Abstract
Nitrogen-containing heterocycles (NCH), constitute an important group of molecules, which are widely extended in whole chemical space. These compounds are of great interest due to their diverse biological activities. Currently, many compounds derived from NCH are used as powerful drugs for the treatment of diseases ranging from bactericides to anticancer agents. During last decade, the enantioselective synthesis of numerous heterocyclic compounds has been achieved through the use of chiral organocatalysts. The present contribution explores the application of the aminocatalysis towards the synthesis of NCH, particularly through the trienamine catalysis.
Keywords: Nitrogen-containing heterocycles, organocatalysis, aminocatalysis, trienamine catalysis, activation mode, cycloaddition reactions.
Graphical Abstract
[http://dx.doi.org/10.5530/srp.2018.1.5]
(b) Banwell, M.G. New process for the synthesis of biologically relevant heterocycles. Pure Appl. Chem., 2008, 80, 669-679. [http://dx.doi.org/10.1351/pac200880040669].
[http://dx.doi.org/10.1021/jo00925a003]
(b) List, B.; Lerner, R.A.; Barbas, C.F., III Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc., 2000, 122, 2395-2396. [http://dx.doi.org/10.1021/ja994280y].
(b) Klier, L.; Tur, F.; Poulsen, P.H.; Jørgensen, K.A. Asymmetric cycloaddition reactions catalysed by diarylprolinol silyl ethers. Chem. Soc. Rev., 2017, 46(4), 1080-1102. [http://dx.doi.org/10.1039/C6CS00713A]. [PMID: 27883141].
(b) Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels–Alder reaction. J. Am. Chem. Soc., 2000, 122, 4243-4244.
[http://dx.doi.org/10.1021/ja000092s]
(c) Northrup, A.B.; MacMillan, D.W.C. The first general enantioselective catalytic Diels-Alder reaction with simple α,β-unsaturated ketones. J. Am. Chem. Soc., 2002, 124(11), 2458-2460. [http://dx.doi.org/10.1021/ja017641u]. [PMID: 11890793]
(d) Brown, S.P.; Goodwin, N.C.; MacMillan, D.W.C. The first enantioselective organocatalytic Mukaiyama-Michael reaction: A direct method for the synthesis of enantioenriched γ-butenolide architecture. J. Am. Chem. Soc., 2003, 125(5), 1192-1194. [http://dx.doi.org/10.1021/ja029095q]. [PMID: 12553821].
(b) Liu, Y.; Kang, T-R.; Liu, Q-Z.; Chen, L-M.; Wang, Y-C.; Liu, J.; Xie, Y-M.; Yang, J-L.; He, L. Enantioselective [4 + 2] cycloaddition of cyclic N-sulfimines and acyclic enones or ynones: A concise route to sulfamidate-fused 2,6-disubstituted piperidin-4-ones. Org. Lett., 2013, 15(23), 6090-6093. [http://dx.doi.org/10.1021/ol402977w]. [PMID: 24215326]
(c) Su, Z.; Lee, H.W.; Kim, C.K. Asymmetric 1,4-Michael addition reaction catalyzed by a cinchona alkaloid derived primary amine: a theoretical investigation of the reaction mechanism and enantioselectivity. Eur. J. Org. Chem., 2013, 2013, 1706-1715. [http://dx.doi.org/10.1002/ejoc.201201152].
(b) Erkkilä, A.; Majander, I.; Pihko, P.M. Iminium catalysis. Chem. Rev., 2007, 107(12), 5416-5470. [http://dx.doi.org/10.1021/cr068388p]. [PMID: 18072802].
(b) Notz, W.; Tanaka, F.; Barbas, C.F., III Enamine-based organocatalysis with proline and diamines: The development of direcatalytic asymmetric Aldol, Mannich, Michael, and Diels–Alder reactions. Acc. Chem. Res., 2004, 37(8), 580-591. [http://dx.doi.org/10.1021/ar0300468]. [PMID: 15311957]
(c) List, B. Enamine catalysis is a powerful strategy for the catalytic generation and use of carbanion equivalents. Acc. Chem. Res., 2004, 37(8), 548-557. [http://dx.doi.org/10.1021/ar0300571]. [PMID: 15311954]
(d) Mukherjee, S.; Yang, J.W.; Hoffmann, S.; List, B. Asymmetric enamine catalysis. Chem. Rev., 2007, 107(12), 5471-5569. [http://dx.doi.org/10.1021/cr0684016]. [PMID: 18072803].
[http://dx.doi.org/10.1002/ejoc.201101157]
(b) Marcos, V.; Alemán, J. Old tricks, new dogs: organocatalytic dienamine activation of α,β-unsaturated aldehydes. Chem. Soc. Rev., 2016, 45(24), 6812-6832. [http://dx.doi.org/10.1039/C6CS00438E]. [PMID: 27805198].
(b) Reboredo, S.; Parra, A.; Alemán, J. Trienamines: their key role in extended organocatalysis for Diels-Alder reactions. Asymmetric Catal., 2013, 1, 24-31. [http://dx.doi.org/10.2478/asorg-2013-0001].
[http://dx.doi.org/10.1039/c4sc00081a]
(b) Zhou, Q-Q.; Xiao, Y-C.; Yuan, X.; Chen, Y-C. Asymmetric Diels-Alder reactions of 2,4,6-trienals via tetraenamine catalysis. Asian J. Org. Chem., 2014, 3, 545-549. http://dx.doi.org/ [http://dx.doi.org/10.1002/ajoc.201400015].
(b) Hepburn, H.B.; Dell’Amico, L.; Melchiorre, P. Enantioselective vynylogous organocascade reactions. Chem. Rec., 2016, 16(4), 1787-1806. [http://dx.doi.org/10.1002/tcr.201600030]. [PMID: 27256039].
(b) Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem., 2011, 54(17), 5955-5980. [http://dx.doi.org/10.1021/jm200587f]. [PMID: 21780776].
(b) El-Sharief, A.M.S.; Ammar, Y.A.; Belal, A.; El-Sharief, M.A.M.S.; Mohamed, Y.A.; Mehany, A.B.M.; Elhag Ali, G.A.M.; Ragab, A. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg. Chem., 2019, 85, 399-412. [http://dx.doi.org/10.1016/j.bioorg.2019.01.016]. [PMID: 30665034]
(c) Saraswat, P.; Jeyabalan, G.; Hassan, M.Z.; Rahman, M.; Nyola, N. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synth. Commun., 2016, 46, 1643-1664.
[http://dx.doi.org/10.1080/00397911.2016.1211704]
(d) Yin, L.; Hu, Q.; Emmerich, J.; Lo, M.M.; Metzger, E.; Ali, A.; Hartmann, R.W. Novel pyridyl- or isoquinolinyl-substituted indolines and indoles as potent and selective aldosterone synthase inhibitors. J. Med. Chem., 2014, 57(12), 5179-5189. [http://dx.doi.org/10.1021/jm500140c]. [PMID: 24899257]
(e) Peddibhotla, S. 3-Substituted-3-hydroxy-2-oxindole, an emerging new scaffold for drug discovery with potential anti-cancer and other biological activities. Curr. Bioact. Compd., 2009, 5, 20-38.
[http://dx.doi.org/10.2174/157340709787580900]
(f) Eleftheriadis, N.; Neochoritis, C.G.; Leus, N.G. van der, Wouden P.E.; Domling, A.; Dekker, F.J. Rational development of a potent 15-lipoxygenase-1 inhibitor with in vitro and ex vivo anti-inflammatory properties. J. Med. Chem., 2015, 58(19), 7850-7862. [http://dx.doi.org/10.1021/acs.jmedchem.5b01121]. [PMID: 26331552].
(b) Albrecht, Ł.; Gómez, C.V.; Jacobsen, C.B.; Jørgensen, K.A. 1,4-Naphthoquinones in H-bond-directed trienamine-mediated strategies. Org. Lett., 2013, 15(12), 3010-3013. [http://dx.doi.org/10.1021/ol401204a]. [PMID: 23730740]
(c) Johansen, T.K.; Gómez, C.V.; Bak, J.R.; Davis, R.L.; Jørgensen, K.A. Organocatalytic enantioselective cycloaddition reactions of dienamines with quinones. Chemistry, 2013, 19(49), 16518-16522. [http://dx.doi.org/10.1002/chem.201303526]. [PMID: 24281799].
(b) Varchi, G.; Battaglia, A.; Samorì, C.; Baldelli, E.; Danieli, B.; Fontana, G.; Guerrini, A.; Bombardelli, E. Synthesis of deserpidine from reserpine. J. Nat. Prod., 2005, 68(11), 1629-1631. [http://dx.doi.org/10.1021/np050179x]. [PMID: 16309312]
(c) Herlé, B.; Wanner, M.J.; van Maarseveen, J.H.; Hiemstra, H. Total synthesis of (+)-yohimbine via an enantioselective organocatalytic Pictet-Spengler reaction. J. Org. Chem., 2011, 76(21), 8907-8912. [http://dx.doi.org/10.1021/jo201657n]. [PMID: 21950549].