Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Denitrative Coupling Reaction: A Powerful Synthetic Tool in Functional Transformation

Author(s): Xiao-hua Cai*, Hongyan Zhang and Hui Guo*

Volume 23, Issue 10, 2019

Page: [1131 - 1150] Pages: 20

DOI: 10.2174/1385272823666190627114857

Price: $65

Abstract

Nitro hydrocarbons as inexpensive, easily available, and relatively stable organic intermediates have aroused great attention in various functional group transformations over the past several decades. The electron-withdrawing action of the nitro group can act as a transient leaving group to efficiently transform into the other important functionalities. Nitro compounds are easily prepared through simple synthetic reactions from simple and facile starting substrates and provide an exciting opportunity for the synthesis of various valuable products. This account will review recent progress in the denitrative coupling reaction of nitroalkanes, nitroolefins, and nitroarenes under transition metalcatalyzed, transition metal-free, or visible light induced conditions.

Keywords: Nitro hydrocarbon, nitroolefin, nitroarene, denitrative coupling, functional transformation, nitroalkanes.

Graphical Abstract

[1]
Sagar A, Vidyacharan S, Sharada DSI. l2-promoted cross-dehydrogenative coupling of α-carbonyl aldehydes with alcohols for the synthesis of α-ketoesters. RSC Advances 2014; 4: 37047-50. [http://dx.doi.org/10.1039/C4RA06028H].
[2]
Liu C, Liu D, Lei AW. Recent advance of transition-metal catalyzed radical oxidative cross-coup. Acc Chem Res 2014; 47(12): 3459-70.
[3]
Barrett AGM, Graboski GG. Conjugated nitroalkenes: versatile intermediates in organic synthesis. Chem Rev 1986; 86: 751-62. [http://dx.doi.org/10.1021/cr00075a002].
[4]
Barrett AGM. Heterosubstituted nitroalkenes in synthesis. Chem Soc Rev 1991; 20: 95-127. [http://dx.doi.org/10.1039/cs9912000095].
[5]
Fioravanti S, Pellacani L, Tardella PA, Vergari MC. Facile and highly stereoselective one-pot synthesis of either (E)- or (Z)-nitro alkenes. Org Lett 2008; 10(7): 1449-51. [http://dx.doi.org/10.1021/ol800224k]. [PMID: 18302403].
[6]
Liu C, Liu D, Lei A. Recent advances of transition-metal catalyzed radical oxidative cross-couplings. Acc Chem Res 2014; 47(12): 3459-70. [http://dx.doi.org/10.1021/ar5002044]. [PMID: 25364854].
[7]
Yan G, Yang M. Recent advances in the synthesis of aromatic nitro compounds. Org Biomol Chem 2013; 11(16): 2554-66. [http://dx.doi.org/10.1039/c3ob27354g]. [PMID: 23443836].
[8]
Mąkosza M. Reactions of nucleophiles with nitroarenes: multifacial and versatile electrophiles. Chemistry 2014; 20(19): 5536-45. [http://dx.doi.org/10.1002/chem.201400097]. [PMID: 24687770].
[9]
Phillips AMF. Recent advances on the organocatalytic asymmetric Aza-Henry reaction. Curr Org Catal 2016; 3: 222-42.
[10]
Ono N. The Nitro Group in Organic Synthesis. Wiley & Sons: New York 2001. [http://dx.doi.org/10.1002/0471224480]
[11]
Mondal M, Bharadwaj SK, Bora U. O-Arylation with nitroarenes: metal-catalyzed and metal-free methodologies. New J Chem 2015; 39: 31-7. [http://dx.doi.org/10.1039/C4NJ01293C].
[12]
Manna S, Jana S, Saboo T, Maji A, Maiti D. Synthesis of (E)-nitroolefins via decarboxylative nitration using t-butylnitrite (t-BuONO) and TEMPO. Chem Commun (Camb) 2013; 49(46): 5286-8. [http://dx.doi.org/10.1039/c3cc41576g]. [PMID: 23636417].
[13]
Zarei M, Noroozizadeh E, Moosavi-Zare AR, Zolfigol MA. Synthesis of nitroolefins and nitroarenes under mild conditions. J Org Chem 2018; 83(7): 3645-50. [http://dx.doi.org/10.1021/acs.joc.7b03289]. [PMID: 29504403].
[14]
Wang XW, Cui HF, Wang HF. Yang, Y.Q.; Zhao, G.; Zhu, S.Z. A novel method for the synthesis of 3-fluoro-4-aryl-2-pyridone via unprecedented denitration. Tetrahedron 2011; 67: 2468-73. [http://dx.doi.org/10.1016/j.tet.2011.01.047].
[15]
Nakano T, Miyazaki K, Kamimura A. Preparation of 2,3-dihydrofurans via a double allylic substitution reaction of allylic nitro compounds. J Org Chem 2014; 79(17): 8103-9. [http://dx.doi.org/10.1021/jo5013042]. [PMID: 25093914].
[16]
Reddy MK, Mallik S, Ramakrishna I, Baidya M. Nitrosocarbonyl−Henry and denitration cascade: synthesis of α-ketoamides and α-keto oximes. Org Lett 2017; 19(7): 1694-7. [http://dx.doi.org/10.1021/acs.orglett.7b00482]. [PMID: 28286956].
[17]
Zhao K, Shu T, Jia J, Raabe G, Enders D. An organocatalytic Mannich/denitration reaction for the asymmetric synthesis of 3-ethylacetate-substitued 3-amino-2-oxindoles: formal synthesis of AG-041R. Chemistry 2015; 21(10): 3933-6. [http://dx.doi.org/10.1002/chem.201406422]. [PMID: 25630891].
[18]
Elagamy A, Shaw R, Panwar R. Shally.; Ram, V.J.; Pratap, R. Shally, Ram, V.J. and Pratap, R. Synthesis of highly functionalized spirobutenolides via a nitroalkane-mediated ring contraction of 2-oxobenzo[h]chromenes through denitration. J Org Chem 2019; 84(3): 1154-61. [http://dx.doi.org/10.1021/acs.joc.8b02257]. [PMID: 30652867].
[19]
Yan H, Yang SZ, Gao X, et al. Iron (II)-catalyzed denitration reaction: synthesis of 3-methyl-2-arylimidazo[1,2-a]pyridine derivatives from aminopyridines and 2-methylnitroolefins. Synlett 2012; 23: 2961-4. [http://dx.doi.org/10.1055/s-0032-1317685].
[20]
Yan H, Wang YL, Pan CM, Zhang H, Yang SZ, Ren XY. Li, J. and Huang, G.S. Iron(III)-catalyzed denitration reaction: one-pot three-component synthesis of imidazo[1,2-a]pyridine derivatives. Eur J Org Chem 2014; 2754-63. [http://dx.doi.org/10.1002/ejoc.201301658].
[21]
Zhang N, Quan Z-J, Wang X-C. Nickel-catalyzed denitrated coupling reaction of nitroalkenes with aliphatic and aromatic alkenes. Adv Synth Catal 2016; 358: 3179-83. [http://dx.doi.org/10.1002/adsc.201600586].
[22]
Keshari T, Kapoorr R, Yadav LDS. Silver-catalyzed denitrative sulfonylation of β-nitrostyrenes: A convenient approach to (E)-vinyl sulfones. Eur J Org Chem 2016; 2695-9. [http://dx.doi.org/10.1002/ejoc.201600237].
[23]
Ma JJ, Yi WB, Lu GP, Cai C. Decarboxylative and denitrative trifluoromethylation for the synthesis of Cvinyl-CF3 compounds with Togni (II) reagent. Adv Synth Catal 2015; 357: 3447-52. [http://dx.doi.org/10.1002/adsc.201500631].
[24]
Huang P, Li YM, Fu XM, et al. Silver(I)-catalyzed denitrative trifluoromethylation of β-nitrostyrenes with CF3SO2Na. Tetrahedron Lett 2016; 57: 4705-8. [http://dx.doi.org/10.1016/j.tetlet.2016.09.016].
[25]
Xue J-F, Zhou S-F, Liu Y-Y, Pan X, Zou J-P, Asekun OT. Manganese(III)-mediated alkenyl Csp2-P bond formation from the reaction of β-nitrostyrenes with dialkyl phosphites. Org Biomol Chem 2015; 13(17): 4896-902. [http://dx.doi.org/10.1039/C5OB00404G]. [PMID: 25812140].
[26]
Yuan J-W, Yang L-R, Mao P, Qu L-B. Silver-catalyzed synthesis of 2-arylvinylphosphonates by cross-coupling of β-nitrostyrenes with H-phosphites. RSC Advances 2016; 6: 87058-65. [http://dx.doi.org/10.1039/C6RA19002B].
[27]
Tang L, Wen LX, Sun T, et al. Solvent-controlled copper-catalyzed radical decarboxylative coupling for alkenyl Csp2-P bond formation. Asian J Org Chem 2017; 6: 1683-92. [http://dx.doi.org/10.1002/ajoc.201700434].
[28]
Sagar A, Babu VN. Dey, A.; Sharada, D.S. I2-promoted denitration strategy: one-pot three component synthesis of pyrrole-fused benzoxazines. Tetrahedron Lett 2015; 56: 2710-3. [http://dx.doi.org/10.1016/j.tetlet.2015.04.011].
[29]
Bakthadoss M, Sivakumar N, Devaraj A, Kumar PV. Synthesis of highly diversified 1,2,3-triazole derivatives via domino [3+2] azide cycloaddition and denitration reaction sequence. RSC Advances 2015; 5: 93447-51. [http://dx.doi.org/10.1039/C5RA14195H].
[30]
Lei C, Gao ZH, Shao XS, Xu XY, Li Z. Synthesis of trisubstituted isoxazoles from nitroenamines and aromatic aldehydes. Chin J Chem 2017; 35: 1517-21. [http://dx.doi.org/10.1002/cjoc.201700170].
[31]
Yadav AK, Singh KN. Metal-free denitrative arylation of β-nitrostyrenes using benzoyl peroxide: an easy access to trans-stilbenes. New J Chem 2017; 41: 14914-7. [http://dx.doi.org/10.1039/C7NJ02997G].
[32]
Kumar S, Singh R, Singh KN. AIBN-Initiated denitrative cross-coupling reactions of β-nitrostyrenes with sulfonyl hydrazides/disulfides: a metal-free approach towards vinyl sulfones. Asian J Org Chem 2018; 7: 359-62. [http://dx.doi.org/10.1002/ajoc.201700632].
[33]
Aegurla B, Peddinti RK. Metal-free sulfonylation of α,β-conjugated systems by using sulfonyl hydrazides. Asian J Org Chem 2018; 7: 946-54. [http://dx.doi.org/10.1002/ajoc.201700696].
[34]
Kielmann M, Flanagan KJ, Norvaiša K, Intrieri D, Senge MO. Synthesis of a family of highly substituted porphyrin thioethers via nitro displacement in 2,3,7,8,12,13,17,18- octaethyl-5,10,15,20-tetranitroporphyrin. J Org Chem 2017; 82(10): 5122-34. [http://dx.doi.org/10.1021/acs.joc.7b00328]. [PMID: 28452490].
[35]
Devi ES, Alanthadka A, Nagarajan S, Sridharan V, Maheswari CU. Metal-free, base catalyzed oxidative amination and denitration reaction: Regioselective synthesis of 3-arylimidazo[1,2-a]pyridines. Tetrahedron Lett 2018; 59: 3485-9. [http://dx.doi.org/10.1016/j.tetlet.2018.08.024].
[36]
Reddy RJ, Waheed M, Karthik T, Shankar A. Efficient synthesis of 4,5-disubstituted-2H-1,2,3-triazoles from nitroallylic derivatives via cycloaddition-denitration process. New J Chem 2018; 42: 980-7. [http://dx.doi.org/10.1039/C7NJ03292G].
[37]
Hong GF, Yuan JW, Dong ZH, Xiao YM, Mao P, Qu LB. Metal-free synthesis of (E)-vinyl sulfones via denitrative coupling reactions of β-nitrostyrenes with sodium sulfinates. Phosphorus Sulfur Silicon Relat Elem 2018; 193: 771-9. [http://dx.doi.org/10.1080/10426507.2018.1513518].
[38]
Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Dual catalysis. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 2014; 345(6195): 437-40. [http://dx.doi.org/10.1126/science.1255525]. [PMID: 24903563].
[39]
Davies J, Booth SG, Essafi S, Dryfe RAW, Leonori D. Visible-light-mediated generation of nitrogen-centered radicals: metal-free hydroimination and iminohydroxylation cyclization reactions. Angew Chem Int Ed Engl 2015; 54(47): 14017-21. [http://dx.doi.org/10.1002/anie.201507641]. [PMID: 26412046].
[40]
Prier CK, Rankic DA, MacMillan DWC. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 2013; 113(7): 5322-63. [http://dx.doi.org/10.1021/cr300503r]. [PMID: 23509883].
[41]
Chen J, Cen J, Xu XL, Li XN. The application of heterogeneous visible light photocatalysts in organic synthesis. Catal Sci Technol 2016; 6: 349-62. [http://dx.doi.org/10.1039/C5CY01289A].
[42]
Zhang N, Quan ZJ, Zhang Z, Da YX, Wang XC. Synthesis of stilbene derivatives via visible-light-induced cross-coupling of aryl diazonium salts with nitroalkenes using -NO2 as a leaving group. Chem Commun (Camb) 2016; 52(99): 14234-7. [http://dx.doi.org/10.1039/C6CC08182G]. [PMID: 27872921].
[43]
Tripathi S, Kapoor R, Yadav LDS. Visible light activated radical denitrative benzoylation of β-Nitrostyrenes: A photocatalytic approach to chalcones. Adv Synth Catal 2018; 360: 1407-13. [http://dx.doi.org/10.1002/adsc.201701559].
[44]
Tripathi S, Yadav LDS. Visible-light-enabled denitrative carboxylation of β-nitrostyrenes: a direct photocatalytic approach to cinnamic acids. New J Chem 2018; 42: 3765-9. [http://dx.doi.org/10.1039/C7NJ04578F].
[45]
Wang HL, Yu AJ, Cao AJ, Chang JB, Wu YJ. First palladium-catalyzed denitrated coupling reaction of nitroarenes with phenols. Appl Organomet Chem 2013; 27: 611-4. [http://dx.doi.org/10.1002/aoc.3043].
[46]
Maity T, Saha D, Bhunia S, Brandão P, Dasa S, Koner S. A family of ligand and anion dependent structurally diverse Cu(II) Schiff-base complexes and their catalytic efficacy in O–arylation reaction in ethanolic medium. RSC Advances 2015; 5: 82179-91. [http://dx.doi.org/10.1039/C5RA14758A].
[47]
Xu XL, Feng THJB, Xu HJ. Nano-CuI catalyzed cross-coupling reaction of phenols with nitroarenes. Youji Huaxue 2016; 36: 1021-7. [http://dx.doi.org/10.6023/cjoc201603011].
[48]
Begum T, Mondal M, Borpuzari MP, Kar R, Gogoi PK, Bora U. Palladium-on-carbon-catalyzed coupling of nitroarenes with phenol: biaryl ether synthesis and evidence of an oxidative- addition-promoted mechanism. Eur J Org Chem 2017; 3244-8. [http://dx.doi.org/10.1002/ejoc.201700639].
[49]
Zamiran F, Ghaderi A. Nickel-catalyzed denitrative etherification of activated nitrobenzenes. J Iran Chem Soc 2019; 16: 293-9. [http://dx.doi.org/10.1007/s13738-018-1510-0].
[50]
Zheng X, Ding J, Chen J, Gao W, Liu M, Wu H. The coupling of arylboronic acids with nitroarenes catalyzed by rhodium. Org Lett 2011; 13(7): 1726-9. [http://dx.doi.org/10.1021/ol200251x]. [PMID: 21375321].
[51]
Zhang JL, Chen JX, Liu MC, Zheng XW, Ding JC, Wu HY. Ligand-free copper-catalyzed coupling of nitroarenes with arylboronic acids. Green Chem 2012; 14: 912-6. [http://dx.doi.org/10.1039/c2gc16539b].
[52]
Peng DP, Yu AJ, Wang HL, Wu YJ, Chang JBA. 2,2′-bipyridine-palladacycle catalyzed the coupling of arylboronic acids with nitroarenes. Tetrahedron 2013; 69: 6884-9. [http://dx.doi.org/10.1016/j.tet.2013.05.112].
[53]
Bahekar SS, Sarkate AP, Wadhai VM, Wakte PS, Shinde DB. CuI catalyzed C-S bond formation by using nitroarenes. Catal Commun 2013; 41: 123-5. [http://dx.doi.org/10.1016/j.catcom.2013.07.019].
[54]
Rostami A, Rostami A, Ghaderi A. Copper-catalyzed thioetherification reaction of alkyl halides, triphenyltin chloride and arylboronic acids with nitroarenes in the presence of sulfur sources. J Org Chem 2015; 80(17): 8694-704. [http://dx.doi.org/10.1021/acs.joc.5b01248]. [PMID: 26272238].
[55]
Moghaddama FM, Pourkaveh R. Nano cobalt ferrite catalyzed coupling reaction of nitroarene and alkyl halide: an odorless and ligand-free route to unsymmetrical thioether synthesis. Catal Commun 2017; 94: 33-7. [http://dx.doi.org/10.1016/j.catcom.2017.02.009].
[56]
Tian H, Cao AJ, Qiao LJYuJ, Chang JB, Wu YJ. First palladium-catalyzed denitrated coupling of nitroarenes with sulfinates. Tetrahedron 2014; 70: 9107-12. [http://dx.doi.org/10.1016/j.tet.2014.09.087].
[57]
Yadav MR, Nagaoka M, Kashihara M, et al. The Suzuki−Miyaura coupling of nitroarenes. J Am Chem Soc 2017; 139(28): 9423-6. [http://dx.doi.org/10.1021/jacs.7b03159]. [PMID: 28678486].
[58]
Kashihara M, Yadav MR, Nakao Y. Reductive denitration of nitroarenes. Org Lett 2018; 20(6): 1655-8. [http://dx.doi.org/10.1021/acs.orglett.8b00430]. [PMID: 29488770].
[59]
Inoue F, Kashihara M, Yadav MR, Nakao Y. Buchwald–Hartwig amination of nitroarenes. Angew Chem Int Ed Engl 2017; 56(43): 13307-9. [http://dx.doi.org/10.1002/anie.201706982]. [PMID: 28857476].
[60]
Yu XC, Li B, Yu BH, Xu Q. Efficient synthesis of unsymmetrical diaryl thioethers via TBAF-mediated denitrative substitution of nitroarenes with PhSTMS under mild and neutral conditions. Chin Chem Lett 2013; 24: 605-8. [http://dx.doi.org/10.1016/j.cclet.2013.04.011].
[61]
Nguyen TB, Retailleau P. DIPEA-promoted reaction of 2-nitrochalcones with elemental sulfur: an unusual approach to 2-benzoylbenzothiophenes. Org Lett 2017; 19(18): 4858-60. [http://dx.doi.org/10.1021/acs.orglett.7b02321]. [PMID: 28840729].
[62]
Moore TM, Akula MR, Collier L, Kabalka GW. A rapid microfluidic synthesis of [18F]fluoroarenes from nitroarenes. Appl Radiat Isot 2013; 71(1): 47-50. [http://dx.doi.org/10.1016/j.apradiso.2012.09.013]. [PMID: 23085551].
[63]
Kuduk SD, DiPardo RM, Bock MG. Tetrabutylammonium salt induced denitration of nitropyridines: Synthesis of fluoro-, hydroxy-, and methoxypyridines. Org Lett 2005; 7(4): 577-9. [http://dx.doi.org/10.1021/ol047688v]. [PMID: 15704898].
[64]
Sarkate AP, Bahekar SS, Wadhai VM, Ghandge GN, Wakte PS, Shinde DB. Microwave-assisted synthesis of nonsymmetrical aryl ethers using nitroarenes synthesis of nonsymmetrical aryl ethers. Synlett 2013; 24: 1513-6. [http://dx.doi.org/10.1055/s-0033-1338869].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy