Toxicol Res (Camb) 2018; 7(5): 923-30.
[http://dx.doi.org/10.1039/C8TX00103K] [PMID: 30310669]
[148]
Kalaiarasi K, Prasannaraj G, Sahi SV, Venkatachalam P. Phytofabrication of biomolecule-coated metallic silver nanoparticles using leaf extracts of in vitro-raised bamboo species and its anticancer activity against human PC3 cell lines. Turk J Biol 2015; 39: 223-32.
[http://dx.doi.org/10.3906/biy-1406-10]
[149]
Prabhat U, Sunil KM, Suresh P, Dubey GP, Brijesh SC, Srikrishna S. Antioxidant, antimicrobial and cytotoxic potential of silver nanoparticles synthesized using flavonoid rich alcoholic leaves extract of Reinwardtia indica. Drug Chem Toxicol 2019; 42(1): 65-75.
[http://dx.doi.org/10.1080/01480545.2018.1488859] [PMID: 30033778]
[150]
Saritha V, Agastian P, Mariadhas VA, et al. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J Photochem Photobiol B 2019; 191: 65-74.
[151]
Snima KS, Nair RS, Nair SV, Kamath CR, Lakshmanan VK. Combination of anti-diabetic drug metformin and boswellic acid nanoparticles: a novel strategy for pancreatic cancer therapy. J Biomed Nanotechnol 2015; 11(1): 93-104.
[http://dx.doi.org/10.1166/jbn.2015.1877] [PMID: 26301303]
[152]
Mattiazzi J, Sari MHM, Lautenchleger R, Dal Prá M, Braganhol E, Cruz L. Incorporation of 3,3′-Diindolylmethane into nanocapsules improves its photostability, radical scavenging capacity, and cytotoxicity against glioma cells. AAPS PharmSciTech 2019; 20(2): 49.
[http://dx.doi.org/10.1208/s12249-018-1240-8] [PMID: 30617655]
[153]
Pool H, Campos-Vega R, Herrera-Hernández MG, et al. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am J Transl Res 2018; 10(8): 2306-23.
[PMID: 30210672]
[154]
Silva de Sá I, Peron AP, Leimann FV, et al. In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food Chem Toxicol 2019; 125: 29-37.
[http://dx.doi.org/10.1016/j.fct.2018.12.037] [PMID: 30592967]
[155]
Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 2014; 9: 4357-73.
[http://dx.doi.org/10.2147/IJN.S46900] [PMID: 25258527]
[156]
Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16(9): 1016-27.
[http://dx.doi.org/10.1089/hum.2005.16.1016] [PMID: 16149900]
[157]
Wilson JM. Gendicine: the first commercial gene therapy product. Hum Gene Ther 2005; 16(9): 1014-5.
[http://dx.doi.org/10.1089/hum.2005.16.1014] [PMID: 16149899]
[158]
Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 2015; 1850(8): 1642-60.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.008] [PMID: 25459512]
[159]
Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 2012; 7: 1189-202.
[http://dx.doi.org/10.2147/IJN.S26650] [PMID: 22419867]
[160]
Swarnalatha C, Rachela S, Ranjan P, Baradwaj P. Evaluation of in vitro antidiabetic activity of Sphaeranthus amaranthoides silver nanoparticles. Int J Nanomat Biostr 2012; 2: 25-9.
[161]
Zhu C, Zhang S, Song C, et al. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J Nanobiotech 2017; 15(1): 20.
[http://dx.doi.org/10.1186/s12951-017-0252-y]
[162]
Wang J, Zhang Y, Yuan Y, Yue T. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food Chem Toxicol 2014; 68: 183-9.
[http://dx.doi.org/10.1016/j.fct.2014.03.003] [PMID: 24626144]
[163]
Gong N, Chen S, Jin S, Zhang J, Wang PC, Liang X-J. Effects of the physicochemical properties of gold nanostructures on cellular internalization. Regen Biomater 2015; 2(4): 273-80.
[http://dx.doi.org/10.1093/rb/rbv024] [PMID: 26813673]
[164]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14: 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[165]
Parida UK, Biswal SK, Bindhani BK. Green synthesis and characterization of gold nanoparticles: study of its biological mechanism in human SUDHL-4 cell line. Adv Biol Chem 2014; 4: 360-75.
[http://dx.doi.org/10.4236/abc.2014.46041]
[166]
Patil MP, Ngabire D, Thi HHP, Kim M-D, Kim G-D. Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. J Cluster Sci 2017; 28(1): 119-32.
[167]
Jayaraj M, Arun R, Sathishkumar G. MubarakAli D, Rajesh M, Sivanandhan G, Kapildev G, Manickavasagam M, Thajuddin N, Ganapathi A, An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa). Mater Res Bull 2014; 52: 15-24.
[http://dx.doi.org/10.1016/j.materresbull.2013.12.060]
[168]
Mishra P, Ray S, Sinha S, et al. Facile bio-synthesis of nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem Eng J 2016; 105: 264-72.
[http://dx.doi.org/10.1016/j.bej.2015.09.021]
[169]
Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in A549 cells. J Cell Biochem 2016; 117(10): 2302-14.
[http://dx.doi.org/10.1002/jcb.25528] [PMID: 26923760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy