Review Article

Advancement of Mechanisms of Coxsackie Virus B3-Induced Myocarditis Pathogenesis and the Potential Therapeutic Targets

Author(s): Tolessa Muleta Daba*, Yue Zhao and Zhenwei Pan*

Volume 20, Issue 14, 2019

Page: [1461 - 1473] Pages: 13

DOI: 10.2174/1389450120666190618124722

Price: $65

Abstract

Viral myocarditis is a cardiac disease caused by Group B Coxsackie virus of Enterovirus genus in the Picorna viridae family. It causes heart failure in children, young and adults. Ten Percent (10%) of acute heart failure and 12% of sudden deaths in young and adults who are less than 40 years is due to this viral myocarditis. If treatment action is not taken earlier, the viral disease can develop into chronic myocarditis and Dilated Cardiomyopathy which lead to congestive heart failure. And these eventually result in a reduced cardiac function which finally brings the victim to death. The only treatment option of the disease is heart transplantation once the acute stage of disease develops to chronic and Dilated Cardiomyopathy. Currently, there is a limitation in daily clinical treatments and even some available treatment options are ineffective. Therefore, focusing on search for treatment options through investigation is imperative. Recent studies have reported that biological molecules show a promising role. But their mechanism of pathogenesis is still unclear. A detailed study on identifying the role of biological molecules involved in Coxsackie B3 virus induced myocarditis and their mechanisms of pathogenesis; compiling and disseminating the findings of the investigation to the scientific communities contribute one step forward to the solution. Therefore, this review is aimed at compiling information from findings of current studies on the potential therapeutic role of micro RNA, cytokines and chemokines on the mechanism of pathogenesis of Coxsackie virus B3- induced myocarditis to give brief information for scholars to conduct a detailed study in the area.

Keywords: CVB3, Viral myocarditis, Dilated Cardiomyopathy, micro RNA, Cytokines, Chemokines.

Graphical Abstract

[1]
Blauwet LA, Cooper LT. Myocarditis. Prog cardiovac Dis 2010; 52: 274-88..
[2]
Cooper LT Jr, Cooper MD Jr. Myocarditis. N Engl J Med 2009; 360(15): 1526-38.
[http://dx.doi.org/10.1056/NEJMra0800028] [PMID: 19357408]
[3]
Caforio ALP, Malipiero G, Marcolongo R, Iliceto S. Myocarditis: a clinical overview. Curr Cardiol Rep 2017; 19(7): 63.
[http://dx.doi.org/10.1007/s11886-017-0870-x] [PMID: 28540649]
[4]
Gui J, Yue Y, Chen R, Xu W, Xiong S. A20 (TNFAIP3) alleviates CVB3-induced myocarditis via inhibiting NF-κB signaling. PLoS One 2012; 7(9)e46515
[http://dx.doi.org/10.1371/journal.pone.0046515] [PMID: 23029542]
[5]
Fung G, Luo H, Qiu Y, Yang D, McManus B. Myocarditis. Circ Res 2016; 118(3): 496-514.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306573] [PMID: 26846643]
[6]
Huber SA. Viral myocarditis and dilated cardiomyopathy: Etiology and pathogenesis. Curr Pharm Des 2016; 22(4): 408-26.
[http://dx.doi.org/10.2174/1381612822666151222160500] [PMID: 26696257]
[7]
Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis--diagnosis, treatment options, and current controversies. Nat Rev Cardiol 2015; 12(11): 670-80.
[http://dx.doi.org/10.1038/nrcardio.2015.108] [PMID: 26194549]
[8]
Fairweather D, Stafford KA, Sung YK. Update on coxsackievirus B3 myocarditis. Curr Opin Rheumatol 2012; 24(4): 401-7.
[http://dx.doi.org/10.1097/BOR.0b013e328353372d] [PMID: 22488075]
[9]
Rose NR. Viral myocarditis. Curr Opin Rheumatol 2016; 28(4): 383-9.
[http://dx.doi.org/10.1097/BOR.0000000000000303] [PMID: 27166925]
[10]
Massilamany C, Gangaplara A, Reddy J. Intricacies of cardiac damage in coxsackievirus B3 infection: implications for therapy. Int J Cardiol 2014; 177(2): 330-9.
[http://dx.doi.org/10.1016/j.ijcard.2014.09.136] [PMID: 25449464]
[11]
Steinke K, Sachse F, Ettischer N, et al. Coxsackievirus B3 modulates cardiac ion channels. FASEB J 2013; 27(10): 4108-21.
[http://dx.doi.org/10.1096/fj.13-230193] [PMID: 23825229]
[12]
Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 2008; 3: 127-55.
[http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.151534] [PMID: 18039131]
[13]
Liu PP, Mason JW. Advances in the understanding of myocarditis. Circulation 2001; 104(9): 1076-82.
[http://dx.doi.org/10.1161/hc3401.095198] [PMID: 11524405]
[14]
Fairweather D, Rose NR. Coxsackievirus-induced myocarditis in mice: a model of autoimmune disease for studying immunotoxicity. Methods 2007; 41(1): 118-22.
[http://dx.doi.org/10.1016/j.ymeth.2006.07.009] [PMID: 17161308]
[15]
Van Linthout S, Tschöpe C, Schultheiss HP. Lack in treatment options for virus-induced inflammatory cardiomyopathy: can iPS-derived cardiomyocytes close the gap? Circ Res 2014; 115(6): 540-1.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.304951] [PMID: 25170089]
[16]
Melnick JL, Shaw EW, Curnen EC. A virus isolated from patients diagnosed as non-paralytic poliomyelitis or aseptic meningitis. Proc Soc Exp Biol Med 1949; 71(3): 344-9.
[http://dx.doi.org/10.3181/00379727-71-17186] [PMID: 18136475]
[17]
van Regenmortel, Marc HF, Claude MB, et al. Virus taxonomy: classification and nomenclature of viruses.Seventh report of the International Committee on Taxonomy of Viruses. ICTV 7 Report Academic Press. 2000..
[18]
Althof N, Whitton JL. Coxsackievirus B3 infects the bone marrow and diminishes the restorative capacity of erythroid and lymphoid progenitors. J Virol 2013; 87(5): 2823-34.
[http://dx.doi.org/10.1128/JVI.03004-12] [PMID: 23269810]
[19]
Yoder JD, Cifuente JO, Pan J, Bergelson JM, Hafenstein S. The crystal structure of a coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with decay-accelerating factor (DAF) provide a new footprint of DAF on the virus surface. J Virol 2012; 86(23): 12571-81.
[http://dx.doi.org/10.1128/JVI.01592-12] [PMID: 22973031]
[20]
Marchant D, Si X, Luo H, McManus B, Yang D. The impact of CVB3 infection on host cell biology. Curr Top Microbiol Immunol 2008; 323: 177-98.
[http://dx.doi.org/10.1007/978-3-540-75546-3_8] [PMID: 18357770]
[21]
Badorff C, Lee GH, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 1999; 5(3): 320-6.
[http://dx.doi.org/10.1038/6543] [PMID: 10086389]
[22]
Gao G, Wong J, Zhang J, et al. Proteasome activator REGgamma enhances coxsackieviral infection by facilitating p53 degradation. J Virol 2010; 84(21): 11056-66.
[http://dx.doi.org/10.1128/JVI.00008-10] [PMID: 20719955]
[23]
Van Linthout S, Savvatis K, Miteva K, et al. Mesenchymal stem cells improve murine acute coxsackievirus B3-induced myocarditis. Eur Heart J 2013; 34: 604.
[http://dx.doi.org/10.1093/eurheartj/eht012] [PMID: 21183501]
[24]
Kindermann I, Kindermann M, Kandolf R, et al. Predictors of outcome in patients with suspected myocarditis. Circulation 2008; 118(6): 639-48.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.769489] [PMID: 18645053]
[25]
Knowlton KU. CVB infection and mechanisms of viral cardiomyopathy. Curr Top Microbiol Immunol 2008; 323: 315-35.
[http://dx.doi.org/10.1007/978-3-540-75546-3_15] [PMID: 18357777]
[26]
Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30(3): 245-57.
[http://dx.doi.org/10.1055/s-0030-1255354] [PMID: 20665377]
[27]
Li K, Xu W, Guo Q, et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 2009; 105(4): 353-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.195230] [PMID: 19608981]
[28]
Bouin A, Nguyen Y, Wehbe M, et al. Major persistent 5′ terminally deleted coxsackievirus B3 populations in human endomyocardial tissues. Emerg Infect Dis 2016; 22(8): 1488-90.
[http://dx.doi.org/10.3201/eid2208.160186] [PMID: 27434549]
[29]
Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res 2015; 116(4): 737-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.302521] [PMID: 25677520]
[30]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[31]
Ikeda S, Pu WT. Expression and function of microRNAs in heart disease. Curr Drug Targets 2010; 11(8): 913-25.
[http://dx.doi.org/10.2174/138945010791591304] [PMID: 20415651]
[32]
Ziegelbauer JM, Sullivan CS, Ganem D. Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 2009; 41(1): 130-4.
[http://dx.doi.org/10.1038/ng.266] [PMID: 19098914]
[33]
Zhang Y, Zhang M, Li X, et al. Silencing microRNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci Rep 2016; 6: 22613.
[http://dx.doi.org/10.1038/srep22613] [PMID: 26931072]
[34]
Corsten M, Heggermont W, Papageorgiou AP, et al. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J 2015; 36(42): 2909-19.
[http://dx.doi.org/10.1093/eurheartj/ehv321] [PMID: 26206211]
[35]
Zhang Q, Xiao Z, He F, et al. MicroRNAs regulate the pathogenesis of CVB3-induced viral myocarditis. Intervirology 2013; 56(2): 104-13.
[http://dx.doi.org/10.1159/000343750] [PMID: 23183417]
[36]
Westermann D, Savvatis K, Lindner D, et al. Reduced degradation of the chemokine MCP-3 by matrix metalloproteinase-2 exacerbates myocardial inflammation in experimental viral cardiomyopathy. Circulation 2011; 124(19): 2082-93.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.035964] [PMID: 21986287]
[37]
Zhang Y, Sun L, Sun H, et al. MicroRNA-381 protects myocardial cell function in children and mice with viral myocarditis via targeting cyclooxygenase-2 expression. Exp Ther Med 2018; 15(6): 5510-6.
[http://dx.doi.org/10.3892/etm.2018.6082] [PMID: 29805552]
[38]
Alhouayek M, Muccioli GG. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 2014; 35(6): 284-92.
[http://dx.doi.org/10.1016/j.tips.2014.03.001] [PMID: 24684963]
[39]
Hemida MG, Ye X, Zhang HM, et al. MicroRNA-203 enhances coxsackievirus B3 replication through targeting zinc finger protein-148. Cell Mol Life Sci 2013; 70(2): 277-91.
[http://dx.doi.org/10.1007/s00018-012-1104-4] [PMID: 22842794]
[40]
Xu HF, Ding YJ, Zhang ZX, et al. MicroRNA-21 regulation of the progression of viral myocarditis to dilated cardiomyopathy. Mol Med Rep 2014; 10(1): 161-8.
[http://dx.doi.org/10.3892/mmr.2014.2205] [PMID: 24804616]
[41]
House RV, Descotes J. Cytokines in Human Health: Immuno toxicology.Pathology and Therapeutic Applications 1st ed. 2007.
[http://dx.doi.org/10.1007/978-1-59745-350-9]
[42]
Deverman BE, Patterson PH. Cytokines and CNS development. Neuron 2009; 64(1): 61-78.
[http://dx.doi.org/10.1016/j.neuron.2009.09.002] [PMID: 19840550]
[43]
Yap DYH, Lai KN. Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: from basics to recent advances. J Biomed Biotechnol 2010; 2010365083
[http://dx.doi.org/10.1155/2010/365083] [PMID: 20467470]
[44]
Gulati K, Guhathakurta S, Joshi J, Rai N, Ray A. Cytokines and their role in health and disease: A brief overview. MOJ Immunol 2016; 4: 00121.
[45]
Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 2008; 118(11): 3546-56.
[http://dx.doi.org/10.1172/JCI36130] [PMID: 18982161]
[46]
Yang F, Wu WF, Yan YL, et al. Expression of IL-23/Th17 pathway in a murine model of Coxsackie virus B3-induced viral myocarditis. Virol J 2011; 8: 301.
[http://dx.doi.org/10.1186/1743-422X-8-301] [PMID: 21672246]
[47]
Poffenberger MC, Straka N, El Warry N, Fang D, Shanina I, Horwitz MS. Lack of IL-6 during coxsackievirus infection heightens the early immune response resulting in increased severity of chronic autoimmune myocarditis. PLoS One 2009; 4(7)e6207
[http://dx.doi.org/10.1371/journal.pone.0006207] [PMID: 19587788]
[48]
Yang H, Chen Y, Gao C. Interleukin-13 reduces cardiac injury and prevents heart dysfunction in viral myocarditis via enhanced M2 macrophage polarization. Oncotarget 2017; 8(59): 99495-503.
[http://dx.doi.org/10.18632/oncotarget.20111] [PMID: 29245918]
[49]
Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 2013; 120: 163-84.
[http://dx.doi.org/10.1016/B978-0-12-417028-5.00006-5] [PMID: 24070384]
[50]
Zhu H, Lou C, Liu P. Interleukin-27 ameliorates coxsackievirus-B3-induced viral myocarditis by inhibiting Th17 cells. Virol J 2015; 12: 189.
[http://dx.doi.org/10.1186/s12985-015-0418-x] [PMID: 26578236]
[51]
Stumhofer JS, Laurence A, Wilson EH, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006; 7(9): 937-45.
[http://dx.doi.org/10.1038/ni1376] [PMID: 16906166]
[52]
Xie Y, Chen R, Zhang X, et al. Blockade of interleukin-17A protects against coxsackievirus B3-induced myocarditis by increasing COX-2/PGE2 production in the heart. FEMS Immunol Med Microbiol 2012; 64(3): 343-51.
[http://dx.doi.org/10.1111/j.1574-695X.2011.00918.x] [PMID: 22141571]
[53]
Dowd NP, Scully M, Adderley SR, Cunningham AJ, Fitzgerald DJ. Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest 2001; 108(4): 585-90.
[http://dx.doi.org/10.1172/JCI200111334] [PMID: 11518732]
[54]
Takahashi T, Zhu SJ, Sumino H, et al. Inhibition of cyclooxygenase-2 enhances myocardial damage in a mouse model of viral myocarditis. Life Sci 2005; 78(2): 195-204.
[http://dx.doi.org/10.1016/j.lfs.2005.04.060] [PMID: 16107267]
[55]
Fairweather D, Frisancho-Kiss S, Yusung SA, et al. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol 2005; 174(1): 261-9.
[http://dx.doi.org/10.4049/jimmunol.174.1.261] [PMID: 15611248]
[56]
Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003; 19(5): 641-4.
[http://dx.doi.org/10.1016/S1074-7613(03)00296-6] [PMID: 14614851]
[57]
Ishida Y, Maegawa T, Kondo T, et al. Essential involvement of IFN-gamma in Clostridium difficile toxin A-induced enteritis. J Immunol 2004; 172(5): 3018-25.
[http://dx.doi.org/10.4049/jimmunol.172.5.3018] [PMID: 14978106]
[58]
Yang F, Wei XM, Liang WW, et al. A critical role for il-21 receptor signaling in the coxsackievirus b3-induced myocarditis. Inflammation 2017; 40(4): 1428-35.
[http://dx.doi.org/10.1007/s10753-017-0586-5] [PMID: 28550395]
[59]
Vogelzang A, McGuire HM, Yu D, et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 2008; 29(1): 127-37.
[http://dx.doi.org/10.1016/j.immuni.2008.06.001] [PMID: 18602282]
[60]
Shekhar S, Yang X. The darker side of follicular helper T cells: from autoimmunity to immunodeficiency. Cell Mol Immunol 2012; 9(5): 380-5.
[http://dx.doi.org/10.1038/cmi.2012.26] [PMID: 22885524]
[61]
Hühn MH, McCartney SA, Lind K, et al. Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after Coxsackievirus infection. Virology 2010; 401(1): 42-8.
[http://dx.doi.org/10.1016/j.virol.2010.02.010] [PMID: 20206372]
[62]
Wang JP, Cerny A, Asher DR, et al. MDA5 and MAVS mediate type I interferon responses to coxsackie B virus. J Virol 2010; 84(1): 254-60.
[http://dx.doi.org/10.1128/JVI.00631-09] [PMID: 19846534]
[63]
Abston ED, Coronado MJ, Bucek A, et al. TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4. Am J Physiol Regul Integr Comp Physiol 2013; 304(4): R267-77.
[http://dx.doi.org/10.1152/ajpregu.00516.2011] [PMID: 23255589]
[64]
Negishi H, Osawa T, Ogami K, et al. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc Natl Acad Sci USA 2008; 105(51): 20446-51.
[http://dx.doi.org/10.1073/pnas.0810372105] [PMID: 19074283]
[65]
Wang YX, da Cunha V, Vincelette J, et al. Antiviral and myocyte protective effects of murine interferon-beta and -alpha2 in coxsackievirus B3-induced myocarditis and epicarditis in Balb/c mice. Am J Physiol Heart Circ Physiol 2007; 293(1): H69-76.
[http://dx.doi.org/10.1152/ajpheart.00154.2007] [PMID: 17434974]
[66]
Müller I, Vogl T, Pappritz K, et al. Pathogenic Role of the Damage-Associated Molecular Patterns S100A8 and S100A9 in Coxsackievirus B3-Induced Myocarditis. Circ Heart Fail 2017; 10(11)e004125
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.117.004125] [PMID: 29158436]
[67]
Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001; 2(2): 123-8.
[http://dx.doi.org/10.1038/84219] [PMID: 11175804]
[68]
Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12(2): 121-7.
[http://dx.doi.org/10.1016/S1074-7613(00)80165-X] [PMID: 10714678]
[69]
Scalzo P, de Miranda AS, Guerra Amaral DC, et al. Serum levels of chemokines in Parkinson’s disease. Neuroimmunomodulation 2011; 18(4): 240-4.
[http://dx.doi.org/10.1159/000323779] [PMID: 21430395]
[70]
Liu J, Merritt JR. CC chemokine receptor small molecule antagonists in the treatment of rheumatoid arthritis and other diseases: a current view. Curr Top Med Chem 2010; 10(13): 1250-67.
[http://dx.doi.org/10.2174/156802610791561192] [PMID: 20536422]
[71]
Koelink PJ, Overbeek SA, Braber S, et al. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther 2012; 133(1): 1-18.
[http://dx.doi.org/10.1016/j.pharmthera.2011.06.008] [PMID: 21839114]
[72]
Kotb MCT. Cytokines and chemokines in infectious diseases Handbook. Int J Infect Dis 2004; 8: 196-8.
[http://dx.doi.org/10.1016/j.ijid.2003.11.003]
[73]
Shen Y, Xu W, Chu YW, et al. Coxsackievirus group B type 3 infection upregulates expression of monocyte chemoattractant protein 1 in cardiac myocytes, which leads to enhanced migration of mononuclear cells in viral myocarditis. J Virol 2004; 78(22): 12548-56.
[http://dx.doi.org/10.1128/JVI.78.22.12548-12556.2004] [PMID: 15507642]
[74]
Pinkert S, Westermann D, Wang X, et al. Prevention of cardiac dysfunction in acute coxsackievirus B3 cardiomyopathy by inducible expression of a soluble coxsackievirus-adenovirus receptor. Circulation 2009; 120(23): 2358-66.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.845339] [PMID: 19933937]
[75]
Chen P, Chen R, Yang Y, et al. Coxsackievirus B3 infection promotes generation of myeloid dendritic cells from bone marrow and accumulation in the myocardium. Int Immunopharmacol 2009; 9(11): 1304-12.
[http://dx.doi.org/10.1016/j.intimp.2009.07.014] [PMID: 19664723]
[76]
Shen Y, Kan QC, Xu W, Chu YW, Xiong SD. Coxsackievirus B3 infection induced viral myocarditis by regulating the expression pattern of chemokines in cardiac myocytes. Iran J Allergy Asthma Immunol 2009; 8(1): 1-9.
[PMID: 19279353]
[77]
Müller I, Pappritz K, Savvatis K, et al. CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS One 2017; 12(8)e0182643
[http://dx.doi.org/10.1371/journal.pone.0182643] [PMID: 28800592]
[78]
Yue Y, Gui J, Ai W, Xu W, Xiong S. Direct gene transfer with IP-10 mutant ameliorates mouse CVB3-induced myocarditis by blunting Th1 immune responses. PLoS One 2011; 6(3)e18186
[http://dx.doi.org/10.1371/journal.pone.0018186] [PMID: 21445362]
[79]
Frisancho-Kiss S, Coronado MJ, Frisancho JA, et al. Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun 2009; 23(5): 649-57.
[http://dx.doi.org/10.1016/j.bbi.2008.12.002] [PMID: 19126426]
[80]
Singh UP, Singh R, Singh S, et al. CXCL10+ T cells and NK cells assist in the recruitment and activation of CXCR3+ and CXCL11+ leukocytes during Mycobacteria-enhanced colitis. BMC Immunol 2008; 9: 25.
[http://dx.doi.org/10.1186/1471-2172-9-25] [PMID: 18533024]
[81]
Agostini C, Cassatella M, Zambello R, et al. Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. J Immunol 1998; 161(11): 6413-20.
[PMID: 9834133]
[82]
Dixon AE, Mandac JB, Madtes DK, Martin PJ, Clark JG. Chemokine expression in Th1 cell-induced lung injury: prominence of IFN-γ-inducible chemokines. Am J Physiol Lung Cell Mol Physiol 2000; 279(3): L592-9.
[http://dx.doi.org/10.1152/ajplung.2000.279.3.L592] [PMID: 10956635]
[83]
Gupta G, Bhattacharjee S, Bhattacharyya S, et al. CXC chemokine-mediated protection against visceral leishmaniasis: involvement of the proinflammatory response. J Infect Dis 2009; 200(8): 1300-10.
[http://dx.doi.org/10.1086/605895] [PMID: 19743920]
[84]
Yuan J, Liu Z, Lim T, et al. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circ Res 2009; 104(5): 628-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.192179] [PMID: 19168435]
[85]
Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001; 19: 65-91.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.65] [PMID: 11244031]
[86]
Chen JP, Lu HL, Lai SL, et al. Dengue virus induces expression of CXC chemokine ligand 10/IFN-γ-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. J Immunol 2006; 177(5): 3185-92.
[http://dx.doi.org/10.4049/jimmunol.177.5.3185] [PMID: 16920957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy