Review Article

NIR荧光在MDR癌症治疗中的作用:从靶向成像到光疗

卷 27, 期 33, 2020

页: [5510 - 5529] 页: 20

弟呕挨: 10.2174/0929867326666190627123719

价格: $65

摘要

背景:多药耐药性(MDR)被定义为癌细胞对各种化学疗法的交叉耐药性,并已证明与药物外排泵相关。药物外排泵的可视化对于预选可能对化疗不敏感的患者很有用,从而防止患者不必要的治疗。由于近红外(NIR)成像具有低的组织自发荧光和深层的组织穿透性,因此它是监视MDR的一种有吸引力的方法。 MDR癌症的分子NIR成像需要具有高特异性和亲和力的稳定靶向生物标志物的探针。 目的:本文旨在简要概述新型NIR探针及其在MDR癌症治疗中的应用。 结果:近来,已进行了广泛的研究以开发新型的NIR探针,几种策略显示出巨大的希望。这些策略包括NIR染料与靶向MDR相关的生物标记物的配体之间的化学共轭,具有固有靶向能力的天然NIR染料,可活化的NIR探针以及装有NIR染料的纳米粒子。此外,NIR探针已广泛用于癌症治疗中的光热和光动力疗法,与其他方式相结合以克服MDR。随着纳米技术的迅速发展,各种纳米颗粒都与NIR染料结合在一起,为控制药物输送和抗MDR的联合疗法提供了多功能平台。将讨论针对NDR成像和光疗的MDR癌症探针的构建。集成了MDR监测和联合疗法的多峰纳米级平台也将包括在内。 结论:我们相信这些NIR探针为MDR癌症的诊断和治疗提供了一种有前途的方法,因此具有在癌症治疗中达到临床应用的巨大潜力。

关键词: 分子成像,近红外染料,多药耐药性,P-糖蛋白,探针,光疗。

[1]
Larsen, A.K.; Escargueil, A.E.; Skladanowski, A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther., 2000, 85(3), 217-229.
[http://dx.doi.org/10.1016/S0163-7258(99)00073-X] [PMID: 10739876]
[2]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[3]
Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. A review of NIR dyes in cancer targeting and imaging. Biomaterials, 2011, 32(29), 7127-7138.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.024] [PMID: 21724249]
[4]
Zhang, R.R.; Schroeder, A.B.; Grudzinski, J.J.; Rosenthal, E.L.; Warram, J.M.; Pinchuk, A.N.; Eliceiri, K.W.; Kuo, J.S.; Weichert, J.P. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol., 2017, 14(6), 347-364.
[http://dx.doi.org/10.1038/nrclinonc.2016.212] [PMID: 28094261]
[5]
Haque, A.; Faizi, M.S.H.; Rather, J.A.; Khan, M.S. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg. Med. Chem., 2017, 25(7), 2017-2034.
[http://dx.doi.org/10.1016/j.bmc.2017.02.061] [PMID: 28284863]
[6]
Kennedy, G.T.; Newton, A.; Predina, J.; Singhal, S. Intraoperative near-infrared imaging of mesothelioma. Transl. Lung Cancer Res., 2017, 6(3), 279-284.
[http://dx.doi.org/10.21037/tlcr.2017.05.01] [PMID: 28713673]
[7]
Yi, X.; Wang, F.; Qin, W.; Yang, X.; Yuan, J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int. J. Nanomedicine, 2014, 9, 1347-1365.
[http://dx.doi.org/10.2147/IJN.S60206] [PMID: 24648733]
[8]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[9]
Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transporter-mediat7ed multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat., 2016, 27, 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[10]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[11]
Hodgkinson, N.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol., 2017, 39(10) 1010428317734691
[http://dx.doi.org/10.1177/1010428317734691] [PMID: 28990490]
[12]
Fink, C.; Enk, A.; Gholam, P. Photodynamic therapy-aspects of pain management. J. Dtsch. Dermatol. Ges., 2015, 13(1), 15-22.
[http://dx.doi.org/10.1111/ddg.12546] [PMID: 25640485]
[13]
Choi, Y.M.; Adelzadeh, L.; Wu, J.J. Photodynamic therapy for psoriasis. J. Dermatolog. Treat., 2015, 26(3), 202-207.
[http://dx.doi.org/10.3109/09546634.2014.927816] [PMID: 24881473]
[14]
Prażmo, E.J.; Kwaśny, M.; Łapiński, M.; Mielczarek, A. Photodynamic therapy as a promising method used in the treatment of oral diseases. Adv. Clin. Exp. Med., 2016, 25(4), 799-807.
[http://dx.doi.org/10.17219/acem/32488] [PMID: 27629857]
[15]
Lee, H.H.; Choi, M.G.; Hasan, T. Application of photodynamic therapy in gastrointestinal disorders: an outdated or re-emerging technique? Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2017, 32(1), 1-10.
[http://dx.doi.org/10.3904/kjim.2016.200] [PMID: 28049283]
[16]
Sotiriou, E.; Apalla, Z.; Vrani, F.; Lazaridou, E.; Vakirlis, E.; Lallas, A.; Ioannides, D. Daylight photodynamic therapy vs. Conventional photodynamic therapy as skin cancer preventive treatment in patients with face and scalp cancerization: an intra-individual comparison study. J. Eur. Acad. Dermatol. Venereol., 2017, 31(8), 1303-1307.
[http://dx.doi.org/10.1111/jdv.14177] [PMID: 28222225]
[17]
Li, W.; Peng, J.; Tan, L.; Wu, J.; Shi, K.; Qu, Y.; Wei, X.; Qian, Z. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Biomaterials, 2016, 106, 119-133.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.016] [PMID: 27561883]
[18]
Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun., 2016, 7, 13193.
[http://dx.doi.org/10.1038/ncomms13193] [PMID: 27767031]
[19]
Giddabasappa, A.; Gupta, V.R.; Norberg, R.; Gupta, P.; Spilker, M.E.; Wentland, J.; Rago, B.; Eswaraka, J.; Leal, M.; Sapra, P. Biodistribution and targeting of anti-5T4 antibody-drug conjugate using fluorescence molecular tomography. Mol. Cancer Ther., 2016, 15(10), 2530-2540.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-1012] [PMID: 27466353]
[20]
Ito, K.; Mitsunaga, M.; Nishimura, T.; Kobayashi, H.; Tajiri, H. Combination photoimmunotherapy with monoclonal antibodies recognizing different epitopes of human epidermal growth factor receptor 2: an assessment of phototherapeutic effect based on fluorescence molecular imaging. Oncotarget, 2016, 7(12), 14143-14152.
[http://dx.doi.org/10.18632/oncotarget.7490] [PMID: 26909859]
[21]
Keating, J.J.; Runge, J.J.; Singhal, S.; Nims, S.; Venegas, O.; Durham, A.C.; Swain, G.; Nie, S.; Low, P.S.; Holt, D.E. Intraoperative near-infrared fluorescence imaging targeting folate receptors identifies lung cancer in a large-animal model. Cancer, 2017, 123(6), 1051-1060.
[http://dx.doi.org/10.1002/cncr.30419] [PMID: 28263385]
[22]
Wang, W.; Ma, Z.; Zhu, S.; Wan, H.; Yue, J.; Ma, H.; Ma, R.; Yang, Q.; Wang, Z.; Li, Q.; Qian, Y.; Yue, C.; Wang, Y.; Fan, L.; Zhong, Y.; Zhou, Y.; Gao, H.; Ruan, J.; Hu, Z.; Liang, Y.; Dai, H. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe. Adv. Mater., 2018, 30(22) e1800106
[http://dx.doi.org/10.1002/adma.201800106] [PMID: 29682821]
[23]
Zhou, Y.; Pei, W.; Zhang, X.; Chen, W.; Wu, J.; Yao, C.; Huang, L.; Zhang, H.; Huang, W.; Chye Loo, J.S.; Zhang, Q. A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo. Biomaterials, 2015, 54, 34-43.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.003] [PMID: 25907037]
[24]
Liu, Z.; Chen, N.; Dong, C.; Li, W.; Guo, W.; Wang, H.; Wang, S.; Tan, J.; Tu, Y.; Chang, J. Facile construction of near infrared fluorescence nanoprobe with amphiphilic protein-polymer bioconjugate for targeted cell imaging. ACS Appl. Mater. Interfaces, 2015, 7(34), 18997-19005.
[http://dx.doi.org/10.1021/acsami.5b05406] [PMID: 26262596]
[25]
Wu, C.; Zhang, Y.; Li, Z.; Li, C.; Wang, Q. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale, 2016, 8(25), 12531-12539.
[http://dx.doi.org/10.1039/C6NR00060F] [PMID: 26853187]
[26]
Kim, E.J.; Kumar, R.; Sharma, A.; Yoon, B.; Kim, H.M.; Lee, H.; Hong, K.S.; Kim, J.S. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe. Biomaterials, 2017, 122, 83-90.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.009] [PMID: 28110172]
[27]
Gu, K.; Xu, Y.; Li, H.; Guo, Z.; Zhu, S.; Zhu, S.; Shi, P.; James, T.D.; Tian, H.; Zhu, W.H. Real-time tracking and in vivo visualization of beta-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J. Am. Chem. Soc., 2016, 138(16), 5334-5340.
[http://dx.doi.org/10.1021/jacs.6b01705] [PMID: 27054782]
[28]
Sun, C.; Zhang, H.; Du, W.; Wang, B.; Ji, M. Synthesis of a Novel IR-822-Met near-infrared probe for in vivo tumor diagnosis. Biotechnol. Lett., 2017, 39(4), 491-499.
[http://dx.doi.org/10.1007/s10529-016-2275-0] [PMID: 28050673]
[29]
Tanaka, N.; Lajud, S.A.; Ramsey, A.; Szymanowski, A.R.; Ruffner, R.; O’Malley, B.W., Jr; Li, D. Application of infrared-based molecular imaging to a mouse model with head and neck cancer. Head Neck, 2016, 38(Suppl. 1), E1351-E1357.
[http://dx.doi.org/10.1002/hed.24226] [PMID: 26348614]
[30]
Chen, Y.J.; Wu, S.C.; Chen, C.Y.; Tzou, S.C.; Cheng, T.L.; Huang, Y.F.; Yuan, S.S.; Wang, Y.M. Peptide-based MRI contrast agent and near-infrared fluorescent probe for intratumoral legumain detection. Biomaterials, 2014, 35(1), 304-315.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.100] [PMID: 24120038]
[31]
Wang, M.; Mao, C.; Wang, H.; Ling, X.; Wu, Z.; Li, Z.; Ming, X. Molecular imaging of P-glycoprotein in chemoresistant tumors using a dual-modality PET/fluorescence probe. Mol. Pharm., 2017, 14(10), 3391-3398.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00420] [PMID: 28813596]
[32]
Mao, C.; Zhao, Y.; Li, F.; Li, Z.; Tian, S.; Debinski, W.; Ming, X. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J. Control. Release, 2018, 286, 289-300.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.005] [PMID: 30081143]
[33]
Mao, C.; Qu, P.; Miley, M.J.; Zhao, Y.; Li, Z.; Ming, X. P-glycoprotein targeted photodynamic therapy of chemoresistant tumors using recombinant Fab fragment conjugates. Biomater. Sci., 2018, 6(11), 3063-3074.
[http://dx.doi.org/10.1039/C8BM00844B] [PMID: 30298866]
[34]
Zeiderman, M.R.; Egger, M.E.; Kimbrough, C.W.; England, C.G.; Dupre, T.V.; McMasters, K.M.; McNally, L.R. Targeting of BRAF resistant melanoma via extracellular matrix metalloproteinase inducer receptor. J. Surg. Res., 2014, 190(1), 111-118.
[http://dx.doi.org/10.1016/j.jss.2014.02.021] [PMID: 24655664]
[35]
Zhang, C.; Gao, L.; Cai, Y.; Liu, H.; Gao, D.; Lai, J.; Jia, B.; Wang, F.; Liu, Z. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials, 2016, 84, 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.027] [PMID: 26803407]
[36]
Kushal, S.; Wang, W.; Vaikari, V.P.; Kota, R.; Chen, K.; Yeh, T.S.; Jhaveri, N.; Groshen, S.L.; Olenyuk, B.Z.; Chen, T.C.; Hofman, F.M.; Shih, J.C. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression. Oncotarget, 2016, 7(12), 13842-13853.
[http://dx.doi.org/10.18632/oncotarget.7283] [PMID: 26871599]
[37]
Li, J.; Chen, K.; Liu, H.; Cheng, K.; Yang, M.; Zhang, J.; Cheng, J.D.; Zhang, Y.; Cheng, Z. Activatable near-infra-red fluorescent probe for in vivo imaging of fibroblast activation protein-alpha. Bioconjug. Chem., 2012, 23(8), 1704-1711.
[http://dx.doi.org/10.1021/bc300278r] [PMID: 22812530]
[38]
Luo, Z.; Feng, L.; An, R.; Duan, G.; Yan, R.; Shi, H.; He, J.; Zhou, Z.; Ji, C.; Chen, H.Y.; Ye, D.; Ji, C.; Chen, H.Y.; Ye, D. Activatable near-infrared probe for fluorescence imaging of gamma-glutamyl transpeptidase in tumor cells and in vivo. Chemistry, 2017, 23(59), 14778-14785.
[http://dx.doi.org/10.1002/chem.201702210] [PMID: 28653778]
[39]
Shimizu, Y.; Temma, T.; Hara, I.; Makino, A.; Kondo, N.; Ozeki, E.; Ono, M.; Saji, H. In vivo imaging of membrane type-1 matrix metalloproteinase with a novel activatable near-infrared fluorescence probe. Cancer Sci., 2014, 105(8), 1056-1062.
[http://dx.doi.org/10.1111/cas.12457] [PMID: 24863849]
[40]
Li, L.; Shi, W.; Wu, X.; Li, X.; Ma, H. In vivo tumor imaging by a γ-glutamyl transpeptidase-activatable near-infrared fluorescent probe. Anal. Bioanal. Chem., 2018, 410(26), 6771-6777.
[http://dx.doi.org/10.1007/s00216-018-1181-9] [PMID: 29909457]
[41]
Shibata, K.; Kajiyama, H.; Mizokami, Y.; Ino, K.; Nomura, S.; Mizutani, S.; Terauchi, M.; Kikkawa, F. Placental leucine aminopeptidase (P-LAP) and glucose transporter 4 (GLUT4) expression in benign, borderline and malignant ovarian epithelia. Gynecol. Oncol., 2005, 98(1), 11-18.
[http://dx.doi.org/10.1016/j.ygyno.2005.03.043] [PMID: 15907336]
[42]
Pilar Carrera, M.; Ramírez-Expósito, M.J.; Dueñas, B.; Dolores Mayas, M.; Jesús García, M.; De la Chica, S.; Cortés, P.; Ruíz-Sanjuan, M.; Martínez-Martos, J.M. Insulin-regulated aminopeptidase/placental leucil Aminopeptidase (IRAP/P-lAP) and angiotensin IV-forming activities are modified in serum of rats with breast cancer induced by N-methyl-nitrosourea. Anticancer Res., 2006, 26(2A), 1011-1014.
[PMID: 16619500]
[43]
Fang, C.; Zhang, J.; Yang, H.; Peng, L.; Wang, K.; Wang, Y.; Zhao, X.; Liu, H.; Dou, C.; Shi, L.; Zhao, C.; Liang, S.; Li, D.; Wang, X. Leucine aminopeptidase 3 promotes migration and invasion of breast cancer cells through upregulation of fascin and matrix metalloproteinases-2/9 expression. J. Cell. Biochem., 2019, 120(3), 3611-3620.
[http://dx.doi.org/10.1002/jcb.27638] [PMID: 30417585]
[44]
Gong, Q.; Shi, W.; Li, L.; Ma, H. Leucine aminopeptidase may contribute to the intrinsic resistance of cancer cells toward cisplatin as revealed by an ultrasensitive fluorescent probe. Chem. Sci. (Camb.), 2016, 7(1), 788-792.
[http://dx.doi.org/10.1039/C5SC03600C] [PMID: 28966770]
[45]
Gu, K.; Liu, Y.; Guo, Z.; Lian, C.; Yan, C.; Shi, P.; Tian, H.; Zhu, W.H. In situ ratiometric quantitative tracing of intracellular leucine aminopeptidase activity via an activatable near-infrared fluorescent probe. ACS Appl. Mater. Interfaces, 2016, 8(40), 26622-26629.
[http://dx.doi.org/10.1021/acsami.6b10238] [PMID: 27667645]
[46]
Zhang, W.; Liu, F.; Zhang, C.; Luo, J.G.; Luo, J.; Yu, W.; Kong, L. Near-infrared fluorescent probe with remarkable large stokes shift and favorable water solubility for real-time tracking leucine aminopeptidase in living cells and in vivo. Anal. Chem., 2017, 89(22), 12319-12326.
[http://dx.doi.org/10.1021/acs.analchem.7b03332] [PMID: 29048879]
[47]
Zhou, Z.; Wang, F.; Yang, G.; Lu, C.; Nie, J.; Chen, Z.; Ren, J.; Sun, Q.; Zhao, C.; Zhu, W.H. A ratiometric fluorescent probe for monitoring leucine aminopeptidase in living cells and zebrafish model. Anal. Chem., 2017, 89(21), 11576-11582.
[http://dx.doi.org/10.1021/acs.analchem.7b02910] [PMID: 28992691]
[48]
Huang, S.; Wu, Y.; Zeng, F.; Chen, J.; Wu, S. A turn-on fluorescence probe based on aggregation-induced emission for leucine aminopeptidase in living cells and tumor tissue. Anal. Chim. Acta, 2018, 1031, 169-177.
[http://dx.doi.org/10.1016/j.aca.2018.05.032] [PMID: 30119736]
[49]
He, X.; Li, L.; Fang, Y.; Shi, W.; Li, X.; Ma, H. In vivo imaging of leucine aminopeptidase activity in drug-induced liver injury and liver cancer via a near-infrared fluorescent probe. Chem. Sci. (Camb.), 2017, 8(5), 3479-3483.
[http://dx.doi.org/10.1039/C6SC05712H] [PMID: 28507720]
[50]
Hettiarachchi, S.U.; Prasai, B.; McCarley, R.L. Detection and cellular imaging of human cancer enzyme using a turn-on, wavelength-shiftable, self-immolative profluorophore. J. Am. Chem. Soc., 2014, 136(21), 7575-7578.
[http://dx.doi.org/10.1021/ja5030707] [PMID: 24813575]
[51]
Calatrava-Pérez, E.; Bright, S.A.; Achermann, S.; Moylan, C.; Senge, M.O.; Veale, E.B.; Williams, D.C.; Gunnlaugsson, T.; Scanlan, E.M. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated ‘pro-probes’. Chem. Commun. (Camb.), 2016, 52(89), 13086-13089.
[http://dx.doi.org/10.1039/C6CC06451E] [PMID: 27722254]
[52]
Kruspe, S.; Dickey, D.D.; Urak, K.T.; Blanco, G.N.; Miller, M.J.; Clark, K.C.; Burghardt, E.; Gutierrez, W.R.; Phadke, S.D.; Kamboj, S.; Ginader, T.; Smith, B.J.; Grimm, S.K.; Schappet, J.; Ozer, H.; Thomas, A.; McNamara, J.O., II; Chan, C.H.; Giangrande, P.H. Rapid and sensitive detection of breast cancer cells in patient blood with nuclease-activated probe technology. Mol. Ther. Nucleic Acids, 2017, 8, 542-557.
[http://dx.doi.org/10.1016/j.omtn.2017.08.004] [PMID: 28918054]
[53]
Kobayashi, H.; Choyke, P.L. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc. Chem. Res., 2011, 44(2), 83-90.
[http://dx.doi.org/10.1021/ar1000633] [PMID: 21062101]
[54]
Portnoy, E.; Gurina, M.; Magdassi, S.; Eyal, S. Evaluation of the near infrared compound indocyanine green as a probe substrate of p-glycoprotein. Mol. Pharm., 2012, 9(12), 3595-3601.
[http://dx.doi.org/10.1021/mp300472y] [PMID: 23098218]
[55]
On, N.H.; Chen, F.; Hinton, M.; Miller, D.W. Assessment of p-glycoprotein activity in the blood-brain barrier (BBB) using near infrared fluorescence (NIRF) imaging techniques. Pharm. Res., 2011, 28(10), 2505-2515.
[http://dx.doi.org/10.1007/s11095-011-0478-6] [PMID: 21598079]
[56]
Wang, Y.; Liu, T.; Zhang, E.; Luo, S.; Tan, X.; Shi, C. Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells. Biomaterials, 2014, 35(13), 4116-4124.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.061] [PMID: 24529902]
[57]
Ning, J.; Huang, B.; Wei, Z.; Li, W.; Zheng, H.; Ma, L.; Xing, Z.; Niu, H.; Huang, W. Mitochondria targeting and near-infrared fluorescence imaging of a novel heptamethine cyanine anticancer agent. Mol. Med. Rep., 2017, 15(6), 3761-3766.
[http://dx.doi.org/10.3892/mmr.2017.6451] [PMID: 28440435]
[58]
Tan, X.; Luo, S.; Long, L.; Wang, Y.; Wang, D.; Fang, S.; Ouyang, Q.; Su, Y.; Cheng, T.; Shi, C. Structure-guided design and synthesis of a mitochondria-targeting near-infrared fluorophore with multimodal therapeutic activities. Adv. Mater., 2017, 29(43) 1704196
[http://dx.doi.org/10.1002/adma.201704196] [PMID: 28980731]
[59]
Condie, A.G.; Yan, Y.; Gerson, S.L.; Wang, Y. A fluorescent probe to measure DNA damage and repair. PLoS One, 2015, 10(8) e0131330
[http://dx.doi.org/10.1371/journal.pone.0131330] [PMID: 26309022]
[60]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
[61]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[62]
Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng., 2016, 44(6), 2049-2061.
[http://dx.doi.org/10.1007/s10439-016-1583-9] [PMID: 26951462]
[63]
Ashfaq, U.A.; Riaz, M.; Yasmeen, E.; Yousaf, M.Z. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit. Rev. Ther. Drug Carrier Syst., 2017, 34(4), 317-353.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017017845] [PMID: 29199588]
[64]
Das, M.; Mishra, D.; Dhak, P.; Gupta, S.; Maiti, T.K.; Basak, A.; Pramanik, P. Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small, 2009, 5(24), 2883-2893.
[http://dx.doi.org/10.1002/smll.200901219] [PMID: 19856326]
[65]
Tang, L.; Zhang, F.; Yu, F.; Sun, W.; Song, M.; Chen, X.; Zhang, X.; Sun, X. Croconaine nanoparticles with enhanced tumor accumulation for multimodality cancer theranostics. Biomaterials, 2017, 129, 28-36.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.009] [PMID: 28324863]
[66]
Liu, F.; He, X.; Lei, Z.; Liu, L.; Zhang, J.; You, H.; Zhang, H.; Wang, Z. Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy. Adv. Healthc. Mater., 2015, 4(4), 559-568.
[http://dx.doi.org/10.1002/adhm.201400676] [PMID: 25471617]
[67]
Huang, S.; Chen, P.; Xu, C. Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging. Talanta, 2017, 165, 161-166.
[http://dx.doi.org/10.1016/j.talanta.2016.12.048] [PMID: 28153236]
[68]
Liu, F.; Le, W.; Mei, T.; Wang, T.; Chen, L.; Lei, Y.; Cui, S.; Chen, B.; Cui, Z.; Shao, C. In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with anti-mesothelin antibody. Int. J. Nanomedicine, 2016, 11, 2195-2207.
[http://dx.doi.org/10.2147/ijn.s104501] [PMID: 27274243]
[69]
Wei, Z.; Wu, Y.; Zhao, Y.; Mi, L.; Wang, J.; Wang, J.; Zhao, J.; Wang, L.; Liu, A.; Li, Y.; Wei, W.; Zhang, Y.; Liu, S. Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging. Anal. Chim. Acta, 2016, 938, 156-164.
[http://dx.doi.org/10.1016/j.aca.2016.07.037] [PMID: 27619098]
[70]
Hsu, B.Y.; Ng, M.; Tan, A.; Connell, J.; Roberts, T.; Lythgoe, M.; Zhang, Y.; Wong, S.Y.; Bhakoo, K.; Seifalian, A.M.; Li, X.; Wang, J. pH-Activatable MnO-based fluorescence and magnetic resonance bimodal nanoprobe for cancer imaging. Adv. Healthc. Mater., 2016, 5(6), 721-729.
[http://dx.doi.org/10.1002/adhm.201500908] [PMID: 26895111]
[71]
Lee, S.M.; Kim, H.J.; Kim, S.Y.; Kwon, M.K.; Kim, S.; Cho, A.; Yun, M.; Shin, J.S.; Yoo, K.H. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials, 2014, 35(7), 2272-2282.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.068] [PMID: 24342728]
[72]
Li, B.; Xu, Q.; Li, X.; Zhang, P.; Zhao, X.; Wang, Y. Redox-responsive hyaluronic acid nanogels for hyperthermia-assisted chemotherapy to overcome multidrug resistance. Carbohydr. Polym., 2019, 203, 378-385.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.076] [PMID: 30318226]
[73]
Qiu, L.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C.; Zhu, G.; You, M.; Han, D.; Jiang, J.; Yu, R.; Tan, W. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett., 2015, 15(1), 457-463.
[http://dx.doi.org/10.1021/nl503777s] [PMID: 25479133]
[74]
Xu, L.; Liu, J.; Xi, J.; Li, Q.; Chang, B.; Duan, X.; Wang, G.; Wang, S.; Wang, Z.; Wang, L. Synergized multimodal therapy for safe and effective reversal of cancer multidrug resistance based on low-level photothermal and photodynamic effects. Small, 2018. e1800785
[http://dx.doi.org/10.1002/smll.201800785] [PMID: 29931728]
[75]
Zhang, W.; Wang, F.; Wang, Y.; Wang, J.; Yu, Y.; Guo, S.; Chen, R.; Zhou, D. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J. Control. Release, 2016, 232, 9-19.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.001] [PMID: 27072026]
[76]
Min, Y.; Li, J.; Liu, F.; Yeow, E.K.; Xing, B. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. Engl., 2014, 53(4), 1012-1016.
[http://dx.doi.org/10.1002/anie.201308834] [PMID: 24311528]
[77]
Zeng, L.; Pan, Y.; Tian, Y.; Wang, X.; Ren, W.; Wang, S.; Lu, G.; Wu, A. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials, 2015, 57, 93-106.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.006] [PMID: 25913254]
[78]
Hu, M.; Zhao, J.; Ai, X.; Budanovic, M.; Mu, J.; Webster, R.D.; Cao, Q.; Mao, Z.; Xing, B. Near infrared light-mediated photoactivation of cytotoxic Re(I) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Trans., 2016, 45(36), 14101-14108.
[http://dx.doi.org/10.1039/C6DT01569G] [PMID: 27711690]
[79]
Tran, T.H.; Nguyen, H.T.; Pham, T.T.; Choi, J.Y.; Choi, H.G.; Yong, C.S.; Kim, J.O. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl. Mater. Interfaces, 2015, 7(51), 28647-28655.
[http://dx.doi.org/10.1021/acsami.5b10426] [PMID: 26641922]
[80]
Wang, M.; Wu, J.; Li, Y.; Li, F.; Hu, X.; Wang, G.; Han, M.; Ling, D.; Gao, J. A tumor targeted near-infrared light-controlled nanocomposite to combat with multidrug resistance of cancer. J. Control. Release, 2018, 288, 34-44.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.037] [PMID: 30171977]
[81]
Wang, H.; Gao, Z.; Liu, X.; Agarwal, P.; Zhao, S.; Conroy, D.W.; Ji, G.; Yu, J.; Jaroniec, C.P.; Liu, Z.; Lu, X.; Li, X.; He, X. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat. Commun., 2018, 9(1), 562.
[http://dx.doi.org/10.1038/s41467-018-02915-8] [PMID: 29422620]
[82]
Suo, X.; Eldridge, B.N.; Zhang, H.; Mao, C.; Min, Y.; Sun, Y.; Singh, R.; Ming, X. P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces, 2018, 10(39), 33464-33473.
[http://dx.doi.org/10.1021/acsami.8b11974] [PMID: 30188117]
[83]
Li, Z.; Cai, Y.; Zhao, Y.; Yu, H.; Zhou, H.; Chen, M. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy. Int. J. Nanomedicine, 2017, 12, 6595-6604.
[http://dx.doi.org/10.2147/IJN.S138235] [PMID: 28919756]
[84]
Li, Y.; Deng, Y.; Tian, X.; Ke, H.; Guo, M.; Zhu, A.; Yang, T.; Guo, Z.; Ge, Z.; Yang, X.; Chen, H. Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor. ACS Nano, 2015, 9(10), 9626-9637.
[http://dx.doi.org/10.1021/acsnano.5b05097] [PMID: 26365698]
[85]
Peng, Y.; Nie, J.; Cheng, W.; Liu, G.; Zhu, D.; Zhang, L.; Liang, C.; Mei, L.; Huang, L.; Zeng, X. A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomater. Sci., 2018, 6(5), 1084-1098.
[http://dx.doi.org/10.1039/C7BM01206C] [PMID: 29512657]
[86]
Cabuzu, D.; Cirja, A.; Puiu, R.; Grumezescu, A.M. Biomedical applications of gold nanoparticles. Curr. Top. Med. Chem., 2015, 15(16), 1605-1613.
[http://dx.doi.org/10.2174/1568026615666150414144750] [PMID: 25877087]
[87]
Chen, J.; Li, X.; Zhao, X.; Wu, Q.; Zhu, H.; Mao, Z.; Gao, C. Doxorubicin-conjugated pH-responsive gold nanorods for combined photothermal therapy and chemotherapy of cancer. Bioact. Mater., 2018, 3(3), 347-354.
[http://dx.doi.org/10.1016/j.bioactmat.2018.05.003] [PMID: 29992194]
[88]
Zhang, Y.; Shen, T.T.; Kirillov, A.M.; Liu, W.S.; Tang, Y. NIR light/H2O2-triggered nanocomposites for a highly efficient and selective synergistic photodynamic and photothermal therapy against hypoxic tumor cells. Chem. Commun. (Camb.), 2016, 52(51), 7939-7942.
[http://dx.doi.org/10.1039/C6CC02571D] [PMID: 27172102]
[89]
Rao, L.; Bu, L.L.; Cai, B.; Xu, J.H.; Li, A.; Zhang, W.F.; Sun, Z.J.; Guo, S.S.; Liu, W.; Wang, T.H.; Zhao, X.Z. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater., 2016, 28(18), 3460-3466.
[http://dx.doi.org/10.1002/adma.201506086] [PMID: 26970518]
[90]
Rao, L.; He, Z.; Meng, Q.F.; Zhou, Z.; Bu, L.L.; Guo, S.S.; Liu, W.; Zhao, X.Z. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J. Biomed. Mater. Res. A, 2017, 105(2), 521-530.
[http://dx.doi.org/10.1002/jbm.a.35927] [PMID: 27718539]
[91]
Chen, C.W.; Chan, Y.C.; Hsiao, M.; Liu, R.S. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces, 2016, 8(47), 32108-32119.
[http://dx.doi.org/10.1021/acsami.6b07770] [PMID: 27933825]
[92]
Dou, Q.Q.; Rengaramchandran, A.; Selvan, S.T.; Paulmurugan, R.; Zhang, Y. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy. Sci. Rep., 2015, 5, 8252.
[http://dx.doi.org/10.1038/srep08252] [PMID: 25652742]
[93]
Ai, F.; Sun, T.; Xu, Z.; Wang, Z.; Kong, W.; To, M.W.; Wang, F.; Zhu, G. An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance. Dalton Trans., 2016, 45(33), 13052-13060.
[http://dx.doi.org/10.1039/C6DT01404F] [PMID: 27430044]
[94]
Dong, C.; Liu, Z.; Wang, S.; Zheng, B.; Guo, W.; Yang, W.; Gong, X.; Wu, X.; Wang, H.; Chang, J.; Wu, X.; Wang, H.; Chang, J. A protein-polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy. ACS Appl. Mater. Interfaces, 2016, 8(48), 32688-32698.
[http://dx.doi.org/10.1021/acsami.6b11803] [PMID: 27934134]
[95]
Zhao, N.; Wu, B.; Hu, X.; Xing, D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials, 2017, 141, 40-49.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.031] [PMID: 28666101]
[96]
Lin, M.; Gao, Y.; Diefenbach, T.J.; Shen, J.K.; Hornicek, F.J.; Park, Y.I.; Xu, F.; Lu, T.J.; Amiji, M.; Duan, Z. Facial layer-by-layer engineering of upconversion nanoparticles for gene delivery: near-infrared-initiated fluorescence resonance energy transfer tracking and overcoming drug resistance in ovarian cancer. ACS Appl. Mater. Interfaces, 2017, 9(9), 7941-7949.
[http://dx.doi.org/10.1021/acsami.6b15321] [PMID: 28177223]
[97]
Barth, B.M.; Altinoğlu, I. E.; Shanmugavelandy, S.S.; Kaiser, J.M.; Crespo-Gonzalez, D.; DiVittore, N.A.; McGovern, C.; Goff, T.M.; Keasey, N.R.; Adair, J.H.; Loughran, T.P., Jr; Claxton, D.F.; Kester, M. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano, 2011, 5(7), 5325-5337.
[http://dx.doi.org/10.1021/nn2005766] [PMID: 21675727]
[98]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[99]
Zeng, X.; Yuan, Y.; Wang, T.; Wang, H.; Hu, X.; Fu, Z.; Zhang, G.; Liu, B.; Lu, G. Targeted imaging and induction of apoptosis of drug-resistant hepatoma cells by miR-122-loaded graphene-InP nanocompounds. J. Nanobiotechnology, 2017, 15(1), 9.
[http://dx.doi.org/10.1186/s12951-016-0237-2] [PMID: 28114997]
[100]
Dong, X.; Yin, W.; Zhang, X.; Zhu, S.; He, X.; Yu, J.; Xie, J.; Guo, Z.; Yan, L.; Liu, X.; Wang, Q.; Gu, Z.; Zhao, Y. Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl. Mater. Interfaces, 2018, 10(4), 4271-4284.
[http://dx.doi.org/10.1021/acsami.7b17506] [PMID: 29318879]
[101]
Chen, X.; Hai, X.; Wang, J. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal. Chim. Acta, 2016, 922, 1-10.
[http://dx.doi.org/10.1016/j.aca.2016.03.050] [PMID: 27154826]
[102]
Durán, N.; Martinez, D.S.; Silveira, C.P.; Durán, M.; de Moraes, A.C.; Simões, M.B.; Alves, O.L.; Fávaro, W.J. Graphene oxide: a carrier for pharmaceuticals and a scaffold for cell interactions. Curr. Top. Med. Chem., 2015, 15(4), 309-327.
[http://dx.doi.org/10.2174/1568026615666150108144217] [PMID: 25579346]
[103]
Khan, A.A.P.; Khan, A.; Asiri, A.M.; Ashraf, G.M.; Alhogbia, B.G. Graphene oxide based metallic nanoparticles and their some biological and environmental application. Curr. Drug Metab., 2017, 18(11), 1020-1029.
[http://dx.doi.org/10.2174/1389200218666171016100507] [PMID: 29034831]
[104]
Zhang, H.; Zhang, H.; Aldalbahi, A.; Zuo, X.; Fan, C.; Mi, X. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens. Bioelectron., 2017, 89(Pt 1), 96-106.
[http://dx.doi.org/10.1016/j.bios.2016.07.030] [PMID: 27459883]
[105]
He, Q.; Kiesewetter, D.O.; Qu, Y.; Fu, X.; Fan, J.; Huang, P.; Liu, Y.; Zhu, G.; Liu, Y.; Qian, Z.; Chen, X. NIR-responsive on-demand release of CO from metal carbonyl-caged graphene oxide nanomedicine. Adv. Mater., 2015, 27(42), 6741-6746.
[http://dx.doi.org/10.1002/adma.201502762] [PMID: 26401893]
[106]
Kalluru, P.; Vankayala, R.; Chiang, C.S.; Hwang, K.C. Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials, 2016, 95, 1-10.
[http://dx.doi.org/10.1016/j.biomaterialss.2016.04.006] [PMID: 27108401]
[107]
Zeng, Y.; Yang, Z.; Li, H.; Hao, Y.; Liu, C.; Zhu, L.; Liu, J.; Lu, B.; Li, R. Multifunctional nanographene oxide for targeted gene-mediated thermochemotherapy of drug-resistant tumour. Sci. Rep., 2017, 7, 43506.
[http://dx.doi.org/10.1038/srep43506] [PMID: 28272412]
[108]
Wang, L.; Sun, Q.; Wang, X.; Wen, T.; Yin, J.J.; Wang, P.; Bai, R.; Zhang, X.Q.; Zhang, L.H.; Lu, A.H.; Chen, C. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc., 2015, 137(5), 1947-1955.
[http://dx.doi.org/10.1021/ja511560b] [PMID: 25597855]
[109]
Isoglu, I.A.; Ozsoy, Y.; Isoglu, S.D. Advances in micelle-based drug delivery: cross-linked systems. Curr. Top. Med. Chem., 2017, 17(13), 1469-1489.
[http://dx.doi.org/10.2174/1568026616666161222110600] [PMID: 28017154]
[110]
Jain, V.; Jain, S.; Mahajan, S.C. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Curr. Drug Deliv., 2015, 12(2), 177-191.
[http://dx.doi.org/10.2174/1567201811666140822112516] [PMID: 25146439]
[111]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[112]
Li, Z.; Wang, H.; Chen, Y.; Wang, Y.; Li, H.; Han, H.; Chen, T.; Jin, Q.; Ji, J. pH- and NIR light-responsive polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy to reverse drug resistance in cancer treatment. Small, 2016, 12(20), 2731-2740.
[http://dx.doi.org/10.1002/smll.201600365] [PMID: 27043935]
[113]
Liu, H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. Colloids Surf. B Biointerfaces, 2017, 157, 398-406.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.080] [PMID: 28624725]
[114]
Wang, T.; Wang, D.; Yu, H.; Wang, M.; Liu, J.; Feng, B.; Zhou, F.; Yin, Q.; Zhang, Z.; Huang, Y.; Li, Y. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano, 2016, 10(3), 3496-3508.
[http://dx.doi.org/10.1021/acsnano.5b07706] [PMID: 26866752]
[115]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[116]
Madni, A.; Sarfraz, M.; Rehman, M.; Ahmad, M.; Akhtar, N.; Ahmad, S.; Tahir, N.; Ijaz, S.; Al-Kassas, R.; Löbenberg, R. Liposomal drug delivery: a versatile platform for challenging clinical applications. J. Pharm. Pharm. Sci., 2014, 17(3), 401-426.
[http://dx.doi.org/10.18433/J3CP55] [PMID: 25224351]
[117]
Yao, C.; Wang, P.; Li, X.; Hu, X.; Hou, J.; Wang, L.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater., 2016, 28(42), 9341-9348.
[http://dx.doi.org/10.1002/adma.201503799] [PMID: 27578301]
[118]
Gao, C.; Liang, X.; Mo, S.; Zhang, N.; Sun, D.; Dai, Z. Near-infrared cyanine-loaded liposome-like nanocapsules of camptothecin-floxuridine conjugate for enhanced chemophotothermal combination cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(4), 3219-3228.
[http://dx.doi.org/10.1021/acsami.7b14125] [PMID: 29299917]
[119]
Allahyari, M.; Mohit, E. Peptide/protein vaccine delivery system based on PLGA particles. Hum. Vaccin. Immunother., 2016, 12(3), 806-828.
[http://dx.doi.org/10.1080/21645515.2015.1102804] [PMID: 26513024]
[120]
Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: a unique polymer for drug delivery. Ther. Deliv., 2015, 6(1), 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[121]
Mir, M.; Ahmed, N.; Rehman, A.U. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[122]
Wang, H.; Zhao, Y.; Wang, H.; Gong, J.; He, H.; Shin, M.C.; Yang, V.C.; Huang, Y. Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. J. Control. Release, 2014, 192, 47-56.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.051] [PMID: 25003794]
[123]
Yuan, X.; Ji, W.; Chen, S.; Bao, Y.; Tan, S.; Lu, S.; Wu, K.; Chu, Q. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int. J. Nanomedicine, 2016, 11, 2119-2131.
[http://dx.doi.org/10.2147/ijn.s92271] [PMID: 27307727]
[124]
Nagheh, Z.; Irani, S.; Mirfakhraie, R.; Dinarvand, R. SN38-PEG-PLGA-verapamil nanoparticles inhibit proliferation and downregulate drug transporter ABCG2 gene expression in colorectal cancer cells. Prog. Biomater., 2017, 6(4), 137-145.
[http://dx.doi.org/10.1007/s40204-017-0073-y] [PMID: 28948511]
[125]
Gao, D.Y.; Lin, TsT.; Sung, Y.C.; Liu, Y.C.; Chiang, W.H.; Chang, C.C.; Liu, J.Y.; Chen, Y. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials, 2015, 67, 194-203.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.035] [PMID: 26218745]
[126]
Chen, S.; Liu, Y.; Zhu, S.; Chen, C.; Xie, W.; Xiao, L.; Zhu, Y.; Hao, L.; Wang, Z.; Sun, J.; Chang, S. Dual-mode imaging and therapeutic effects of drug-loaded phase-transition nanoparticles combined with near-infrared laser and low-intensity ultrasound on ovarian cancer. Drug Deliv., 2018, 25(1), 1683-1693.
[http://dx.doi.org/10.1080/10717544.2018.1507062] [PMID: 30343601]
[127]
Gao, Y.; Zhang, H.; Zhang, Y.; Lv, T.; Zhang, L.; Li, Z.; Xie, X.; Li, F.; Chen, H.; Jia, L. Erlotinib-guided self-assembled trifunctional click nanotheranostics for distinguishing druggable mutations and synergistic therapy of nonsmall cell lung cancer. Mol. Pharm., 2018, 15(11), 5146-5161.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00561] [PMID: 30296375]
[128]
Li, X.; Mu, J.; Liu, F.; Tan, E.W.; Khezri, B.; Webster, R.D.; Yeow, E.K.; Xing, B. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging. Bioconjug. Chem., 2015, 26(5), 955-961.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00170] [PMID: 25938732]
[129]
Cui, J.; Meng, Q.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S. Design and synthesis of new alpha-Naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J. Med. Chem., 2015, 58(8), 3534-3547.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00265] [PMID: 25799264]
[130]
Meng, Q.; Wang, Z.; Cui, J.; Cui, Q.; Dong, J.; Zhang, Q.; Li, S. Design, synthesis, and biological evaluation of cytochrome P450 1B1 targeted molecular imaging probes for colorectal tumor detection. J. Med. Chem., 2018, 61(23), 10901-10909.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01633] [PMID: 30422652]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy