[1]
Roy, S.R. Isatoic anhydride. Synlett, 2011, 2011(10), 1479-1480. [http://dx.doi.org/10.1055/s-0030-1260575].
[2]
Deligeorgiev, T.; Vasilev, A.; Vaquero, J.J.; Alvarez-Builla, J. A green synthesis of isatoic anhydrides from isatins with urea-hydrogen peroxide complex and ultrasound. Ultrason. Sonochem., 2007, 14(5), 497-501. [http://dx.doi.org/10.1016/j.ultsonch.2006.12.003]. [PMID: 17258493].
[3]
Brouillette, Y.; Martinez, J.; Lisowski, V. Chemistry of ring‐fused oxazine‐2,4‐diones. Eur. J. Org. Chem., 2009, 2009(21), 3487-3503. [http://dx.doi.org/10.1002/ejoc.200801007].
[4]
Cao, S.L.; Feng, Y.P.; Jiang, Y.Y.; Liu, S.Y.; Ding, G.Y.; Li, R.T. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett., 2005, 15(7), 1915-1917. [http://dx.doi.org/10.1016/j.bmcl.2005.01.083]. [PMID: 15780632].
[5]
Giri, R.S.; Thaker, H.M.; Giordano, T.; Williams, J.; Rogers, D.; Sudersanam, V.; Vasu, K.K. Design, synthesis and characterization of novel 2-(2,4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-kB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. Eur. J. Med. Chem., 2009, 44(5), 2184-2189. [http://dx.doi.org/10.1016/j.ejmech.2008.10.031]. [PMID: 19064304].
[6]
Kadi, A.A.; El-Azab, A.S.; Alafeefy, A.M.; Abdel-Hamide, S.G. Synthesis and biological screening of some new substituted 2-mercapto-4(3H) quinazolinone analogues as anticonvulsant agents. Al-Azhar J. Pharm. Sci., 2006, 34, 147-158.
[7]
Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J.P. CNS depressant and anticonvulsant activities of some novel 3- [5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem., 2008, 43(9), 1945-1954. [http://dx.doi.org/10.1016/j.ejmech.2007.12.003]. [PMID: 18222569].
[8]
Xia, Y.; Yang, Z.Y.; Hour, M.J.; Kuo, S.C.; Xia, P.; Bastow, K.F.; Nakanishi, Y.; Namrpoothiri, P.; Hackl, T.; Hamel, E.; Lee, H.K. Antitumor agents. Part 204: Synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg. Med. Chem. Lett., 2001, 11(9), 1193-1196. [http://dx.doi.org/10.1016/S0960-894X(01)00190-1]. [PMID: 11354375].
[9]
Jessy, E.M.; Sambanthan, A.T.; Alex, J.; Sridevi, C.H.; Srinivasan, K.K. Synthesis and biological evaluation of some novel quinazolones. Indian J. Pharm. Sci., 2007, 69, 476-478. [http://dx.doi.org/10.4103/0250-474X.34571].
[10]
Alagarsamy, V.; Thangathiruppathy, A.; Rajasekaran, S.; Vijaykumar, S.; Revathi, R.; Anburaj, J.; Arunkumar, S.; Rajesh, S. Pharmacological evaluation of 2-substituted(1,3,4)thiadiazolo quinazolines. Indian J. Pharm. Sci., 2006, 68, 108-111. [http://dx.doi.org/10.4103/0250-474X.22980].
[11]
Griess, P. Über die einwirkung des cyans auf anthranilsäure. Ber. Dtsch. Chem. Ges., 1869, 2, 415-418. [http://dx.doi.org/10.1002/cber.186900201180].
[12]
Selvam, T.P.; Kumar, P.V. Quinazoline marketed drugs. Res. Pharm., 2011, 1, 1-21.
[13]
Koepfli, J.B.; Mead, J.F.; Brockman, J.A., Jr An alkaloid with high antimalarial activity from Dichroa febrifuga. J. Am. Chem. Soc., 1947, 69(7), 1837-1837. [http://dx.doi.org/10.1021/ja01199a513]. [PMID: 20251439].
[14]
Yoshida, S.; Aoyagi, T.; Harada, S.; Matsuda, N.; Ikeda, T.; Naganawa, H.; Hamada, M.; Takeuchi, T. Production of 2-methyl-4[3H]-quinazolinone, an inhibitor of poly(ADP-ribose) synthetase, by bacterium. J. Antibiot. (Tokyo), 1991, 44(1), 111-112. [http://dx.doi.org/10.7164/antibiotics.44.111]. [PMID: 1900501].
[15]
Deng, Y.; Xu, R.; Ye, Y. A new quinazolone alkaloid from leaves of Dichroa febrifuga. J. Chin. Pharm. Sci., 2000, 9, 116-118.
[16]
Fujimoto, H.; Negishi, E.; Yamaguchi, K.; Nishi, N.; Yamazaki, M. Isolation of new tremorgenic metabolites from an Ascomycete, Corynascus setosus. Chem. Pharm. Bull. (Tokyo), 1996, 44, I843-I1848. [http://dx.doi.org/10.1248/cpb.44.1843].
[17]
Joshi, B.S.; Bai, Y.; Puar, M.S.; Dubose, K.K.; Pelletier, S.W. 1H-and 13C-NMR assignments for some pyrrolo2, 1bquinazoline alkaloids of adhatoda vasica. J. Nat. Prod., 1994, 57, 953-962. [http://dx.doi.org/10.1021/np50109a012].
[18]
Ma, Z.Z.; Hano, Y.; Nomura, T.; Chen, Y.J. Two new pyrroloquinazolinoquinoline alkaloids from Peganum nigellastrum. Heterocycles, 1997, 46, 541-546. [http://dx.doi.org/10.3987/COM-97-S65].
[19]
Sheen, W.S.; Tsai, I.L.; Teng, C.M.; Ko, F.N.; Chen, I.S. Indolopyridoquinazoline alkaloids with antiplatelet aggregation activity from Zanthoxylum integrifoliolum. Planta Med., 1996, 62(2), 175-176. [http://dx.doi.org/10.1055/s-2006-957846]. [PMID: 8657756].
[20]
Takahashi, C.; Matsushita, T.; Doi, M.; Minoura, K.; Shingu, T.; Kumeda, Y.; Numata, A. Fumiquinazolines A–G, novel metabolites of a fungus separated from a Pseudolabrus marine fish. J. Chem. Soc., Perkin Trans. 1, 1995, 2345-2353. [http://dx.doi.org/10.1039/P19950002345].
[21]
Belofsky, G.N.; Anguera, M.; Jensen, P.R.; Fenical, W.; Köck, M. Oxepinamides A-C and fumiquinazolines H--I: bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chemistry, 2000, 6(8), 1355-1360. [http://dx.doi.org/10.1002/(SICI)1521-3765(20000417)6:8<1355:AID-CHEM1355>3.0.CO;2-S]. [PMID: 10840958].
[22]
Tashrifi, Z.; Rad-Moghadam, K.; Mehrdad, M.; Soheilizad, M.; Larijani, B.; Mahdavi, M. Green synthesis of 2-((2-aryl-3-oxoisoindolin-1-yl) methyl) quinazolin-4 (3H)-ones via sequential condensation, sp3 C-H bond functionalization and cyclization. Tetrahedron Lett., 2018, 59, 1555-1559. [http://dx.doi.org/10.1016/j.tetlet.2018.03.020].
[23]
Abe, T.; Kida, K.; Yamada, K. A copper-catalyzed Ritter-type cascade via iminoketene for the synthesis of quinazolin-4(3H)-ones and diazocines. Chem. Commun. (Camb.), 2017, 53(31), 4362-4365. [http://dx.doi.org/10.1039/C7CC01406F]. [PMID: 28374023].
[24]
Mayer, J.P.; Lewis, G.S.; Curtis, M.J.; Zhang, J. Solid phase synthesis of quinazolinones. Tetrahedron Lett., 1997, 38, 8445-8448. [http://dx.doi.org/10.1016/S0040-4039(97)10276-3].
[25]
Yang, R.Y.; Kaplan, A. A concise and efficient solid-phase synthesis of 2-amino-4(3H)-quinazolinones. Tetrahedron Lett., 2000, 41, 7005-7008. [http://dx.doi.org/10.1016/S0040-4039(00)01201-6].
[26]
Akazome, M.; Kondo, T.; Watanabe, Y. Transition-metal complex-catalyzed reductive N-heterocyclization: synthesis of 4(3H)-quinazolinone derivatives from N-(2-nitrobenzoyl) amides. J. Org. Chem., 1993, 58, 310-312. [http://dx.doi.org/10.1021/jo00054a008].
[27]
Al-Talib, M.; Jochims, J.C.; Hamed, A.; Wang, Q.; Ismail, A.E.H. 4(3H)-Quinazolinones from the reaction of N-arylnitrilium salts with isocyanates. Synthesis, 1992, 1992(7), 697-701. [http://dx.doi.org/10.1055/s-1992-26203].
[28]
Takeuchi, H.; Hagiwara, S.; Eguchi, S. A new efficient synthesis of imidazolinones and quinazolinone by intramolecular aza-Wittig reaction. Tetrahedron, 1989, 45, 6375-6386. [http://dx.doi.org/10.1016/S0040-4020(01)89515-6].
[29]
Khajavi, M. Reaction of anthranilic acid with orthoesters: a new facile one-pot synthesis of 2-substituted 4H-3,1-Benzoxazin-4-ones. J. Chem. Res. Synop., 1997, 8, 286-287. [http://dx.doi.org/10.1039/a700411g].
[30]
Chen, J.; Wu, D.; He, F.; Liu, M.; Wu, H.; Ding, J.; Su, W. Gallium (III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones. Tetrahedron Lett., 2008, 49, 3814-3818. [http://dx.doi.org/10.1016/j.tetlet.2008.03.127].
[31]
Zhang, J.; Ren, D.; Ma, Y.; Wang, W.; Wu, H. CuO nanoparticles catalyzed simple and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones under ultrasound irradiation in aqueous ethanol under ultrasound irradiation in aqueous ethanol. Tetrahedron, 2014, 70, 5274-5282. [http://dx.doi.org/10.1016/j.tet.2014.05.059].
[32]
Varadi, A.; Horvath, P.; Kurtan, T.; Mandi, A.; Toth, G.; Gergely, A.; Kokosi, J. Synthesis and configurational assignment of 1,2-dihydroimidazo [5,1-b] quinazoline-3,9-diones: novel NMDA receptor antagonists. Tetrahedron, 2012, 68, 10365-10371. [http://dx.doi.org/10.1016/j.tet.2012.09.086].
[33]
Jankowski, F.; Verones, V.; Flouquet, N.; Carato, P.; Berthelot, P.; Lebegue, N. Efficient microwave-assisted two-step procedure for the synthesis of 1,3-disubstituted-imidazo [1,5-a] quinazolin-5-(4H)-ones. Tetrahedron, 2010, 66, 128-133. [http://dx.doi.org/10.1016/j.tet.2009.11.025].
[34]
Witt, A.; Bergman, J. Synthesis and reactions of some 2-vinyl-3H-quinazolin-4-ones. Tetrahedron, 2000, 56, 7245-7253. [http://dx.doi.org/10.1016/S0040-4020(00)00595-0].
[35]
Lopez, S.E.; Rosales, M.E.; Urdaneta, N.; Gody, M.V.; Charris, J.E. The synthesis of substituted 2-aryl-4(3H)-quinazolinones using NaHSO3/DMA. Steric effect upon the cyclisation-dehydrogenation step. J. Chem. Res. Synop., 2000, 6, 258-259. [http://dx.doi.org/10.3184/030823400103167381].
[36]
Deepthi, K.S.; Reddy, D.S.; Reddy, P.P.; Reddy, P.S.N. Microwave induced dry media DDQ oxidation-A one step synthesis of 2-arylquinazolin-4(3H)-ones. Indian J. Chem. Sect. B, 2000, 39, 220-222. [http://dx.doi.org/10.1002/chin.200031171].
[37]
Davoodnia, A.; Allameh, S.; Fakhari, A.R.; Tavakoli-Hoseini, N. Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst. Chin. Chem. Lett., 2010, 21, 550-553. [http://dx.doi.org/10.1016/j.cclet.2010.01.032].
[38]
Abdel-Jalil, R.J.; Voelter, W.; Saeed, M. A novel method for the synthesis of 4(3H)-quinazolinones. Tetrahedron Lett., 2004, 45, 3475-3476. [http://dx.doi.org/10.1016/j.tetlet.2004.03.003].
[39]
Bakavoli, M.; Shiri, A.; Ebrahimpour, Z.; Rahimizadeh, M. Clean heterocyclic synthesis in water: I2/KI catalyzed one-pot synthesis of quinazolin-4(3H)-ones. Chin. Chem. Lett., 2008, 19, 1403-1406. [http://dx.doi.org/10.1016/j.cclet.2008.07.016].
[40]
Zeng, L.Y.; Cai, C. Iodine: Selectively promote the synthesis of mono substituted quinazolin‐4(3H)‐ones and 2,3‐dihydroquinazolin‐4(1H)‐ones in one‐pot. J. Heterocycl. Chem., 2010, 47, 1035-1039. [http://dx.doi.org/10.1002/jhet.414].
[41]
Dabiri, M.; Salehi, P.; Bahramnejad, M.; Alizadeh, M. A practical and versatile approach toward a one-pot synthesis of 2,3-disubstituted 4(3H)-quinazolinones. Monatsh. Chem., 2010, 141, 877-881. [http://dx.doi.org/10.1007/s00706-010-0341-1].
[42]
Li, F.; Feng, Y.; Meng, Q.; Li, W.; Li, Z.; Wang, Q.; Tao, F. An efficient construction of quinazolin-4(3H)-ones under microwave irradiation. ARKIVOC, 2007, 1, 40-50.
[43]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Baghbanzadeh, M. A new approach to the facile synthesis of mono-and disubstituted quinazolin-4(3H)-ones under solvent-free conditions. Tetrahedron Lett., 2005, 46, 7051-7053. [http://dx.doi.org/10.1016/j.tetlet.2005.08.043].
[44]
Dabiri, M.; Salehi, P.; Mohammadi, A.A.; Baghbanzadeh, M. One‐pot synthesis of mono‐and disubstituted (3H) quinazolin‐4‐ones in dry media under microwave irradiation. Synth. Commun., 2005, 35, 279-287. [http://dx.doi.org/10.1081/SCC-200048462].
[45]
Dabiri, M.; Baghbanzadeh, M.; Delbari, A.S. Novel and efficient one-pot tandem synthesis of 2-styryl-substituted 4(3H)-quinazolinones. J. Comb. Chem., 2008, 10(5), 700-703. [http://dx.doi.org/10.1021/cc800067g]. [PMID: 18671434].
[46]
Kumar, D.; Jadhavar, P.S.; Nautiyal, M.; Sharma, H.; Meena, P.K.; Adane, L.; Pancholia, S.; Chakraborti, A.K. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4(3H)-ones: Applications towards the synthesis of drugs. RSC Advances, 2015, 5, 30819-30825. [http://dx.doi.org/10.1039/C5RA03888J].
[47]
Priego, J.; Flores, P.; Ortiz-Nava, C.; Escalante, J. Synthesis of enantiopure cis-and trans-2-aminocyclohexane-1-carboxylic acids from octahydroquinazolin-4-ones. Tetrahedron Asymmetry, 2004, 15, 3545-3549. [http://dx.doi.org/10.1016/j.tetasy.2004.08.032].
[48]
Rad-Moghadam, K.; Mamghani, M.; Samavi, L. Convergent one‐pot synthesis of 3‐substituted quinazolin‐4(3H)‐ones under solvent‐free conditions. Synth. Commun., 2006, 36, 2245-2252. [http://dx.doi.org/10.1080/00397910600639257].
[49]
Rao, K.R.; Raghunadh, A.; Mekala, R.; Meruva, S.B.; Pratap, T.V.; Krishna, T.; Kalita, D.; Laxminarayana, E.; Prasad, B.; Pal, M. Glyoxylic acid in the reaction of isatoic anhydride with amines: A rapid synthesis of 3-(un)substituted quinazolin-4(3H)-ones leading to rutaecarpine and evodiamine. Tetrahedron Lett., 2014, 55, 6004-6006. [http://dx.doi.org/10.1016/j.tetlet.2014.09.011].
[50]
Farzipour, S.; Saeedi, M.; Mahdavi, M.; Yavari, H.; Mirzahekmati, M.; Ghaemi, N.; Foroumadi, A.; Shafiee, A. Vilsmeier reagent: An efficient reagent for the transformation of 2-aminobenzamides into quinazolin-4(3H)-one derivatives. Synth. Commun., 2014, 44, 481-487. [http://dx.doi.org/10.1080/00397911.2013.811528].
[51]
Bakavoli, M.; Sabzevari, O.; Rahimizadeh, M. HY-zeolites induced heterocyclization: Highly efficient synthesis of substituted-quinazolin-4(3H)ones under microwave irradiation. Chin. Chem. Lett., 2007, 18, 533-535. [http://dx.doi.org/10.1016/j.cclet.2007.03.029].
[52]
Lingaiah, B.V.; Ezikiel, G.; Yakaiah, T.; Reddy, G.V.; Rao, P.S. Nafion-H: An efficient and recyclable heterogeneous catalyst for the one-pot synthesis of 2,3-disubstituted 4-(3H)-quinazolinones under solvent-free microwave irradiation conditions. Synlett, 2006, 2006(15), 2507-2509. [http://dx.doi.org/10.1055/s-2006-950428].
[53]
Mohammadi, A.A.; Ahdenov, R.; Sooki, A.A. Design, synthesis and antibacterial evaluation of 2-alkyl-and 2-aryl-3-(phenylamino)quinazolin-4(3H)-one derivatives. Heterocycl. Commun., 2017, 23, 105-108. [http://dx.doi.org/10.1515/hc-2016-0201].
[54]
Jadhavar, P.S.; Dhameliya, T.M.; Vaja, M.D.; Kumar, D.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(11), 2663-2669. [http://dx.doi.org/10.1016/j.bmcl.2016.04.012]. [PMID: 27095514].
[55]
Yang, W.; Qiao, R.; Chen, J.; Huang, X.; Liu, M.; Gao, W.; Ding, J.; Wu, H. Palladium-catalyzed cascade reaction of 2-amino-N′-arylbenzohydrazides with triethyl orthobenzoates to construct indazolo[3,2-b]quinazolinones. J. Org. Chem., 2015, 80(1), 482-489. [http://dx.doi.org/10.1021/jo5024848]. [PMID: 25437529].
[56]
Baghbanzadeh, M.; Dabiri, M.; Salehi, P. A new efficient method for the three-component synthesis of 4(3H)-quinazolinones. Heterocycles, 2008, 75, 2809-2815. [http://dx.doi.org/10.3987/COM-08-11437].
[57]
Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Baghersad, S.; Mirjafari, A. Efficient one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones from aromatic aldehydes and their one-pot oxidation to quinazolin-4(3H)-ones catalyzed by Bi(NO3)3•5H2O: investigating the role of the catalyst. C. R. Chim., 2011, 14, 944-952. [http://dx.doi.org/10.1016/j.crci.2011.05.003].
[58]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: an efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. J. Mol. Catal. Chem., 2013, 374, 102-110. [http://dx.doi.org/10.1016/j.molcata.2013.04.002].
[59]
Mehta, H.B.; Dixit, B.C.; Dixit, R.B. L-Proline catalyzed one-pot multi-component synthesis of 2-(1,3-diphenyl-1H-pyrazol-4-yl) quinazolin-4(3H)-one derivatives and their biological studies. Chin. Chem. Lett., 2014, 25, 741-744. [http://dx.doi.org/10.1016/j.cclet.2014.03.015].
[60]
Adib, M.; Sheikhi, E.; Bijanzadeh, H.R. One-pot three-component synthesis of 4(3H)-quinazolinones from benzyl halides, isatoic anhydride, and primary amines. Synlett, 2012, 2012(1), 85-88. [http://dx.doi.org/10.1055/s-0031-1290098].
[61]
Asadi, M.; Ebrahimi, M.; Mahdavi, M.; Saeedi, M.; Ranjbar, P.R.; Yazdani, F.; Shafiee, A.; Foroumadi, A. Reaction of isatoic anhydride, amine, and N,N′-dialkyl carbodiimides under solvent-free conditions: New and efficient synthesis of 3-alkyl-2-(alkylamino)quinazolin-4(3H)-ones. Synth. Commun., 2013, 43, 2385-2392. [http://dx.doi.org/10.1080/00397911.2012.714042].
[62]
Asadi, M.; Masoomi, S.; Ebrahimi, S.M.; Mahdavi, M.; Saeedi, M.; Shafiee, A.; Foroumadi, A. Convenient and sequential one-pot route for synthesis of 2-thioxoquinazolinone and quinazolinobenzothiazinedione derivatives. Monatsh. Chem., 2014, 145, 497-504. [http://dx.doi.org/10.1007/s00706-013-1110-8].
[63]
Heidary, M.; Khoobi, M.; Ghasemi, S.; Habibi, Z.; Faramarzi, M.A. Synthesis of quinazolinones from alcohols via laccase‐mediated tandem oxidation. Adv. Synth. Catal., 2014, 356, 1789-1794. [http://dx.doi.org/10.1002/adsc.201400103].
[64]
Murthy, V.N.; Nikumbh, S.P.; Kumar, S.P.; Rao, L.V.; Raghunadh, A. An efficient one pot synthesis of 2-amino quinazolin-4(3H)-one derivative via MCR strategy. Tetrahedron Lett., 2015, 56, 5767-5770. [http://dx.doi.org/10.1016/j.tetlet.2015.08.040].
[65]
Mahdavi, M.; Pedrood, K.; Safavi, M.; Saeedi, M.; Pordeli, M.; Ardestani, S.K.; Emami, S.; Adib, M.; Foroumadi, A.; Shafiee, A. Synthesis and anticancer activity of N-substituted 2-arylquinazolinones bearing trans-stilbene scaffold. Eur. J. Med. Chem., 2015, 95, 492-499. [http://dx.doi.org/10.1016/j.ejmech.2015.03.057]. [PMID: 25847767].
[66]
Ma, Y.G.; Li, C.; Yao, C.S.; Wang, X.S. Copper-catalyzed synthesis of 1-amino-5-arylindazolo[3,2-b]quinazolin-7(5H)-ones via a ring-opening reaction of 4-halogenated isatin. Tetrahedron, 2016, 72, 3844-3850. [http://dx.doi.org/10.1016/j.tet.2016.05.013].
[67]
Mahdavi, M.; Asadi, M.; Khoshbakht, M.; Saeedi, M.; Bayat, M.; Foroumadi, A.; Shafiee, A. CuBr/Et3N‐Promoted reactions of 2‐aminobenzamides and isothiocyanates: efficient synthesis of novel quinazolin‐4(3H)‐ones. Helv. Chim. Acta, 2016, 99, 378-383. [http://dx.doi.org/10.1002/hlca.201500273].
[68]
Dadgar, M.; Milani Kalkhorani, N. [γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-quinazolinones. Int. J. Nanodimens., 2015, 6, 473-478.
[69]
Mirza, B. An efficient metal-free synthesis of 2-amino-substituted-4(3H)-quinazolinones. Tetrahedron Lett., 2016, 57, 146-147. [http://dx.doi.org/10.1016/j.tetlet.2015.11.085].
[70]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Baghbanzadeh, M. A novel method for the one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Synlett, 2005, 2005, 1155-1157. [http://dx.doi.org/10.1055/s-2005-865200].
[71]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Zolfigol, M.A.; Agheb, M.; Heydari, S. Silica sulfuric acid: An efficient reusable heterogeneous catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water and under solvent-free conditions. Catal. Commun., 2008, 9, 785-788. [http://dx.doi.org/10.1016/j.catcom.2007.08.019].
[72]
Salehi, P.; Dabiri, M.; Baghbanzadeh, M.; Bahramnejad, M. One‐pot, three‐component synthesis of 2,3‐dihydro‐4(1H)‐quinazolinones by montmorillonite K‐10 as an efficient and reusable catalyst. Synth. Commun., 2006, 36, 2287-2292. [http://dx.doi.org/10.1080/00397910600639752].
[73]
Roopan, S.M.; Khan, F.N.; Jin, J.S.; Kumar, R.S. An efficient one pot–three component cyclocondensation in the synthesis of 2-(2-chloroquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-ones: Potential antitumor agents. Res. Chem. Intermed., 2011, 37, 919-927. [http://dx.doi.org/10.1007/s11164-011-0301-3].
[74]
Chen, J.; Su, W.; Wu, H.; Liu, M.; Jin, C. Eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones in ionic liquids or ionic liquid–water without additional catalyst. Green Chem., 2007, 9, 972-975. [http://dx.doi.org/10.1039/b700957g].
[75]
Khaksar, S.; Talesh, S.M. Three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in 2,2,2-trifluoroethanol. C. R. Chim., 2012, 15, 779-783. [http://dx.doi.org/10.1016/j.crci.2012.05.019].
[76]
Darvatkar, N.B.; Bhilare, S.V.; Deorukhkar, A.R.; Raut, D.G.; Salunkhe, M.M. [bmim] HSO4: An efficient and reusable catalyst for one-pot three-component synthesis of 2,3-dihydro-4(1H)-quinazolinones. Green Chem. Lett. Rev., 2010, 3, 301-306. [http://dx.doi.org/10.1080/17518253.2010.485581].
[77]
Alinezhad, H.; Tajbakhsh, M.; Ghobadi, N. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones using Brønsted acidic ionic liquid. Res. Rev. Mat. Sci. Chem., 2014, 3, 123-135.
[78]
Fard, M.A.B.; Mobinikhaledi, A.; Hamidinasab, M. An efficient one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in green media. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, 44, 567-571. [http://dx.doi.org/10.1080/15533174.2013.776605].
[79]
Rostamizadeh, S.; Amani, A.M.; Aryan, R.; Ghaieni, H.R.; Shadjou, N. Synthesis of new 2-aryl-substituted 2,3-dihydroquinazoline-4(1H)-ones under solvent-free conditions, using molecular iodine as a mild and efficient catalyst. Synth. Commun., 2008, 38, 3567-3576. [http://dx.doi.org/10.1080/00397910802178427].
[80]
Rostamizadeh, S.; Amani, A.M.; Mahdavinia, G.H.; Sepehrian, H.; Ebrahimi, S. Synthesis of some novel 2-aryl-substituted 2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highly efficient sulfonic acid. Synthesis, 2010, 1356-1360. [http://dx.doi.org/10.1055/s-0029-1218676].
[81]
Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Nano-indium oxide: An efficient catalyst for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones with a greener prospect. Catal. Commun., 2014, 49, 52-57. [http://dx.doi.org/10.1016/j.catcom.2014.01.032].
[82]
Safari, J.; Gandomi-Ravandi, S. Application of the ultrasound in the mild synthesis of substituted 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heterogeneous metal–MWCNTs nanocomposites. J. Mol. Catal. Chem., 2014, 1072, 173-178.
[83]
Majid, G.; Kobra, A.; Hamed, M.P.; Hamid Reza, S. Eco‐friendly and Efficient synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones. Chin. J. Chem., 2011, 29, 1617-1623. [http://dx.doi.org/10.1002/cjoc.201180290].
[84]
Song, Z.; Liu, L.; Wang, Y.; Sun, X. Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using aluminum methanesulfonate as a reusable catalyst. Res. Chem. Intermed., 2012, 38, 1091-1099. [http://dx.doi.org/10.1007/s11164-011-0445-1].
[85]
Saffar-Teluri, A.; Bolouk, S. One-pot, three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones using p-toluenesulfonic acid–paraformaldehyde copolymer as an efficient and reusable catalyst. Monatsh. Chem., 2010, 141, 1113-1115. [http://dx.doi.org/10.1007/s00706-010-0376-3].
[86]
Ghashang, M. Silica supported zinc (II) chloride (SiO2-ZnCl2) as an efficient catalyst for the eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Orient. J. Chem., 2012, 28, 1213-1218. [http://dx.doi.org/10.13005/ojc/280317].
[87]
Safari, J.; Gandomi-Ravandi, S. Microwave-accelerated three components cyclocondensation in the synthesis of 2,3-dihydroquinazolin-4(1H)-ones promoted by Cu-CNTs. J. Mol. Catal. Chem., 2013, 371, 135-140. [http://dx.doi.org/10.1016/j.molcata.2013.01.031].
[88]
Wang, M.; Zhang, T.T.; Gao, J.J.; Liang, Y. Cation-exchange resin as an efficient hetero-geneous catalyst for one-pot three-component synthesis of 2,3-dihydro-4(1H)-quinazolinones. Chem. Heterocycl. Compd., 2012, 48, 897-902. [http://dx.doi.org/10.1007/s10593-012-1073-4].
[89]
Sharma, R.; Pandey, A.K.; Chauhan, P.M. A greener protocol for accessing 2,3-dihydro/spiroquinazolin-4(1H)-ones: natural acid-SDS catalyzed three-component reaction. Synlett, 2012, 23, 2209-2214. [http://dx.doi.org/10.1055/s-0032-1317014].
[90]
Niknam, K.; Jafarpour, N.; Niknam, E. Silica-bonded N-propylsulfamic acid as a recyclable catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Chin. Chem. Lett., 2011, 22, 69-72. [http://dx.doi.org/10.1016/j.cclet.2010.09.013].
[91]
Song, Z.; Wan, X.; Zhao, S. A novel catalyst cobalt m-nitrobenzenesulfonate-catalyzed highly efficient synthesis of substituted-quinazolin-4(1H)-ones. Indian J. Chem. Technol., 2012, 19, 118-123.
[92]
Surpur, M.P.; Singh, P.R.; Patil, S.B.; Samant, S.D. Expeditious one‐pot and solvent‐free synthesis of dihydroquinazolin‐4(1H)‐ones in the presence of microwaves. Synth. Commun., 2007, 37, 1965-1970. [http://dx.doi.org/10.1080/00397910701354699].
[93]
Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A.A. Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2•12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett., 2005, 46, 6123-6126. [http://dx.doi.org/10.1016/j.tetlet.2005.06.157].
[94]
Ramesh, K.; Karnakar, K.; Satish, G.; Harsha, K.; Reddy, V.; Nageswar, Y.V.D. Tandem supramolecular synthesis of substituted 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of β-cyclodextrin in water. Tetrahedron Lett., 2012, 53, 6095-6099. [http://dx.doi.org/10.1016/j.tetlet.2012.08.141].
[95]
Wu, J.; Du, X.; Ma, J.; Zhang, Y.; Shi, Q.; Luo, L.; Song, B.; Yang, S.; Hu, D. Preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media with β-cyclodextrin-SO3H as a recyclable catalyst. Green Chem., 2014, 16, 3210-3217. [http://dx.doi.org/10.1039/C3GC42400F].
[96]
Wang, M.; Zhang, T.T.; Liang, Y.; Gao, J. Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using copper benzenesulfonate as a reusable catalyst in aqueous solution. Monatsh. Chem., 2012, 43, 835-839. [http://dx.doi.org/10.1007/s00706-011-0648-6].
[97]
Kassaee, M.Z.; Rostamizadeh, S.; Shadjou, N.; Motamedi, E.; Esmaeelzadeh, M. An efficient one‐pot solvent‐free synthesis of 2,3‐dihydroquinazoline‐4(1H)‐ones via Al/Al2O3 nanoparticles. J. Heterocycl. Chem., 2010, 47, 1421-1424. [http://dx.doi.org/10.1002/jhet.506].
[98]
Wang, M.; Zhang, T.T.; Liang, Y.; Gao, J.J. Strontium chloride-catalyzed one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in protic media. Chin. Chem. Lett., 2011, 22, 1423-1426. [http://dx.doi.org/10.1016/j.cclet.2011.06.002].
[99]
Niknam, K.; Mohammadizadeh, M.R.; Mirzaee, S. Silica‐bonded S‐sulfonic acid as a recyclable catalyst for synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones. Chin. J. Chem., 2011, 29, 1417-1422. [http://dx.doi.org/10.1002/cjoc.201180261].
[100]
Chen, Y.; Shan, W.; Lei, M.; Hua, L. Thiamine hydrochloride (VB1) as an efficient promoter for the one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Tetrahedron Lett., 2012, 53, 5923-5925. [http://dx.doi.org/10.1016/j.tetlet.2012.08.090].
[101]
Kumari, K.; Raghuvanshi, D.S.; Singh, K.N. Microwave assisted eco-friendly protocol for one pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water. Indian J. Chem., 2012, 51B, 860-865.
[102]
Shaterian, H.R.; Oveisi, A.R.; Honarmand, M. Synthesis of 2,3-dihydroquinazoline-4(1H)-ones. Synth. Commun., 2010, 40, 1231-1242. [http://dx.doi.org/10.1080/00397910903064831].
[103]
Baghbanzadeh, M.; Salehi, P.; Dabiri, M.; Kozehgarya, G. Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4(1H)-one derivatives. Synthesis, 2006, 2, 344-348.
[104]
Deng, T.; Wang, H.; Cai, C. Highly enantioselective synthesis of dihydroquinazolinones through Sc(OTf)3-catalyzed intramolecular amidation of imines. J. Fluor. Chem., 2015, 169, 72-77. [http://dx.doi.org/10.1016/j.jfluchem.2014.11.008].
[105]
Choghamarani, A.; Taghipour, T.G. Green and one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones promoted by citric acid as recoverable catalyst in water. Lett. Org. Chem., 2011, 8, 470-476. [http://dx.doi.org/10.2174/157017811796505025].
[106]
Ghorbani-Choghamarani, A.; Zamani, P. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction catalyzed by L-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate (supported on silica gel) as novel and recoverable catalyst. J. Indian Chem. Soc., 2012, 9, 607-613. [http://dx.doi.org/10.1007/s13738-012-0074-7].
[107]
Nikpassand, M.; Zare Fkri, L.; Ziafatdoust, S. Trichlorotriazine promoted microwave induced three-component synthesis of quinazolinones in aqueous media. Int. J. Latest Res. Sci. Technol., 2014, 3, 201-204.
[108]
Razavi, N.; Akhlaghinia, B. Hydroxyapatite nanoparticles (HAP NPs): A green and efficient heterogeneous catalyst for three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media. New J. Chem., 2016, 40, 447-457. [http://dx.doi.org/10.1039/C5NJ02123E].
[109]
Zhang, Z.H.; Lü, H.Y.; Yang, S.H.; Gao, J.W. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. J. Comb. Chem., 2010, 12(5), 643-646. [http://dx.doi.org/10.1021/cc100047j]. [PMID: 20684507].
[110]
Sharma, M.; Pandey, S.; Chauhan, K.; Sharma, D.; Kumar, B.; Chauhan, P.M. Cyanuric chloride catalyzed mild protocol for synthesis of biologically active dihydro/spiro quinazolinones and quinazolinone-glycoconjugates. J. Org. Chem., 2012, 77(2), 929-937. [http://dx.doi.org/10.1021/jo2020856]. [PMID: 22181712].
[111]
Shaterian, H.R.; Oveisi, A.R. PPA‐SiO2 as a Heterogeneous catalyst for efficient synthesis of 2‐Substituted‐1,2,3,4‐tetrahydro‐4‐quinazolinones under solvent‐free conditions. Chin. J. Chem., 2009, 27, 2418-2422. [http://dx.doi.org/10.1002/cjoc.201090018].
[112]
Wang, X.S.; Yang, K.; Zhou, J.; Tu, S.J. Facile method for the combinatorial synthesis of 2,2-disubstituted quinazolin-4(1H)-one derivatives catalyzed by iodine in ionic liquids. J. Comb. Chem., 2010, 12(4), 417-421. [http://dx.doi.org/10.1021/cc900174p]. [PMID: 20334422].
[113]
Rambabu, D.; Kumar, S.K.; Sreenivas, B.Y.; Sandra, S.; Kandale, A.; Misra, P.; Rao, M.B.; Pal, M. Ultrasound-based approach to spiro-2,3-dihydroquinazolin-4(1H)-ones: their in vitro evaluation against chorismate mutase. Tetrahedron Lett., 2013, 54, 495-501. [http://dx.doi.org/10.1016/j.tetlet.2012.11.057].
[114]
Bharathi, A.; Roopan, S.M.; Kajbafvala, A.; Padmaja, R.D.; Darsana, M.S.; Nandhini Kumari, G. Catalytic activity of TiO2 nanoparticles in the synthesis of some 2,3-disubstituted dihydroquinazolin-4(1H)-ones. Chin. Chem. Lett., 2014, 25, 324-326. [http://dx.doi.org/10.1016/j.cclet.2013.11.040].
[115]
Yavari, I.; Beheshti, S. ZnO nanoparticles catalyzed efficient one-pot three-component synthesis of 2,3-disubstituted quinalolin-4(1H)-ones under solvent-free conditions. J. Indian Chem. Soc., 2011, 8, 1030-1035. [http://dx.doi.org/10.1007/BF03246559].
[116]
Chen, B.H.; Li, J.T.; Chen, G.F. Efficient synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-ones catalyzed by dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation. Ultrason. Sonochem., 2015, 23, 59-65. [http://dx.doi.org/10.1016/j.ultsonch.2014.08.024]. [PMID: 25224856].
[117]
Wang, L.M.; Hu, L.; Shao, J.H.; Yu, J.; Zhang, L. A novel catalyst zinc (II) perfluorooctanoate [Zn(PFO)2]-catalyzed three-component one-pot reaction: Synthesis of quinazolinone derivatives in aqueous micellar media. J. Fluor. Chem., 2008, 129, 1139-1145. [http://dx.doi.org/10.1016/j.jfluchem.2008.08.005].
[118]
Narasimhulu, M.; Lee, Y.R. Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their spirooxindole derivatives. Tetrahedron, 2011, 67, 9627-9634. [http://dx.doi.org/10.1016/j.tet.2011.08.018].
[119]
Mohammadpoor‐Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Soltani, M.; Mirjafari, A. One‐pot synthesis of 2,3‐disubstituted‐2,3‐dihydroquinazolin‐4(1H)‐ones using [Hmim][NO3]: An eco‐friendly protocol. J. Heterocycl. Chem., 2011, 48, 1419-1427. [http://dx.doi.org/10.1002/jhet.721].
[120]
Karimi-Jaberi, Z.; Arjmandi, R. Acetic acid-promoted, efficient, one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem., 2011, 142, 631-635.
[121]
Carney, D.W.; Nelson, C.D.S.; Ferris, B.D.; Stevens, J.P.; Lipovsky, A.; Kazakov, T.; DiMaio, D.; Atwood, W.J.; Sello, J.K. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses. Bioorg. Med. Chem., 2014, 22(17), 4836-4847. [http://dx.doi.org/10.1016/j.bmc.2014.06.053]. [PMID: 25087050].
[122]
Prakash, M.; Kesavan, V. Highly enantioselective synthesis of 2,3-dihydroquinazolinones through intramolecular amidation of imines. Org. Lett., 2012, 14(7), 1896-1899. [http://dx.doi.org/10.1021/ol300518m]. [PMID: 22458670].
[123]
Takacs, A.; Fodor, A.; Nemeth, J.; Hell, Z. Zeolite-catalyzed method for the preparation of 2,3-dihydroquinazolin-4(1H)-ones. Synth. Commun., 2014, 44, 2269-2275. [http://dx.doi.org/10.1080/00397911.2014.894525].
[124]
Wang, S.; Yin, S.; Xia, S.; Shi, Y.; Tu, S.; Rong, L. An efficient synthesis of 3-benzylquinazolin-4(1H)-one derivatives under catalyst-free and solvent-free conditions. Green Chem. Lett. Rev., 2012, 5, 603-607. [http://dx.doi.org/10.1080/17518253.2012.685184].
[125]
Shaabani, A.; Rahmati, A.; Rad, J.M. Ionic liquid promoted synthesis of 3-(2′-benzothiazolo)-2,3-dihydroquinazolin-4(1H)-ones. C. R. Chim., 2008, 11, 759-764. [http://dx.doi.org/10.1016/j.crci.2007.11.007].
[126]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M. Ionic liquid promoted eco-friendly and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem., 2007, 138, 1191-1194. [http://dx.doi.org/10.1007/s00706-007-0635-0].
[127]
Zhang, J.; Cheng, P.; Ma, Y.; Liu, J.; Miao, Z.; Ren, D.; Fan, C.; Liang, M.; Liu, L. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis. Tetrahedron Lett., 2016, 57, 5271-5277. [http://dx.doi.org/10.1016/j.tetlet.2016.10.047].
[128]
Arasteh‐Fard, Z.; Dilmaghani, K.A.; Saeedi, M.; Mahdavi, M.; Shafiee, A. Synthesis of novel phthalazino[1,2‐b]quinazolinedione derivatives: efficient and practical reaction of 2‐amino‐N′‐Arylbenzohydrazides and 2‐Formylbenzoic Acids. Helv. Chim. Acta, 2016, 99, 539-542. [http://dx.doi.org/10.1002/hlca.201600025].
[129]
Hatamjafari, F.; Alijanichakoli, F.; Mohammadmohtasham, M. KF/Al2O3 catalyzed one-pot three-component process for the synthesis of some 2-thioxoquinazolin-4(1H)-one derivatives. Asian J. Chem., 2013, 25, 5975-5977. [http://dx.doi.org/10.14233/ajchem.2013.14214].
[130]
Rezanejade Bardajee, G.; Ghaedi, A.; Hekmat, S.; Abarashi, G.; Mahdavi, M.; Akbarzadeh, T. A green and efficient synthesis of 2-thioxoquinazolinone derivatives in water using potassium thiocyanate. J. Sulfur Chem., 2017, 38, 519-529. [http://dx.doi.org/10.1080/17415993.2017.1325891].
[131]
Farjadmand, F.; Arshadi, H.; Moghimi, S.; Nadri, H.; Moradi, A.; Eghtedari, M.; Jafarpour, F.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. Synthesis and evaluation of novel quinazolinone-1,2,3-triazoles as inhibitors of lipoxygenase. J. Chem. Res., 2016, 40, 188-191. [http://dx.doi.org/10.3184/174751916X14558913889738].
[132]
Dominic, E.J.; Lopez, M.; Thomas, B. Microwave-assisted addition of azomethines to isatoic anhydride. J. Chem. Sci., 2007, 119, 47-51. [http://dx.doi.org/10.1007/s12039-007-0008-6].
[133]
Verma, A.; Giridhar, R.; Modh, P.; Yadav, M.R. A facile IL–DMSO assisted synthesis of 5-, 6-, and 7-membered benzo-annelated cyclic guanidines. Tetrahedron Lett., 2012, 53, 2954-2958. [http://dx.doi.org/10.1016/j.tetlet.2012.03.060].
[134]
Sayahi, M.H.; Baghersaei, S.; Goli, F.; Moghimi, S.; Mahdavi, M.; Firoozpour, L.; Shafiee, A.; Foroumadi, A. An efficient four-step approach toward fused triazino[1,6-a]quinazolines. Comb. Chem. High, 2016, 19(3), 189-192. [http://dx.doi.org/10.2174/1386207319666160202120802]. [PMID: 26830360].
[135]
Shafii, B.; Saeedi, M.; Mahdavi, M.; Foroumadi, A.; Shafiee, A. Novel four-step synthesis of thioxo-quinazolino[3,4-a]quinazolinone derivatives. Synth. Commun., 2014, 44, 215-221. [http://dx.doi.org/10.1080/00397911.2013.800211].
[136]
Mohammadhosseini, N.; Saeedi, M.; Moradi, S.; Mahdavi, M.; Firuzi, O.; Foroumadi, A.; Shafiee, A. Synthesis and cytotoxicity of novel thioxo-quinazolino[3,4-a]quinazolinones. Turk. J. Chem., 2017, 41, 125-134. [http://dx.doi.org/10.3906/kim-1512-80].
[137]
Mahdavi, M.; Foroughi, N.; Saeedi, M.; Karimi, M.; Alinezhad, H.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Letter synthesis of novel benzo[6,7][1,4]oxazepino[4,5-a]quinazolinone derivatives via transition-metal-free intramolecular hydroamination. Synlett, 2014, 25, 385-388.
[138]
Madhubabu, M.V.; Shankar, R.; Reddy, G.R.; Rao, T.S.; Rao, M.V.B.; Akula, R. Metal–Catalyst-free green and efficient synthesis of five and six membered fused N-heterocyclic quinazoline derivatives. Tetrahedron Lett., 2016, 57, 5033-5037. [http://dx.doi.org/10.1016/j.tetlet.2016.09.094].
[139]
Esmaeili‐Marandi, F.; Saeedi, M.; Yavari, I.; Mahdavi, M.; Shafiee, A. Synthesis of novel isoindolo[2,1‐a]quinazolinedione derivatives containing a 1,2,3‐triazole ring system. Helv. Chim. Acta, 2016, 99, 37-40. [http://dx.doi.org/10.1002/hlca.201500122].
[140]
Mohammadi, A.A.; Dabiri, M.; Qaraat, H. A regioselective three-component reaction for synthesis of novel 1′H-spiro[isoindoline-1, 2′-quinazoline]-3,4′(3′ H)-dione derivatives. Tetrahedron, 2009, 65, 3804-3808. [http://dx.doi.org/10.1016/j.tet.2009.02.037].
[141]
Abdi, M.; Rostamizadeh, S.; Zekri, N. An Efficient and green synthesis of 1′H-spiro[isoindoline-1,2′-quinazoline]-3,4′(3′ H)-dione derivatives in the presence of nano Fe3O4–GO–SO3H. Polycycl. Aromat. Compd., 2017, 1-12. [http://dx.doi.org/10.1080/10406638.2017.1340313].
[142]
Zhu, X.; Kang, S.R.; Xia, L.; Lee, J.; Basavegowda, N.; Lee, Y.R. Efficient Cu(OTf)2-catalyzed synthesis of novel and diverse 2,3-dihydroquinazolin-4(1H)-ones. Mol. Divers., 2015, 19(1), 67-75. [http://dx.doi.org/10.1007/s11030-014-9557-z]. [PMID: 25403260].
[143]
Nahavandian, S.; Allameh, S.; Saeedi, M.; Ansari, S.; Mahdavi, M.; Foroumadi, A.; Shafiee, A. Novel 1,2,3,4-tetrahydroquinazolinones via reaction of 2‐amino‐N‐substituted benzamides and dimethyl acetylenedicarboxylate. Helv. Chim. Acta, 2015, 98, 1028-1033. [http://dx.doi.org/10.1002/hlca.201500015].
[144]
Sadat-Ebrahimi, S.E.; Irannezhad, S.; Moghimi, S.; Yahya-Meymandi, A.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. A highly efficient method for the synthesis of novel 1‘H-spiro[indene-2,2’-quinazoline]-1,3,4‘(3’H)-trione derivatives. J. Chem. Res., 2015, 39, 495-498. [http://dx.doi.org/10.3184/174751915X14394002808669].
[145]
Ramezanpour, S.; Balalaie, S.; Rominger, F. Stereoselective synthesis of tetrazolo-spiroquinazolinone derivatives through one-pot pseudo six-component reaction. Tetrahedron, 2016, 72, 6409-6414. [http://dx.doi.org/10.1016/j.tet.2016.08.046].
[146]
Yale, H.L. Novel buron heterocycles. I. 2,3‐dihydro‐1,3,2‐benzodiazaborin‐4(III)‐ones and 1,2‐dihydro‐1,3,2‐benzodiazaborines. J. Heterocycl. Chem., 1971, 8, 193-204. [http://dx.doi.org/10.1002/jhet.5570080203].
[147]
Mahdavi, M.; Asadi, M.; Saeedi, M.; Tehrani, M.H.; Mirfazli, S.S.; Shafiee, A.; Foroumadi, A. Green synthesis of new boron-containing quinazolines: preparation of benzo[d][1,3,2]diazaborinin-4(1H)-one derivatives. Synth. Commun., 2013, 43, 2936-2942. [http://dx.doi.org/10.1080/00397911.2012.751612].
[148]
Adib, M.; Shabanibalajadeh, S.; Sheikhi, E.; Rahimi‐Nasrabadi, M.; Zhu, L.G. Bridgehead bicyclo[4.4.0]boron heterocycles: A one‐pot four‐component synthesis of dibenzo[e,i][1,3,7,2]oxadiazaborecin‐8(7H)‐ones. Helv. Chim. Acta, 2016, 99, 659-664. [http://dx.doi.org/10.1002/hlca.201500534].
[149]
Li, S.; Zhang, Q.; Peng, Y. Powdered diethylaminoethyl cellulose as biomass-derived support for phosphotungstic acid: NEw solid acidic catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem., 2015, 146, 1859-1864. [http://dx.doi.org/10.1007/s00706-015-1475-y].
[150]
Wright, W.B., Jr; Brabander, H.J.; Greenblatt, E.N.; Day, I.P.; Hardy, R.A. Jr Derivatives of 1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H)-dione as anxiolytic agents. J. Med. Chem., 1978, 21(10), 1087-1089. [http://dx.doi.org/10.1021/jm00208a017]. [PMID: 31475].
[151]
Parks, D.J.; LaFrance, L.V.; Calvo, R.R.; Milkiewicz, K.L.; Marugán, J.J.; Raboisson, P.; Schubert, C.; Koblish, H.K.; Zhao, S.; Franks, C.F.; Lattanze, J.; Carver, T.E.; Cummings, M.D.; Maguire, D.; Grasberger, B.L.; Maroney, A.C.; Lu, T. Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2-p53 protein-protein interaction through structure-based drug design. Bioorg. Med. Chem. Lett., 2006, 16(12), 3310-3314. [http://dx.doi.org/10.1016/j.bmcl.2006.03.055]. [PMID: 16600594].
[152]
Osman, A.N.; el-Gendy, A.A.; Omar, R.H.; Wagdy, L.; Omar, A.H. Synthesis and pharmacological activity of 1,4-benzodiazepine derivatives. Boll. Chim. Farm., 2002, 141(1), 8-14. [PMID: 12064063].
[153]
Ursini, A.; Capelli, A.M.; Carr, R.A.; Cassarà, P.; Corsi, M.; Curcuruto, O.; Curotto, G.; Dal Cin, M.; Davalli, S.; Donati, D.; Feriani, A.; Finch, H.; Finizia, G.; Gaviraghi, G.; Marien, M.; Pentassuglia, G.; Polinelli, S.; Ratti, E.; Reggiani, A.M.; Tarzia, G.; Tedesco, G.; Tranquillini, M.E.; Trist, D.G.; Van Amsterdam, F.T. Synthesis and SAR of new 5-phenyl-3-ureido-1,5-benzodiazepines as cholecystokinin-B receptor antagonists. J. Med. Chem., 2000, 43(20), 3596-3613. [http://dx.doi.org/10.1021/jm990967h]. [PMID: 11020274].
[154]
Clark, R.L.; Carter, K.C.; Mullen, A.B.; Coxon, G.D.; Owusu-Dapaah, G.; McFarlane, E.; Duong Thi, M.D.; Grant, M.H.; Tettey, J.N.; Mackay, S.P. Identification of the benzodiazepines as a new class of antileishmanial agent. Bioorg. Med. Chem. Lett., 2007, 17(3), 624-627. [http://dx.doi.org/10.1016/j.bmcl.2006.11.004]. [PMID: 17113290].
[155]
Sternbach, L.H. The benzodiazepine story. J. Med. Chem., 1979, 22(1), 1-7. [http://dx.doi.org/10.1021/jm00187a001]. [PMID: 34039].
[156]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89. [http://dx.doi.org/10.1021/cr0505728]. [PMID: 16402771].
[157]
Gunawan, S.; Ayaz, M.; De Moliner, F.; Frett, B.; Kaiser, C.; Patrick, N.; Xu, Z.; Hulme, C. Synthesis of tetrazolo-fused benzodiazepines and benzodiazepinones by a two-step protocol using an Ugi-azide reaction for initial diversity generation. Tetrahedron, 2012, 68(27-28), 5606-5611. [http://dx.doi.org/10.1016/j.tet.2012.04.068]. [PMID: 22923851].
[158]
Donald, J.R.; Wood, R.R.; Martin, S.F. Application of a sequential multicomponent assembly process/huisgen cycloaddition strategy to the preparation of libraries of 1,2,3-triazole-fused 1,4-benzodiazepines. ACS Comb. Sci., 2012, 14(2), 135-143. [http://dx.doi.org/10.1021/co2002087]. [PMID: 22273436].
[159]
Mahdavi, M.; Lijan, H.; Bahadorikhalili, S.; Ma’mani, L.; Ranjbar, P.R.; Shafiee, A. Copper supported β-cyclodextrin grafted magnetic nanoparticles as an efficient recyclable catalyst for one-pot synthesis of 1-benzyl-1H-1,2,3-triazoldibenzodiazepinone derivatives via click reaction. RSC Advances, 2016, 6, 28838-28843. [http://dx.doi.org/10.1039/C5RA27275K].
[160]
Al-Said, N.H.; Ishtaiwi, Z.N. Synthesis of N-substituted quinazolino[1,4]benzodiazepine: A facial route to N-benzylsclerotigenin. Acta Chim. Slov., 2005, 52, 328-331.
[161]
Cheng, M.F.; Yu, H.M.; Ko, B.W.; Chang, Y.; Chen, M.Y.; Ho, T.I.; Tsai, Y.M.; Fang, J.M. Practical synthesis of potential endothelin receptor antagonists of 1,4-benzodiazepine-2,5-dione derivatives bearing substituents at the C3-, N1- and N4-positions. Org. Biomol. Chem., 2006, 4(3), 510-518. [http://dx.doi.org/10.1039/B514937A]. [PMID: 16446809].
[162]
Mahdavi, M.; Asadi, M.; Saeedi, M.; Rezaei, Z.; Moghbel, H.; Foroumadi, A.; Shafiee, A. Synthesis of novel 1,4-benzodiazepine-3,5-dione derivatives: Reaction of 2-aminobenzamides under Bargellini reaction conditions. Synlett, 2012, 23, 2521-2525. [http://dx.doi.org/10.1055/s-0032-1317297].
[163]
Noushini, S.; Mahdavi, M.; Firoozpour, L.; Moghimi, S.; Shafiee, A.; Foroumadi, A. Efficient multi-component synthesis of 1,4-benzodiazepine-3,5-diones: a petasis-based approach. Tetrahedron, 2015, 71, 6272-6275. [http://dx.doi.org/10.1016/j.tet.2015.06.060].
[164]
Seydey, M.K.; Rezaei, Z.; Homami, S.S. Solvent-free synthesis of novel benzodiazepine derivatives by a threecomponent base-catalysed reaction of isatoic anhydride, a primary amine and chloroacetyl chloride. J. Chem. Res., 2015, 39, 286-288. [http://dx.doi.org/10.3184/174751915X14304939994023].
[165]
Kamal, A. Howard, P.W.; Reddy, B.N.; Reddy, B.P.; Thurston, D.E. Synthesis of pyrrolo[2,1-c] [1,4]benzodiazepine antibiotics: Oxidation of cyclic secondary amine with TPAP. Tetrahedron, 1997, 53, 3223-3230. [http://dx.doi.org/10.1016/S0040-4020(97)00033-1].
[166]
Jadidi, K.; Aryan, R.; Mehrdad, M.; Lügger, T.; Hahn, F.E.; Ng, S.W. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones. J. Mol. Struct., 2004, 692, 37-42. [http://dx.doi.org/10.1016/j.molstruc.2003.12.024].
[167]
Al-Said, N.H.; Shawakfeh, K.Q.; Ibrahim, M.I.; Tayyem, S.H. A facile synthesis of quinazolino[1,4]benzodiazepine alkaloids via reductive N-heterocyclization of N-(2-nitrobenzoyl) amides: Total synthesis of asperlicin C, circumdatin H, and analogues. ARKIVOC, 2010, 9, 282-292.
[168]
Cruz, A.D.L.; Vega-Acevedo, C.A.; Rivero, I.A.; Chávez, D. Improved method for microwave-assisted synthesis of benzodiazepine-2,5-diones from isatoic anhydrides mediated by glacial acetic acid. J. Braz. Chem. Soc., 2018, 29, 1607-1611.
[169]
Thomas, A.W. A concise route to triazolobenzodiazepine derivatives via a one-pot alkyne-azide cycloaddition reaction. Bioorg. Med. Chem. Lett., 2002, 12(14), 1881-1884. [http://dx.doi.org/10.1016/S0960-894X(02)00262-7]. [PMID: 12086839].
[170]
Hradil, P.; Grepl, M.; Hlavác, J.; Soural, M.; Maloň, M.; Bertolasi, V. Some new routes for the preparation of 3-amino-2-phenyl-4(1H)-quinolinones from anthranilamides. J. Org. Chem., 2006, 71(2), 819-822. [http://dx.doi.org/10.1021/jo051303k]. [PMID: 16409002].
[171]
D’Souza, A.M.; Spiccia, N.; Basutto, J.; Jokisz, P.; Wong, L.S.; Meyer, A.G.; Holmes, A.B.; White, J.M.; Ryan, J.H. 1,3-Dipolar cycloaddition-decarboxylation reactions of an azomethine ylide with isatoic anhydrides: formation of novel benzodiazepinones. Org. Lett., 2011, 13(3), 486-489. [http://dx.doi.org/10.1021/ol102824k]. [PMID: 21175141].
[172]
Sun, H.H.; Barrow, C.J.; Cooper, R. Benzomalvin D, a new 1,4-benzodiazepine atropisomer. J. Nat. Prod., 1995, 58, 1575-1580. [http://dx.doi.org/10.1021/np50124a015].
[173]
Taher, D.; Ishtaiwi, Z.N.; Al-Said, N.H. Efficient protocol to quinazolino[3,2-d][1,4]benzodiazepine-6,9-dione via Staudinger-aza-Wittig cyclization: application to synthesis of Asperlicin D. ARKIVOC, 2008, 16, 154-164.
[174]
Guggenheim, K.G.; Toru, H.; Kurth, M.J. One-pot, two-step cascade synthesis of quinazolinotriazolobenzodiazepines. Org. Lett., 2012, 14(14), 3732-3735. [http://dx.doi.org/10.1021/ol301592z]. [PMID: 22746550].
[175]
Ibrahim, S.M.; Baraka, M.M.; El-Sabbagh, O.I.; Kothayer, H. Synthesis of new benzotriazepin-5(2H)-one derivatives of expected antipsychotic activity. Med. Chem. Res., 2013, 22, 1488-1496. [http://dx.doi.org/10.1007/s00044-012-0102-2].
[176]
Taher, A.T.; Mohammed, L.W. Synthesis of new 1,3,4-benzotriazepin-5-one derivatives and their biological evaluation as antitumor agents. Arch. Pharm. Res., 2013, 36(6), 684-693. [http://dx.doi.org/10.1007/s12272-013-0081-y]. [PMID: 23504247].
[177]
Peet, N.P.; Sunder, S. Synthesis of 3,4-dihydro-1H-1,3,4-benzotriazepine-2,5-diones. J. Org. Chem., 1975, 40, 1909-1914. [http://dx.doi.org/10.1021/jo00901a008].
[178]
Hromatka, O.; Krenmüller, F.; Knollmüller, M. Über die Synthese von 1,3,4-Benzotriazepin-2,5-dionen. Monatsh. Chem., 1969, 100, 934-940.
[179]
Sunder, S.; Peet, N.P.; Trepanier, D.L. Synthesis of 3,4-dihydro-5H-1,3,4-benzotriazepin-5-ones. J. Org. Chem., 1976, 41, 2732-2733. [http://dx.doi.org/10.1021/jo00878a017].