Review Article

文章标题 柯萨奇病毒B3诱导的心肌炎发病机制及潜在治疗靶点的研究进展

卷 20, 期 14, 2019

页: [1461 - 1473] 页: 13

弟呕挨: 10.2174/1389450120666190618124722

价格: $65

摘要

病毒性心肌炎是一种由Picorna viridae家族的肠病毒属的B组柯萨奇病毒引起的心脏病。它会导致儿童,年轻人和成年人的心力衰竭。小于40岁的年轻人和成年人中有10%(10%)的急性心力衰竭和12%的猝死是由于这种病毒性心肌炎。如果不及早采取治疗措施,病毒性疾病会发展成慢性心肌炎和扩张型心肌病,从而导致充血性心力衰竭。这些最终导致心脏功能下降,最终使受害者死亡。一旦疾病的急性阶段发展为慢性和扩张型心肌病,该疾病的唯一治疗选择就是心脏移植。当前,日常临床治疗存在局限性,甚至某些可用的治疗选择均无效。因此,必须通过调查专注于寻找治疗方案。最近的研究报道生物分子显示出有希望的作用。但是它们的发病机理仍不清楚。详细研究确定与柯萨奇B3病毒引起的心肌炎有关的生物分子的作用及其发病机理;汇编调查结果并将其传播给科学界,为解决方案迈出了一步。因此,本综述旨在收集当前有关微小RNA,细胞因子和趋化因子在柯萨奇病毒B3诱导的心肌炎发病机理中的潜在治疗作用的研究信息,为学者在这一领域进行详细的研究提供了简短的信息。

关键词: CVB3,病毒性心肌炎,扩张型心肌病,微小RNA,细胞因子,趋化因子。

图形摘要

[1]
Blauwet LA, Cooper LT. Myocarditis. Prog cardiovac Dis 2010; 52: 274-88..
[2]
Cooper LT Jr, Cooper MD Jr. Myocarditis. N Engl J Med 2009; 360(15): 1526-38.
[http://dx.doi.org/10.1056/NEJMra0800028] [PMID: 19357408]
[3]
Caforio ALP, Malipiero G, Marcolongo R, Iliceto S. Myocarditis: a clinical overview. Curr Cardiol Rep 2017; 19(7): 63.
[http://dx.doi.org/10.1007/s11886-017-0870-x] [PMID: 28540649]
[4]
Gui J, Yue Y, Chen R, Xu W, Xiong S. A20 (TNFAIP3) alleviates CVB3-induced myocarditis via inhibiting NF-κB signaling. PLoS One 2012; 7(9)e46515
[http://dx.doi.org/10.1371/journal.pone.0046515] [PMID: 23029542]
[5]
Fung G, Luo H, Qiu Y, Yang D, McManus B. Myocarditis. Circ Res 2016; 118(3): 496-514.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306573] [PMID: 26846643]
[6]
Huber SA. Viral myocarditis and dilated cardiomyopathy: Etiology and pathogenesis. Curr Pharm Des 2016; 22(4): 408-26.
[http://dx.doi.org/10.2174/1381612822666151222160500] [PMID: 26696257]
[7]
Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis--diagnosis, treatment options, and current controversies. Nat Rev Cardiol 2015; 12(11): 670-80.
[http://dx.doi.org/10.1038/nrcardio.2015.108] [PMID: 26194549]
[8]
Fairweather D, Stafford KA, Sung YK. Update on coxsackievirus B3 myocarditis. Curr Opin Rheumatol 2012; 24(4): 401-7.
[http://dx.doi.org/10.1097/BOR.0b013e328353372d] [PMID: 22488075]
[9]
Rose NR. Viral myocarditis. Curr Opin Rheumatol 2016; 28(4): 383-9.
[http://dx.doi.org/10.1097/BOR.0000000000000303] [PMID: 27166925]
[10]
Massilamany C, Gangaplara A, Reddy J. Intricacies of cardiac damage in coxsackievirus B3 infection: implications for therapy. Int J Cardiol 2014; 177(2): 330-9.
[http://dx.doi.org/10.1016/j.ijcard.2014.09.136] [PMID: 25449464]
[11]
Steinke K, Sachse F, Ettischer N, et al. Coxsackievirus B3 modulates cardiac ion channels. FASEB J 2013; 27(10): 4108-21.
[http://dx.doi.org/10.1096/fj.13-230193] [PMID: 23825229]
[12]
Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 2008; 3: 127-55.
[http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.151534] [PMID: 18039131]
[13]
Liu PP, Mason JW. Advances in the understanding of myocarditis. Circulation 2001; 104(9): 1076-82.
[http://dx.doi.org/10.1161/hc3401.095198] [PMID: 11524405]
[14]
Fairweather D, Rose NR. Coxsackievirus-induced myocarditis in mice: a model of autoimmune disease for studying immunotoxicity. Methods 2007; 41(1): 118-22.
[http://dx.doi.org/10.1016/j.ymeth.2006.07.009] [PMID: 17161308]
[15]
Van Linthout S, Tschöpe C, Schultheiss HP. Lack in treatment options for virus-induced inflammatory cardiomyopathy: can iPS-derived cardiomyocytes close the gap? Circ Res 2014; 115(6): 540-1.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.304951] [PMID: 25170089]
[16]
Melnick JL, Shaw EW, Curnen EC. A virus isolated from patients diagnosed as non-paralytic poliomyelitis or aseptic meningitis. Proc Soc Exp Biol Med 1949; 71(3): 344-9.
[http://dx.doi.org/10.3181/00379727-71-17186] [PMID: 18136475]
[17]
van Regenmortel, Marc HF, Claude MB, et al. Virus taxonomy: classification and nomenclature of viruses.Seventh report of the International Committee on Taxonomy of Viruses. ICTV 7 Report Academic Press. 2000..
[18]
Althof N, Whitton JL. Coxsackievirus B3 infects the bone marrow and diminishes the restorative capacity of erythroid and lymphoid progenitors. J Virol 2013; 87(5): 2823-34.
[http://dx.doi.org/10.1128/JVI.03004-12] [PMID: 23269810]
[19]
Yoder JD, Cifuente JO, Pan J, Bergelson JM, Hafenstein S. The crystal structure of a coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with decay-accelerating factor (DAF) provide a new footprint of DAF on the virus surface. J Virol 2012; 86(23): 12571-81.
[http://dx.doi.org/10.1128/JVI.01592-12] [PMID: 22973031]
[20]
Marchant D, Si X, Luo H, McManus B, Yang D. The impact of CVB3 infection on host cell biology. Curr Top Microbiol Immunol 2008; 323: 177-98.
[http://dx.doi.org/10.1007/978-3-540-75546-3_8] [PMID: 18357770]
[21]
Badorff C, Lee GH, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 1999; 5(3): 320-6.
[http://dx.doi.org/10.1038/6543] [PMID: 10086389]
[22]
Gao G, Wong J, Zhang J, et al. Proteasome activator REGgamma enhances coxsackieviral infection by facilitating p53 degradation. J Virol 2010; 84(21): 11056-66.
[http://dx.doi.org/10.1128/JVI.00008-10] [PMID: 20719955]
[23]
Van Linthout S, Savvatis K, Miteva K, et al. Mesenchymal stem cells improve murine acute coxsackievirus B3-induced myocarditis. Eur Heart J 2013; 34: 604.
[http://dx.doi.org/10.1093/eurheartj/eht012] [PMID: 21183501]
[24]
Kindermann I, Kindermann M, Kandolf R, et al. Predictors of outcome in patients with suspected myocarditis. Circulation 2008; 118(6): 639-48.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.769489] [PMID: 18645053]
[25]
Knowlton KU. CVB infection and mechanisms of viral cardiomyopathy. Curr Top Microbiol Immunol 2008; 323: 315-35.
[http://dx.doi.org/10.1007/978-3-540-75546-3_15] [PMID: 18357777]
[26]
Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30(3): 245-57.
[http://dx.doi.org/10.1055/s-0030-1255354] [PMID: 20665377]
[27]
Li K, Xu W, Guo Q, et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 2009; 105(4): 353-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.195230] [PMID: 19608981]
[28]
Bouin A, Nguyen Y, Wehbe M, et al. Major persistent 5′ terminally deleted coxsackievirus B3 populations in human endomyocardial tissues. Emerg Infect Dis 2016; 22(8): 1488-90.
[http://dx.doi.org/10.3201/eid2208.160186] [PMID: 27434549]
[29]
Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res 2015; 116(4): 737-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.302521] [PMID: 25677520]
[30]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[31]
Ikeda S, Pu WT. Expression and function of microRNAs in heart disease. Curr Drug Targets 2010; 11(8): 913-25.
[http://dx.doi.org/10.2174/138945010791591304] [PMID: 20415651]
[32]
Ziegelbauer JM, Sullivan CS, Ganem D. Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 2009; 41(1): 130-4.
[http://dx.doi.org/10.1038/ng.266] [PMID: 19098914]
[33]
Zhang Y, Zhang M, Li X, et al. Silencing microRNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci Rep 2016; 6: 22613.
[http://dx.doi.org/10.1038/srep22613] [PMID: 26931072]
[34]
Corsten M, Heggermont W, Papageorgiou AP, et al. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur Heart J 2015; 36(42): 2909-19.
[http://dx.doi.org/10.1093/eurheartj/ehv321] [PMID: 26206211]
[35]
Zhang Q, Xiao Z, He F, et al. MicroRNAs regulate the pathogenesis of CVB3-induced viral myocarditis. Intervirology 2013; 56(2): 104-13.
[http://dx.doi.org/10.1159/000343750] [PMID: 23183417]
[36]
Westermann D, Savvatis K, Lindner D, et al. Reduced degradation of the chemokine MCP-3 by matrix metalloproteinase-2 exacerbates myocardial inflammation in experimental viral cardiomyopathy. Circulation 2011; 124(19): 2082-93.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.035964] [PMID: 21986287]
[37]
Zhang Y, Sun L, Sun H, et al. MicroRNA-381 protects myocardial cell function in children and mice with viral myocarditis via targeting cyclooxygenase-2 expression. Exp Ther Med 2018; 15(6): 5510-6.
[http://dx.doi.org/10.3892/etm.2018.6082] [PMID: 29805552]
[38]
Alhouayek M, Muccioli GG. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 2014; 35(6): 284-92.
[http://dx.doi.org/10.1016/j.tips.2014.03.001] [PMID: 24684963]
[39]
Hemida MG, Ye X, Zhang HM, et al. MicroRNA-203 enhances coxsackievirus B3 replication through targeting zinc finger protein-148. Cell Mol Life Sci 2013; 70(2): 277-91.
[http://dx.doi.org/10.1007/s00018-012-1104-4] [PMID: 22842794]
[40]
Xu HF, Ding YJ, Zhang ZX, et al. MicroRNA-21 regulation of the progression of viral myocarditis to dilated cardiomyopathy. Mol Med Rep 2014; 10(1): 161-8.
[http://dx.doi.org/10.3892/mmr.2014.2205] [PMID: 24804616]
[41]
House RV, Descotes J. Cytokines in Human Health: Immuno toxicology.Pathology and Therapeutic Applications 1st ed. 2007.
[http://dx.doi.org/10.1007/978-1-59745-350-9]
[42]
Deverman BE, Patterson PH. Cytokines and CNS development. Neuron 2009; 64(1): 61-78.
[http://dx.doi.org/10.1016/j.neuron.2009.09.002] [PMID: 19840550]
[43]
Yap DYH, Lai KN. Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: from basics to recent advances. J Biomed Biotechnol 2010; 2010365083
[http://dx.doi.org/10.1155/2010/365083] [PMID: 20467470]
[44]
Gulati K, Guhathakurta S, Joshi J, Rai N, Ray A. Cytokines and their role in health and disease: A brief overview. MOJ Immunol 2016; 4: 00121.
[45]
Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 2008; 118(11): 3546-56.
[http://dx.doi.org/10.1172/JCI36130] [PMID: 18982161]
[46]
Yang F, Wu WF, Yan YL, et al. Expression of IL-23/Th17 pathway in a murine model of Coxsackie virus B3-induced viral myocarditis. Virol J 2011; 8: 301.
[http://dx.doi.org/10.1186/1743-422X-8-301] [PMID: 21672246]
[47]
Poffenberger MC, Straka N, El Warry N, Fang D, Shanina I, Horwitz MS. Lack of IL-6 during coxsackievirus infection heightens the early immune response resulting in increased severity of chronic autoimmune myocarditis. PLoS One 2009; 4(7)e6207
[http://dx.doi.org/10.1371/journal.pone.0006207] [PMID: 19587788]
[48]
Yang H, Chen Y, Gao C. Interleukin-13 reduces cardiac injury and prevents heart dysfunction in viral myocarditis via enhanced M2 macrophage polarization. Oncotarget 2017; 8(59): 99495-503.
[http://dx.doi.org/10.18632/oncotarget.20111] [PMID: 29245918]
[49]
Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 2013; 120: 163-84.
[http://dx.doi.org/10.1016/B978-0-12-417028-5.00006-5] [PMID: 24070384]
[50]
Zhu H, Lou C, Liu P. Interleukin-27 ameliorates coxsackievirus-B3-induced viral myocarditis by inhibiting Th17 cells. Virol J 2015; 12: 189.
[http://dx.doi.org/10.1186/s12985-015-0418-x] [PMID: 26578236]
[51]
Stumhofer JS, Laurence A, Wilson EH, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006; 7(9): 937-45.
[http://dx.doi.org/10.1038/ni1376] [PMID: 16906166]
[52]
Xie Y, Chen R, Zhang X, et al. Blockade of interleukin-17A protects against coxsackievirus B3-induced myocarditis by increasing COX-2/PGE2 production in the heart. FEMS Immunol Med Microbiol 2012; 64(3): 343-51.
[http://dx.doi.org/10.1111/j.1574-695X.2011.00918.x] [PMID: 22141571]
[53]
Dowd NP, Scully M, Adderley SR, Cunningham AJ, Fitzgerald DJ. Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest 2001; 108(4): 585-90.
[http://dx.doi.org/10.1172/JCI200111334] [PMID: 11518732]
[54]
Takahashi T, Zhu SJ, Sumino H, et al. Inhibition of cyclooxygenase-2 enhances myocardial damage in a mouse model of viral myocarditis. Life Sci 2005; 78(2): 195-204.
[http://dx.doi.org/10.1016/j.lfs.2005.04.060] [PMID: 16107267]
[55]
Fairweather D, Frisancho-Kiss S, Yusung SA, et al. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol 2005; 174(1): 261-9.
[http://dx.doi.org/10.4049/jimmunol.174.1.261] [PMID: 15611248]
[56]
Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003; 19(5): 641-4.
[http://dx.doi.org/10.1016/S1074-7613(03)00296-6] [PMID: 14614851]
[57]
Ishida Y, Maegawa T, Kondo T, et al. Essential involvement of IFN-gamma in Clostridium difficile toxin A-induced enteritis. J Immunol 2004; 172(5): 3018-25.
[http://dx.doi.org/10.4049/jimmunol.172.5.3018] [PMID: 14978106]
[58]
Yang F, Wei XM, Liang WW, et al. A critical role for il-21 receptor signaling in the coxsackievirus b3-induced myocarditis. Inflammation 2017; 40(4): 1428-35.
[http://dx.doi.org/10.1007/s10753-017-0586-5] [PMID: 28550395]
[59]
Vogelzang A, McGuire HM, Yu D, et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 2008; 29(1): 127-37.
[http://dx.doi.org/10.1016/j.immuni.2008.06.001] [PMID: 18602282]
[60]
Shekhar S, Yang X. The darker side of follicular helper T cells: from autoimmunity to immunodeficiency. Cell Mol Immunol 2012; 9(5): 380-5.
[http://dx.doi.org/10.1038/cmi.2012.26] [PMID: 22885524]
[61]
Hühn MH, McCartney SA, Lind K, et al. Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after Coxsackievirus infection. Virology 2010; 401(1): 42-8.
[http://dx.doi.org/10.1016/j.virol.2010.02.010] [PMID: 20206372]
[62]
Wang JP, Cerny A, Asher DR, et al. MDA5 and MAVS mediate type I interferon responses to coxsackie B virus. J Virol 2010; 84(1): 254-60.
[http://dx.doi.org/10.1128/JVI.00631-09] [PMID: 19846534]
[63]
Abston ED, Coronado MJ, Bucek A, et al. TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4. Am J Physiol Regul Integr Comp Physiol 2013; 304(4): R267-77.
[http://dx.doi.org/10.1152/ajpregu.00516.2011] [PMID: 23255589]
[64]
Negishi H, Osawa T, Ogami K, et al. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc Natl Acad Sci USA 2008; 105(51): 20446-51.
[http://dx.doi.org/10.1073/pnas.0810372105] [PMID: 19074283]
[65]
Wang YX, da Cunha V, Vincelette J, et al. Antiviral and myocyte protective effects of murine interferon-beta and -alpha2 in coxsackievirus B3-induced myocarditis and epicarditis in Balb/c mice. Am J Physiol Heart Circ Physiol 2007; 293(1): H69-76.
[http://dx.doi.org/10.1152/ajpheart.00154.2007] [PMID: 17434974]
[66]
Müller I, Vogl T, Pappritz K, et al. Pathogenic Role of the Damage-Associated Molecular Patterns S100A8 and S100A9 in Coxsackievirus B3-Induced Myocarditis. Circ Heart Fail 2017; 10(11)e004125
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.117.004125] [PMID: 29158436]
[67]
Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001; 2(2): 123-8.
[http://dx.doi.org/10.1038/84219] [PMID: 11175804]
[68]
Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12(2): 121-7.
[http://dx.doi.org/10.1016/S1074-7613(00)80165-X] [PMID: 10714678]
[69]
Scalzo P, de Miranda AS, Guerra Amaral DC, et al. Serum levels of chemokines in Parkinson’s disease. Neuroimmunomodulation 2011; 18(4): 240-4.
[http://dx.doi.org/10.1159/000323779] [PMID: 21430395]
[70]
Liu J, Merritt JR. CC chemokine receptor small molecule antagonists in the treatment of rheumatoid arthritis and other diseases: a current view. Curr Top Med Chem 2010; 10(13): 1250-67.
[http://dx.doi.org/10.2174/156802610791561192] [PMID: 20536422]
[71]
Koelink PJ, Overbeek SA, Braber S, et al. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther 2012; 133(1): 1-18.
[http://dx.doi.org/10.1016/j.pharmthera.2011.06.008] [PMID: 21839114]
[72]
Kotb MCT. Cytokines and chemokines in infectious diseases Handbook. Int J Infect Dis 2004; 8: 196-8.
[http://dx.doi.org/10.1016/j.ijid.2003.11.003]
[73]
Shen Y, Xu W, Chu YW, et al. Coxsackievirus group B type 3 infection upregulates expression of monocyte chemoattractant protein 1 in cardiac myocytes, which leads to enhanced migration of mononuclear cells in viral myocarditis. J Virol 2004; 78(22): 12548-56.
[http://dx.doi.org/10.1128/JVI.78.22.12548-12556.2004] [PMID: 15507642]
[74]
Pinkert S, Westermann D, Wang X, et al. Prevention of cardiac dysfunction in acute coxsackievirus B3 cardiomyopathy by inducible expression of a soluble coxsackievirus-adenovirus receptor. Circulation 2009; 120(23): 2358-66.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.845339] [PMID: 19933937]
[75]
Chen P, Chen R, Yang Y, et al. Coxsackievirus B3 infection promotes generation of myeloid dendritic cells from bone marrow and accumulation in the myocardium. Int Immunopharmacol 2009; 9(11): 1304-12.
[http://dx.doi.org/10.1016/j.intimp.2009.07.014] [PMID: 19664723]
[76]
Shen Y, Kan QC, Xu W, Chu YW, Xiong SD. Coxsackievirus B3 infection induced viral myocarditis by regulating the expression pattern of chemokines in cardiac myocytes. Iran J Allergy Asthma Immunol 2009; 8(1): 1-9.
[PMID: 19279353]
[77]
Müller I, Pappritz K, Savvatis K, et al. CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS One 2017; 12(8)e0182643
[http://dx.doi.org/10.1371/journal.pone.0182643] [PMID: 28800592]
[78]
Yue Y, Gui J, Ai W, Xu W, Xiong S. Direct gene transfer with IP-10 mutant ameliorates mouse CVB3-induced myocarditis by blunting Th1 immune responses. PLoS One 2011; 6(3)e18186
[http://dx.doi.org/10.1371/journal.pone.0018186] [PMID: 21445362]
[79]
Frisancho-Kiss S, Coronado MJ, Frisancho JA, et al. Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun 2009; 23(5): 649-57.
[http://dx.doi.org/10.1016/j.bbi.2008.12.002] [PMID: 19126426]
[80]
Singh UP, Singh R, Singh S, et al. CXCL10+ T cells and NK cells assist in the recruitment and activation of CXCR3+ and CXCL11+ leukocytes during Mycobacteria-enhanced colitis. BMC Immunol 2008; 9: 25.
[http://dx.doi.org/10.1186/1471-2172-9-25] [PMID: 18533024]
[81]
Agostini C, Cassatella M, Zambello R, et al. Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. J Immunol 1998; 161(11): 6413-20.
[PMID: 9834133]
[82]
Dixon AE, Mandac JB, Madtes DK, Martin PJ, Clark JG. Chemokine expression in Th1 cell-induced lung injury: prominence of IFN-γ-inducible chemokines. Am J Physiol Lung Cell Mol Physiol 2000; 279(3): L592-9.
[http://dx.doi.org/10.1152/ajplung.2000.279.3.L592] [PMID: 10956635]
[83]
Gupta G, Bhattacharjee S, Bhattacharyya S, et al. CXC chemokine-mediated protection against visceral leishmaniasis: involvement of the proinflammatory response. J Infect Dis 2009; 200(8): 1300-10.
[http://dx.doi.org/10.1086/605895] [PMID: 19743920]
[84]
Yuan J, Liu Z, Lim T, et al. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circ Res 2009; 104(5): 628-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.192179] [PMID: 19168435]
[85]
Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001; 19: 65-91.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.65] [PMID: 11244031]
[86]
Chen JP, Lu HL, Lai SL, et al. Dengue virus induces expression of CXC chemokine ligand 10/IFN-γ-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. J Immunol 2006; 177(5): 3185-92.
[http://dx.doi.org/10.4049/jimmunol.177.5.3185] [PMID: 16920957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy