Review Article

循环和组织microRNAs作为卵巢癌预后的生物标志物

卷 20, 期 14, 2019

页: [1447 - 1460] 页: 14

弟呕挨: 10.2174/1389450120666190708100308

价格: $65

摘要

卵巢癌(OC)是全球最常见的癌症之一,与癌症相关的死亡率很高。 OC可分为上皮细胞瘤,生殖细胞瘤和基质细胞瘤。 疾病早期和晚期的五年生存率分别约为90%和15%。 microRNA是短的单链非编码核糖核酸(RNA)。 miRNA在基因表达的转录后调控中起关键作用。 在不同的组织和体液中发现了miRNA。 在致癌过程中,miRNA的表达发生了改变。 最近的研究表明,miRNA表达的改变与OC患者的预后之间存在关系。 这篇综述的目的是总结最近研究的结果,这些研究调查了循环和组织中miRNA的表达,将其作为OC预后的新生物标记。

关键词: microRNA,卵巢癌,生物标志物,预后,组织,循环,核糖核酸。

图形摘要

[1]
Ferlay J. GLOBOCAN 2000.. Cancer incidence, mortality and prevalence worldwide, version 1.0. IARC cancerbase 2001.
[2]
Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med 2017; 14(1): 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[3]
Artioli G, Borgato L, Ausoni S, Azzarello G. Ovarian cancer: BRCA genetics reveals targets for new therapies. J Genet Syndr Gene Ther 2014; 5(1): 1.
[4]
Stratton JF, Pharoah P, Smith SK, Easton D, Ponder BA. A systematic review and meta-analysis of family history and risk of ovarian cancer. Br J Obstet Gynaecol 1998; 105(5): 493-9.
[http://dx.doi.org/10.1111/j.1471-0528.1998.tb10148.x] [PMID: 9637117]
[5]
Jessmon P, Boulanger T, Zhou W, Patwardhan P. Epidemiology and treatment patterns of epithelial ovarian cancer. Expert Rev Anticancer Ther 2017; 17(5): 427-37.
[http://dx.doi.org/10.1080/14737140.2017.1299575] [PMID: 28277806]
[6]
Agah J, Jafarzadeh Esfehani R, Kamalimanesh B, et al. Mismanagement of a huge ovarian serous cystadenoma in a young girl; a case report. J Midwifery Reproduc Health 2015; 3(1): 315-7.
[7]
Kamalimanesh B, Esfehani RJ, Agah J. Papillary serous cystadenoma of ovary: A huge ovarian cyst complicating the pregnancy. Cases Obstet Gynecol 2016; 3(4): 121-4.
[8]
Kinose Y, Sawada K, Nakamura K, Kimura T. The role of microRNAs in ovarian cancer. BioMed research international 2014 2014.
[http://dx.doi.org/10.1155/2014/249393]
[9]
Homaei-Shandiz F, Jafarzadeh-Esfehani R, Moazzen N, Amirabadi A. Inflammatory myofibroblastic tumor of salpinx: a very rare case treated with a less aggressive method. Iran J Cancer Prev 2014; 7(4): 244-7.
[PMID: 25628846]
[10]
Ledermann J, Raja F, Fotopoulou C, et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. IAnnals of oncology 2013; 24(suppl_6): vi24-32.
[11]
McDaniel AS, Stall JN, Hovelson DH, et al. Next-generation sequencing of tubal intraepithelial carcinomas. JAMA Oncol 2015; 1(8): 1128-32.
[http://dx.doi.org/10.1001/jamaoncol.2015.1618] [PMID: 26181193]
[12]
Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet 2014; 384(9951): 1376-88.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7] [PMID: 24767708]
[13]
Ferlay J, Soerjomataram I, Ervik M, et al. Cancer incidence and mortality worldwide: IARC Cancer Base No 11. France: International Agency for Research on Cancer 2013.
[14]
Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol 2017; 41: 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[15]
Weiderpass E, Tyczynski JE. Epidemiology of patients with ovarian cancer with and without a BRCA1/2 mutation. Mol Diagn Ther 2015; 19(6): 351-64.
[http://dx.doi.org/10.1007/s40291-015-0168-x] [PMID: 26476542]
[16]
Au KK, Josahkian JA, Francis J-A, Squire JA, Koti M. Current state of biomarkers in ovarian cancer prognosis. Future Oncol 2015; 11(23): 3187-95.
[http://dx.doi.org/10.2217/fon.15.251] [PMID: 26551891]
[17]
Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68(4): 284-96.
[http://dx.doi.org/10.3322/caac.21456] [PMID: 29809280]
[18]
Lee J-Y, Jeon I, Kim JW, et al. Diabetes mellitus and ovarian cancer risk: a systematic review and meta-analysis of observational studies. Int J Gynecol Cancer 2013; 23(3): 402-12.
[http://dx.doi.org/10.1097/IGC.0b013e31828189b2] [PMID: 23354371]
[19]
Morgan R, Armstrong D, Alvarez R, et al. NCCN clinical practice guidelines in oncology. ovarian cancer, including fallopian tube cancer and primary peritoneal cancer. Version 22015; 2016
[20]
Heintz A, Odicino F, Maisonneuve P, et al. Carcinoma of the ovary. Int J Gynaecol Obstet 2006; 95: S161-92.
[http://dx.doi.org/10.1016/S0020-7292(06)60033-7]
[21]
Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics 2010; 11(7): 537-61.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[22]
Parizadeh SM, Jafarzadeh-Esfehani R, Avan A, et al. The prognostic and predictive value of microRNAs in patients with H. pylori-positive gastric cancer. Curr Pharm Des 2018; 24(39): 4639-45.
[http://dx.doi.org/10.2174/1381612825666190110144254] [PMID: 30636577]
[23]
Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133(2): 647-58.
[http://dx.doi.org/10.1053/j.gastro.2007.05.022] [PMID: 17681183]
[24]
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 2010; 39(3): 373-84.
[http://dx.doi.org/10.1016/j.molcel.2010.07.011] [PMID: 20705240]
[25]
Kinose Y, Sawada K, Nakamura K. Kimura TJBri.. The role of microRNAs in ovarian cancer. 2014; 2014.
[26]
Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. 2007; 67(18): 8699-707..
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1936]
[27]
Calura E, Fruscio R, Paracchini L, et al. MiRNA landscape in stage I epithelial ovarian cancer defines the histotype specificities. clincanres 2013; 2013; 0360..
[28]
Wu Q, Guo R, Lin M, et al. MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting Ecadherin repressor ZEB2. 2011;; 122(1): 149-54.
[29]
Liu G, Sun Y, Ji P, et al. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6–FOXM1 axis in ovarian cancer. 2014; 233(3): 308-18.
[30]
He J, Jing Y, Li W, et al. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. 2013; 8(2)e56647.
[http://dx.doi.org/10.1371/journal.pone.0056647]
[31]
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, et al. Circulating exosomes as potential biomarkers in cardiovascular disease. Curr Pharm Des 2018; 24(37): 4436-44.
[32]
Turchinovich A, Weiz L, Langheinz A. Burwinkel BJNar. Characterization of extracellular circulating. MicroRNA 2011; 39(16): 7223-33.
[PMID: 21609964]
[33]
He L, Zhang L, Wang M, Wang W. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway. Exp Ther Med 2017; 13(4): 1203-8.
[http://dx.doi.org/10.3892/etm.2017.4118] [PMID: 28413458]
[34]
Sun C, Li N, Yang Z, et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst 2013; 105(22): 1750-8.
[http://dx.doi.org/10.1093/jnci/djt302] [PMID: 24168967]
[35]
Sun H, Shao Y, Huang J, et al. Prognostic value of microRNA-9 in cancers: a systematic review and meta-analysis. Oncotarget 2016; 7(41): 67020-32.
[http://dx.doi.org/10.18632/oncotarget.11466] [PMID: 27563807]
[36]
Mao L, Liu S, Hu L, et al. miR-30 Family: A promising regulator in development and disease. BioMed Res Int 2018; 20189623412
[http://dx.doi.org/10.1155/2018/9623412] [PMID: 30003109]
[37]
Zhou J, Gong G, Tan H, et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep 2015; 33(6): 2915-23.
[http://dx.doi.org/10.3892/or.2015.3937] [PMID: 25962395]
[38]
Shi M, Mu Y, Zhang H, et al. MicroRNA-200 and microRNA-30 family as prognostic molecular signatures in ovarian cancer: A meta-analysis. Medicine (Baltimore) 2018; 97(32)e11505
[http://dx.doi.org/10.1097/MD.0000000000011505] [PMID: 30095616]
[39]
Xiaohong Z, Lichun F, Na X, et al. MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumour Biol 2016; 37(11): 14989-97.
[http://dx.doi.org/10.1007/s13277-016-5415-1] [PMID: 27655286]
[40]
Shao Y, Gu W, Ning Z, et al. Evaluating the Prognostic Value of microRNA-203 in Solid Tumors Based on a Meta-Analysis and the Cancer Genome Atlas (TCGA) Datasets. Cell Physiol Biochem 2017; 41(4): 1468-80.
[http://dx.doi.org/10.1159/000470649] [PMID: 28351024]
[41]
Eitan R, Kushnir M, Lithwick-Yanai G, et al. Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 2009; 114(2): 253-9.
[http://dx.doi.org/10.1016/j.ygyno.2009.04.024] [PMID: 19446316]
[42]
Li W, Liu Z, Chen L, Zhou L, Yao Y. MicroRNA-23b is an independent prognostic marker and suppresses ovarian cancer progression by targeting runt-related transcription factor-2. FEBS Lett 2014; 588(9): 1608-15.
[http://dx.doi.org/10.1016/j.febslet.2014.02.055] [PMID: 24613919]
[43]
Su L, Liu M. Correlation analysis on the expression levels of microRNA-23a and microRNA-23b and the incidence and prognosis of ovarian cancer. Oncol Lett 2018; 16(1): 262-6.
[http://dx.doi.org/10.3892/ol.2018.8669] [PMID: 29928410]
[44]
Calura E, Paracchini L, Fruscio R, et al. A prognostic regulatory pathway in stage I epithelial ovarian cancer: new hints for the poor prognosis assessment. Ann Oncol 2016; 27(8): 1511-9.
[http://dx.doi.org/10.1093/annonc/mdw210] [PMID: 27194815]
[45]
Cha SY, Choi YH, Hwang S, Jeong JY, An HJ. Clinical impact of micrornas associated with cancer stem cells as a prognostic factor in ovarian carcinoma. J Cancer 2017; 8(17): 3538-47.
[http://dx.doi.org/10.7150/jca.20348] [PMID: 29151939]
[46]
Liu J, Gu Z, Tang Y, et al. Tumour-suppressive microRNA-424-5p directly targets CCNE1 as potential prognostic markers in epithelial ovarian cancer. Cell Cycle 2018; 17(3): 309-18.
[http://dx.doi.org/10.1080/15384101.2017.1407894] [PMID: 29228869]
[47]
Lin Y, Xu T, Zhou S, Cui M. MicroRNA-363 inhibits ovarian cancer progression by inhibiting NOB1. Oncotarget 2017; 8(60): 101649-58.
[http://dx.doi.org/10.18632/oncotarget.21417] [PMID: 29254193]
[48]
Shapira I, Oswald M, Lovecchio J, et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br J Cancer 2014; 110(4): 976-83.
[http://dx.doi.org/10.1038/bjc.2013.795] [PMID: 24366298]
[49]
Xu YZ, Xi QH, Ge WL, Zhang XQ. Identification of serum microRNA-21 as a biomarker for early detection and prognosis in human epithelial ovarian cancer. Asian Pac J Cancer Prev 2013; 14(2): 1057-60.
[http://dx.doi.org/10.7314/APJCP.2013.14.2.1057] [PMID: 23621186]
[50]
Wan WN, Zhang YQ, Wang XM, et al. Down-regulated miR-22 as predictive biomarkers for prognosis of epithelial ovarian cancer. Diagn Pathol 2014; 9(178): 014-0178..
[http://dx.doi.org/10.1186/s13000-014-0178-8]
[51]
Wang X, Meng X, Li H, et al. MicroRNA-25 expression level is an independent prognostic factor in epithelial ovarian cancer. Clin Transl Oncol 2014; 16(11): 954-8.
[http://dx.doi.org/10.1007/s12094-014-1178-6] [PMID: 24696291]
[52]
Bagnoli M, Canevari S, Califano D, et al. Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study. Lancet Oncol 2016; 17(8): 1137-46.
[http://dx.doi.org/10.1016/S1470-2045(16)30108-5] [PMID: 27402147]
[53]
Wang Y, Li L, Qu Z, et al. The expression of miR-30a* and miR-30e* is associated with a dualistic model for grading ovarian papillary serious carcinoma. Int J Oncol 2014; 44(6): 1904-14.
[http://dx.doi.org/10.3892/ijo.2014.2359] [PMID: 24676806]
[54]
Sestito R, Cianfrocca R, Rosanò L, et al. miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma. Oncotarget 2016; 7(4): 4009-23.
[http://dx.doi.org/10.18632/oncotarget.6546] [PMID: 26675258]
[55]
Zhao H, Ding Y, Tie B, et al. miRNA expression pattern associated with prognosis in elderly patients with advanced OPSC and OCC. Int J Oncol 2013; 43(3): 839-49.
[http://dx.doi.org/10.3892/ijo.2013.1988] [PMID: 23787480]
[56]
Lee H, Park CS, Deftereos G, et al. MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features. World J Surg Oncol 2012; 10(1): 174.
[http://dx.doi.org/10.1186/1477-7819-10-174] [PMID: 22925189]
[57]
Wang J, Yu M, Guan S, et al. Prognostic significance of microRNA-100 in solid tumors: an updated meta-analysis. OncoTargets Ther 2017; 10: 493-502.
[http://dx.doi.org/10.2147/OTT.S122774] [PMID: 28176958]
[58]
Zuberi M, Khan I, Mir R, et al. Utility of serum mir-125b as a diagnostic and prognostic indicator and its alliance with a panel of tumor suppressor genes in epithelial ovarian cancer. PLoS One 2016; 11(4)e0153902
[http://dx.doi.org/10.1371/journal.pone.0153902] [PMID: 27092777]
[59]
Zhu T, Gao W, Chen X, et al. A Pilot study of circulating microrna-125b as a diagnostic and prognostic biomarker for epithelial ovarian cancer. Int J Gynecol Cancer 2017; 27(1): 3-10.
[http://dx.doi.org/10.1097/IGC.0000000000000846] [PMID: 27636713]
[60]
Fukagawa S, Miyata K, Yotsumoto F, et al. MicroRNA-135a-3p as a promising biomarker and nucleic acid therapeutic agent for ovarian cancer. Cancer Sci 2017; 108(5): 886-96.
[http://dx.doi.org/10.1111/cas.13210] [PMID: 28231414]
[61]
Gao YC, Wu J. MicroRNA-200c and microRNA-141 as potential diagnostic and prognostic biomarkers for ovarian cancer. Tumour Biol 2015; 36(6): 4843-50.
[http://dx.doi.org/10.1007/s13277-015-3138-3] [PMID: 25636451]
[62]
Kim TH, Song JY, Park H, et al. miR-145, targeting high-mobility group A2, is a powerful predictor of patient outcome in ovarian carcinoma. Cancer Lett 2015; 356(2 Pt B): 937-45.
[http://dx.doi.org/10.1016/j.canlet.2014.11.011] [PMID: 25444913]
[63]
Liang H, Jiang Z, Xie G, Lu Y. Serum microRNA-145 as a novel biomarker in human ovarian cancer. Tumour Biol 2015; 36(7): 5305-13.
[http://dx.doi.org/10.1007/s13277-015-3191-y] [PMID: 25722112]
[64]
Gong L, Wang C, Gao Y, Wang J. Decreased expression of microRNA-148a predicts poor prognosis in ovarian cancer and associates with tumor growth and metastasis. Biomed Pharmacother 2016; 83: 58-63.
[http://dx.doi.org/10.1016/j.biopha.2016.05.049] [PMID: 27470550]
[65]
Sun L, Zhai R, Zhang L, Zhao S. MicroRNA-149 suppresses the proliferation and increases the sensitivity of ovarian cancer cells to cisplatin by targeting X-linked inhibitor of apoptosis. Oncol Lett 2018; 15(5): 7328-34.
[http://dx.doi.org/10.3892/ol.2018.8240] [PMID: 29731888]
[66]
Jin M, Yang Z, Ye W, Xu H, Hua X. MicroRNA-150 predicts a favorable prognosis in patients with epithelial ovarian cancer, and inhibits cell invasion and metastasis by suppressing transcriptional repressor ZEB1. PLoS One 2014; 9(8)e103965
[http://dx.doi.org/10.1371/journal.pone.0103965] [PMID: 25090005]
[67]
Chen H, Zhang L, Zhang L, Du J, Wang H, Wang B. MicroRNA-183 correlates cancer prognosis, regulates cancer proliferation and bufalin sensitivity in epithelial ovarian caner. Am J Transl Res 2016; 8(4): 1748-55.
[PMID: 27186298]
[68]
Cheng WT, Rosario R, Muthukaruppan A, et al. MicroRNA profiling of ovarian granulosa cell tumours reveals novel diagnostic and prognostic markers. Clin Epigenetics 2017; 9(72): 017-0372..
[http://dx.doi.org/10.1186/s13148-017-0372-0]
[69]
Qin CZ, Lou XY, Lv QL, et al. MicroRNA-184 acts as a potential diagnostic and prognostic marker in epithelial ovarian cancer and regulates cell proliferation, apoptosis and inflammation. Pharmazie 2015; 70(10): 668-73.
[PMID: 26601424]
[70]
Fan Y, Fan J, Huang L, et al. Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. Int J Clin Exp Pathol 2015; 8(4): 4132-7.
[PMID: 26097603]
[71]
Zuberi M, Khan I, Gandhi G, Ray PC, Saxena A. The conglomeration of diagnostic, prognostic and therapeutic potential of serum miR-199a and its association with clinicopathological features in epithelial ovarian cancer. Tumour Biol 2016; 37(8): 11259-66.
[http://dx.doi.org/10.1007/s13277-016-4993-2] [PMID: 26951510]
[72]
Hu X, Macdonald DM, Huettner PC, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 2009; 114(3): 457-64.
[http://dx.doi.org/10.1016/j.ygyno.2009.05.022] [PMID: 19501389]
[73]
Cao Q, Lu K, Dai S, Hu Y, Fan W. Clinicopathological and prognostic implications of the miR-200 family in patients with epithelial ovarian cancer. Int J Clin Exp Pathol 2014; 7(5): 2392-401.
[PMID: 24966949]
[74]
Meng X, Müller V, Milde-Langosch K, et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016; 7(13): 16923-35.
[http://dx.doi.org/10.18632/oncotarget.7850] [PMID: 26943577]
[75]
Marchini S, Cavalieri D, Fruscio R, et al. Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncol 2011; 12(3): 273-85.
[http://dx.doi.org/10.1016/S1470-2045(11)70012-2] [PMID: 21345725]
[76]
Vilming Elgaaen B, Olstad OK, Haug KBF, et al. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker. BMC Cancer 2014; 14(1): 80.
[http://dx.doi.org/10.1186/1471-2407-14-80] [PMID: 24512620]
[77]
Hong F, Li Y, Xu Y, Zhu L. Prognostic significance of serum microRNA-221 expression in human epithelial ovarian cancer. J Int Med Res 2013; 41(1): 64-71.
[http://dx.doi.org/10.1177/0300060513475759] [PMID: 23569131]
[78]
Li J, Li Q, Huang H, et al. Overexpression of miRNA-221 promotes cell proliferation by targeting the apoptotic protease activating factor-1 and indicates a poor prognosis in ovarian cancer. Int J Oncol 2017; 7(10)
[http://dx.doi.org/10.3892/ijo.2017.3898] [PMID: 28350128]
[79]
Wang S, Zhao X, Wang J, et al. Upregulation of microRNA-203 is associated with advanced tumor progression and poor prognosis in epithelial ovarian cancer. Med Oncol 2013;; 30(3): 013-0681..
[http://dx.doi.org/10.1007/s12032-013-0681-x]
[80]
Chu P, Liang A, Jiang A, Zong L. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. Oncol Lett 2018; 15(5): 7571-8.
[http://dx.doi.org/10.3892/ol.2018.8313] [PMID: 29725462]
[81]
Dai C, Xie Y, Zhuang X, Yuan Z. MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed Pharmacother 2018; 104: 763-70.
[http://dx.doi.org/10.1016/j.biopha.2018.05.077] [PMID: 29807226]
[82]
Cao J, Cai J, Huang D, et al. miR-335 represents an independent prognostic marker in epithelial ovarian cancer. Am J Clin Pathol 2014; 141(3): 437-42.
[http://dx.doi.org/10.1309/AJCPLYTZGB54ISZC] [PMID: 24515774]
[83]
Meng X, Joosse SA, Müller V, et al. Diagnostic and prognostic potential of serum miR-7, miR-16, miR-25, miR-93, miR-182, miR-376a and miR-429 in ovarian cancer patients. Br J Cancer 2015; 113(9): 1358-66.
[http://dx.doi.org/10.1038/bjc.2015.340] [PMID: 26393886]
[84]
Ling S, Ruiqin M, Guohong Z, Ying W. Expression and prognostic significance of microRNA-451 in human epithelial ovarian cancer. Eur J Gynaecol Oncol 2015; 36(4): 463-8.
[PMID: 26390704]
[85]
Yang A, Wang X, Yu C, et al. microRNA-494 is a potential prognostic marker and inhibits cellular proliferation, migration and invasion by targeting SIRT1 in epithelial ovarian cancer. Oncol Lett 2017; 14(3): 3177-84.
[http://dx.doi.org/10.3892/ol.2017.6501] [PMID: 28927063]
[86]
Wang W, Ren F, Wu Q, et al. MicroRNA-497 inhibition of ovarian cancer cell migration and invasion through targeting of SMAD specific E3 ubiquitin protein ligase 1. Biochem Biophys Res Commun 2014; 449(4): 432-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.053] [PMID: 24858688]
[87]
Cong J, Liu R, Wang X, et al. Low miR-498 expression levels are associated with poor prognosis in ovarian cancer. Eur Rev Med Pharmacol Sci 2015; 19(24): 4762-5.
[PMID: 26744867]
[88]
Yu X, Zhang X, Bi T, et al. MiRNA expression signature for potentially predicting the prognosis of ovarian serous carcinoma. Tumour Biol 2013; 34(6): 3501-8.
[http://dx.doi.org/10.1007/s13277-013-0928-3] [PMID: 23836287]
[89]
Zhang J, Liu W, Shen F, et al. The activation of microRNA-520h-associated TGF-β1/c-Myb/Smad7 axis promotes epithelial ovarian cancer progression. Cell Death Dis 2018; 9(9): 884.
[http://dx.doi.org/10.1038/s41419-018-0946-6] [PMID: 30158641]
[90]
Chen Z, Zhu J, Zhu Y, Wang J. MicroRNA-616 promotes the progression of ovarian cancer by targeting TIMP2. Oncol Rep 2018; 39(6): 2960-8.
[http://dx.doi.org/10.3892/or.2018.6368] [PMID: 29658596]
[91]
Teng C, Zheng H. Low expression of microRNA-1908 predicts a poor prognosis for patients with ovarian cancer. Oncol Lett 2017; 14(4): 4277-81.
[http://dx.doi.org/10.3892/ol.2017.6714] [PMID: 28943939]
[92]
Su J-L, Chen PB, Chen Y-H, et al. Downregulation of microRNA miR-520h by E1A contributes to anticancer activity. Cancer Res 2010; 70(12): 5096-108.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4148] [PMID: 20501832]
[93]
Moazzeni H, Najafi A, Khani MJM. Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231. 2017 2010; 34: 45-52..
[94]
Wang C, Ouyang Y, Lu M, Wei J, Zhang H. [miR-141-3p regulates the expression of androgen receptor by targeting its 3'UTR in prostate cancer LNCaP cells] J Mole Immunol 2015; 31(6): 736-9.
[95]
Yang D, Zhan M, Chen T, et al. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep 2017; 7: 43109.
[http://dx.doi.org/10.1038/srep43109] [PMID: 28256505]
[96]
Zhang H, Zuo Z, Lu X, Wang L, Wang H. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. 2012; 27(2): 594-8..
[97]
Cao J, Cai J, Huang D, Han Q, Yang Q, Li T, et al. miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. 2013; 30(2): 701-6..
[98]
Wang B, Li X, Zhao G, et al. miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway. J Exp Clin Cancer Res 2018; 37(1): 235.
[http://dx.doi.org/10.1186/s13046-018-0906-0] [PMID: 30241553]
[99]
Wang J. Role of miR-193a-5p in the proliferation and apoptosis of hepatocellular carcinoma. Erfm, sciences 2018; 22 (21): 7233-9..
[100]
Luo Q, Wei C, Li X, Li J, Chen L, Huang Y, et al. MicroRNA-195- 5p is a potential diagnostic and therapeutic target for breast cancer. 2014; 31(3): 1096-2..
[101]
Yan J, Jiang J-y, Meng X-N, Xiu Y-L. MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. 2016; 35(1): 31..
[102]
Duan S, Dong X, Hai J, et al. MicroRNA-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2. 2018; 107: 712-20..
[103]
Sun T-Y, Xie H-J, He H, Li Z, Kong L-F. miR-26a inhibits the proliferation of ovarian cancer cells via regulating CDC6 expression. Am J Transl Res 2016; 8(2): 1037-46.
[PMID: 27158389]
[104]
Corney DC, Hwang C-I, Matoso A, et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 2010; 16(4): 1119-28.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2642] [PMID: 20145172]
[105]
Li J, Ju J, Ni B, Wang H. The emerging role of miR-506 in cancer. Oncotarget 2016; 7(38): 62778-88.
[http://dx.doi.org/10.18632/oncotarget.11294] [PMID: 27542202]
[106]
Wurz K, Garcia RL, Goff BA, et al. MiR-221 and MiR-222 alterations in sporadic ovarian carcinoma: Relationship to CDKN1B, CDKNIC and overall survival. Genes Chromosomes Cancer 2010; 49(7): 577-84.
[http://dx.doi.org/10.1002/gcc.20768] [PMID: 20461750]
[107]
Li L, Gao R, Yu Y, et al. Tumor suppressor activity of miR-451: Identification of CARF as a new target. Sci Rep 2018; 8(1): 375.
[http://dx.doi.org/10.1038/s41598-017-18559-5] [PMID: 29321561]
[108]
Yuan J, Wang K, Xi M. MiR-494 Inhibits Epithelial Ovarian Cancer Growth by Targeting c-Myc. Med Sci Monit 2016; 22: 617-24.
[http://dx.doi.org/10.12659/MSM.897288] [PMID: 26908019]
[109]
Hang W, Feng Y, Sang Z, et al. Downregulation of miR-145-5p in cancer cells and their derived exosomes may contribute to the development of ovarian cancer by targeting CT. Int J Mol Med 2019; 43(1): 256-66.
[PMID: 30365097]
[110]
Chen D, Wu D, Shao K, et al. MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia. jotr 2017; 9(9): 4308..
[111]
Wang L, Wu X, Wang B, Wang Q, Han L. Mechanisms of miR-145 regulating invasion and metastasis of ovarian carcinoma. Am J Transl Res 2017; 9(7): 3443-51.
[PMID: 28804560]
[112]
Liu J, Zhang X, Huang Y, et al. miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases. 2019; 17(2): 1453-60..
[113]
Ibrahim FF, Jamal R, Syafruddin SE, et al. MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. J Ovarian Res 2015; 12(8): 56.
[114]
Lee H, Kim C, Kang H, et al. microRNA-200a-3p increases 5- fluorouracil resistance by regulating dual specificity phosphatase 6 expression. 2017; 49(5)e327.
[115]
Lee M, Kim EJ, Jeon MJ. MicroRNAs 125a and 125b inhibit ovarian cancer cells through post-transcriptional inactivation of EIF4EBP1. Oncotarget 2016; 7(8): 8726-42.
[http://dx.doi.org/10.18632/oncotarget.6474] [PMID: 26646586]
[116]
Li Y, Deng X, Zeng X, Peng X. The Role of Mir-148a in Cancer. J Cancer 2016; 7(10): 1233-41.
[http://dx.doi.org/10.7150/jca.14616] [PMID: 27390598]
[117]
Li S, Li Y, Wen Z, et al. microRNA-206 overexpression inhibits cellular proliferation and invasion of estrogen receptor α-positive ovarian cancer cells. Mol Med Rep 2014; 9(5): 1703-8.
[http://dx.doi.org/10.3892/mmr.2014.2021] [PMID: 24604205]
[118]
Wang J, Li Y, Ding M, et al. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer. (Review) Int J Oncol 2017; 50(2): 345-55.
[http://dx.doi.org/10.3892/ijo.2016.3811] [PMID: 28000852]
[119]
Jiang L-h, Zhang H-d. MiR-30a: A novel biomarker and potential therapeutic target for cancer. J Oncol 2018; 65167829
[120]
Nagaraja AK, Creighton CJ, Yu Z, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010; 24(2): 447-63.
[http://dx.doi.org/10.1210/me.2009-0295] [PMID: 20081105]
[121]
Wei K, Pan C, Yao G, et al. MiR-106b-5p promotes proliferation and inhibits apoptosis by regulating BTG3 in non-small cell lung cancer. 2017; 44(4): 1545-58..
[122]
Feng X, Liu N, Deng S, et al. miR-199a modulates cisplatin resistance in ovarian cancer by targeting Hif1α. OncoTargets Ther 2017; 10: 5899-906.
[http://dx.doi.org/10.2147/OTT.S145833] [PMID: 29276393]
[123]
Yang B, Li S-Z, Ma L, et al. Expression and mechanism of action of miR-196a in epithelial ovarian cancer. APjotm 2016; 9(11): 1105-0.
[124]
Wang X, Liu S, Cao L, et al. miR-29a-3p suppresses cell proliferation and migration by downregulating IGF1R in hepatocellular carcinoma. Oncotarget 2017; 8(49): 86592-603.
[http://dx.doi.org/10.18632/oncotarget.21246] [PMID: 29156819]
[125]
Wu G, Liu J, Wu Z, et al. MicroRNA-184 inhibits cell proliferation and metastasis in human colorectal cancer by directly targeting IGF-1R. Oncol Lett 2017; 14(3): 3215-22.
[http://dx.doi.org/10.3892/ol.2017.6499] [PMID: 28927068]
[126]
Chen H, Xia B, Liu T, Lin M, Lou GJCCI. KIAA0101, a target gene of miR-429, enhances migration and chemoresistance of epithelial ovarian cancer cells. 2016; 16(14): 7..
[127]
Song J, Luo S, Li S-w. miRNA-592 is downregulated and may target LHCGR in polycystic ovary syndrome patients. 2015; 15(4): 229-37. 2015
[128]
Li D, Wang H, Song H, et al. The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells. Oncotarget 2017; 8(49): 85276-89.
[http://dx.doi.org/10.18632/oncotarget.19205] [PMID: 29156719]
[129]
Zhao L, Wang W, Xu L, et al. Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer 2019; 38(13): 2305.. [http://10.1038/s41388-018-0577-5]
[130]
Tang H, Lv W, Sun W, Bi Q, Hao Y. miR-505 inhibits cell growth and EMT by targeting MAP3K3 through the AKT-NFκB pathway in NSCLC cells. JIjomm 2019; 43(3): 1203-643. 2019
[131]
Koutsaki M, Libra M, Spandidos DA, Zaravinos A. The miR-200 family in ovarian cancer. Oncotarget 2017; 8(39): 66629-40.
[http://dx.doi.org/10.18632/oncotarget.18343] [PMID: 29029543]
[132]
Suo H, Zhang K. MiR-200a promotes cell invasion and migration of ovarian carcinoma by targeting PTEN. JErfm, sciences 2018; 22(13): 4080-9..
[133]
Kong X, Xu X, Yan Y, et al. Estrogen regulates the tumour suppressor MiRNA-30c and its target gene, MTA-1, in endometrial cancer. PLoS One 2014; 9(3)e90810
[134]
Yang C-L, Zheng X-L, Ye K, et al. MicroRNA-183 acts as a tumor suppressor in human non-small cell lung cancer by downregulating MTA1. 2018; 46(1): 93-106..
[135]
Xu S, Fu G-B, Tao Z, et al. MiR-497 decreases cisplatin resistance in ovarian cancer cells by targeting mTOR/P70S6K1. Oncotarget 2015; 6(28): 26457-71.
[http://dx.doi.org/10.18632/oncotarget.4762] [PMID: 26238185]
[136]
Kim TH, Jeong J-Y, Park J-Y, et al. miR-150 enhances apoptotic and anti-tumor effects of paclitaxel in paclitaxel-resistant ovarian cancer cells by targeting Notch3. Oncotarget 2017; 8(42): 72788-800.
[http://dx.doi.org/10.18632/oncotarget.20348] [PMID: 29069826]
[137]
Buscaglia LEB, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer 2011; 30(6): 371-80.
[http://dx.doi.org/10.5732/cjc.30.0371] [PMID: 21627859]
[138]
Muti P, Donzelli S, Sacconi A, et al. MiRNA-513a-5p inhibits progesterone receptor expression and constitutes a risk factor for breast cancer: the hOrmone and Diet in the ETiology of breast cancer prospective study. Carcinogenesis 2018; 39(2): 98-108.
[http://dx.doi.org/10.1093/carcin/bgx126] [PMID: 29126102]
[139]
Ding D, Li C, Zhao T, et al. LncRNA H19/miR-29b-3p/PGRN Axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on wnt signaling. Mol Cells 2018; 41(5): 423-35.
[PMID: 29754471]
[140]
Higuchi T, Todaka H, Sugiyama Y, et al. Suppression of microRNA- 7 (miR-7) biogenesis by nuclear factor 90-nuclear factor 45 complex (NF90-NF45) controls cell proliferation in hepatocellular carcinoma. 2016; 291(40): 21074-84..
[141]
Xiang G, Cheng Y. MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod Biol 2018; 18(3): 218-24.
[http://dx.doi.org/10.1016/j.repbio.2018.07.005] [PMID: 30054097]
[142]
Teng C, Zheng H. Low expression of microRNA-1908 predicts a poor prognosis for patients with ovarian cancer. Oncol Lett 2017; 14(4): 4277-81.
[http://dx.doi.org/10.3892/ol.2017.6714] [PMID: 28943939]
[143]
Martin EC, Elliott S, Rhodes LV, et al. Preferential star strand biogenesis of pre-miR-24-2 targets PKC-alpha and suppresses cell survival in MCF-7 breast cancer cells. Mol Carcinog 2014; 53(1): 38-48.
[http://dx.doi.org/10.1002/mc.21946] [PMID: 22911661]
[144]
Chai C, Wu H, Wang B, Eisenstat DD, Leng RP. MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis 2018; 39(9): 1185-96.
[http://dx.doi.org/10.1093/carcin/bgy092] [PMID: 29985991]
[145]
Chu P, Liang A, Jiang A, Zong L. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. Oncol Lett 2018; 15(5): 7571-8.
[http://dx.doi.org/10.3892/ol.2018.8313] [PMID: 29725462]
[146]
Zhang Y, Zhao F-J, Chen L-L, et al. MiR-373 targeting of the Rab22a oncogene suppresses tumor invasion and metastasis in ovarian cancer. Oncotarget 2014; 5(23): 12291-303.
[http://dx.doi.org/10.18632/oncotarget.2577] [PMID: 25460499]
[147]
Zhao F, Pu Y, Cui M, Wang H, Cai S. MiR-20a-5p represses the multi-drug resistance of osteosarcoma by targeting the SDC2 gene. Cancer Cell Int 2017; 17: 100.
[http://dx.doi.org/10.1186/s12935-017-0470-2] [PMID: 29118673]
[148]
Cai B, Ma M, Chen B, et al. MiR-16-5p targets SESN1 to regulate the p53 signaling pathway, affecting myoblast proliferation and apoptosis, and is involved in myoblast differentiation. 2018; 9(3): 367..
[149]
Ye Z, Zhao L, Li J, Chen W, Li X. miR-30d blocked transforming growth factor beta1-induced epithelial-mesenchymal transition by targeting snail in ovarian cancer cells. Int J Gynecol Cancer 2015; 25(9): 1574-81.
[150]
Fang G, Liu J, Wang Q, et al. MicroRNA-223-3p regulates ovarian cancer cell proliferation and invasion by targeting sox11 expression. Int J Mol Sci 2017; 18(6): 1208.
[http://dx.doi.org/10.3390/ijms18061208] [PMID: 28587313]
[151]
Xu L, Xiang J, Shen J, et al. Oncogenic MicroRNA-27a is a target for genistein in ovarian cancer cells. Anticancer Agents Med Chem 2013; 13(7): 1126-32.
[http://dx.doi.org/10.2174/18715206113139990006] [PMID: 23438830]
[152]
Zhang S, Zhang X, Fu X, et al. Identification of common differentially-expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncol Lett 2018; 16(2): 2391-401.
[http://dx.doi.org/10.3892/ol.2018.8954] [PMID: 30013629]
[153]
Choi P-W, Ng S-W. The Functions of MicroRNA-200 family in ovarian cancer: beyond epithelial-mesenchymal transition. Int J Mol Sci 2017; 18(6): 1207.
[http://dx.doi.org/10.3390/ijms18061207] [PMID: 28587302]
[154]
Zhang G, Xu Z, Wang N. Network of microRNA, transcription factors, target genes and host genes in human mesothelioma. Exp Ther Med 2017; 13(6): 3039-46.
[http://dx.doi.org/10.3892/etm.2017.4296] [PMID: 28587377]
[155]
Chen Z, Zhu J, Zhu Y, Wang J. MicroRNA-616 promotes the progression of ovarian cancer by targeting TIMP2. Oncol Rep 2018; 39(6): 2960-8.
[http://dx.doi.org/10.3892/or.2018.6368] [PMID: 29658596]
[156]
Kobayashi M, Sawada K, Nakamura K, et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res 2018; 11(1): 81.
[http://dx.doi.org/10.1186/s13048-018-0458-0] [PMID: 30219071]
[157]
Li LZ, Zhang CZ, Liu LL, et al. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis 2014; 35(2): 469-78.
[http://dx.doi.org/10.1093/carcin/bgt330] [PMID: 24085799]
[158]
Sun L, Zhai R, Zhang L, Zhao S. MicroRNA-149 suppresses the proliferation and increases the sensitivity of ovarian cancer cells to cisplatin by targeting X-linked inhibitor of apoptosis. Oncol Lett 2018; 15(5): 7328-34.
[http://dx.doi.org/10.3892/ol.2018.8240] [PMID: 29731888]
[159]
Pan Y, Robertson G, Pedersen L, et al. miR-509-3p is clinically significant and strongly attenuates cellular migration and multi-cellular spheroids in ovarian cancer. Oncotarget 2016; 7(18): 25930-48.
[http://dx.doi.org/10.18632/oncotarget.8412] [PMID: 27036018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy