Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Development of Inhibitors Targeting the Mixed Lineage Leukemia 1 (MLL1)-WD Repeat Domain 5 Protein (WDR5) Protein- Protein Interaction

Author(s): Xiaoqing Ye, Gang Chen, Jia Jin, Binzhong Zhang, Yinda Wang, Zhenhai Cai and Fei Ye*

Volume 27, Issue 33, 2020

Page: [5530 - 5542] Pages: 13

DOI: 10.2174/0929867326666190528080514

Price: $65

Abstract

Mixed Lineage Leukemia 1 (MLL1), an important member of Histone Methyltransferases (HMT) family, is capable of catalyzing mono-, di-, and trimethylation of Histone 3 lysine 4 (H3K4). The optimal catalytic activity of MLL1 requires the formation of a core complex consisting of MLL1, WDR5, RbBP5, and ASH2L. The Protein-Protein Interaction (PPI) between WDR5 and MLL1 plays an important role in abnormal gene expression during tumorigenesis, and disturbing this interaction may have a potential for the treatment of leukemia harboring MLL1 fusion proteins. In this review, we will summarize recent progress in the development of inhibitors targeting MLL1- WDR5 interaction.

Keywords: WDR5, MLL1, histone methyltransferase, small-molecular inhibitor, epigenetics, human acute leukemia.

[1]
Kanwal, R.; Gupta, K.; Gupta, S. Cancer epigenetics: an introduction. Methods Mol. Biol., 2015, 1238, 3-25.
[http://dx.doi.org/10.1007/978-1-4939-1804-1_1] [PMID: 25421652]
[2]
Van Speybroeck, L. From epigenesis to epigenetics: the case of C.H. Waddington. Ann. N. Y. Acad. Sci., 2002, 981, 61-81.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04912.x] [PMID: 12547674]
[3]
Bernstein, B.E.; Meissner, A.; Lander, E.S. The mammalian epigenome. Cell, 2007, 128(4), 669-681.
[http://dx.doi.org/10.1016/j.cell.2007.01.033] [PMID: 17320505]
[4]
Lian, Y.; Meng, L.; Ding, P.; Sang, M. Epigenetic regulation of MAGE family in human cancer progression-DNA methylation, histone modification, and non-coding RNAs. Clin. Epigenetics, 2018, 10(1), 115.
[http://dx.doi.org/10.1186/s13148-018-0550-8] [PMID: 30185218]
[5]
Bird, A. Perceptions of epigenetics. Nature, 2007, 447(7143), 396-398.
[http://dx.doi.org/10.1038/nature05913] [PMID: 17522671]
[6]
Wilson, A.S.; Power, B.E.; Molloy, P.L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta, 2007, 1775(1), 138-162.
[http://dx.doi.org/10.1016/j.bbcan.2006.08.007] [PMID: 17045745]
[7]
Fang, F.; Fan, S.; Zhang, X.; Zhang, M.Q. Predicting methylation status of CpG islands in the human brain. Bioinformatics, 2006, 22(18), 2204-2209.
[http://dx.doi.org/10.1093/bioinformatics/btl377] [PMID: 16837523]
[8]
Saba, H.I. Decitabine in the treatment of myelodysplastic syndromes. Ther. Clin. Risk Manag., 2007, 3(5), 807-817.
[PMID: 18473005]
[9]
Kaminskas, E.; Farrell, A.T.; Wang, Y.C.; Sridhara, R.; Pazdur, R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist, 2005, 10(3), 176-182.
[http://dx.doi.org/10.1634/theoncologist.10-3-176] [PMID: 15793220]
[10]
Sawan, C.; Herceg, Z. Histone modifications and cancer. Adv. Genet., 2010, 70, 57-85.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60003-4] [PMID: 20920745]
[11]
Kubicek, S.; Schotta, G.; Lachner, M.; Sengupta, R.; Kohlmaier, A.; Perez-Burgos, L.; Linderson, Y.; Martens, J.H.; O’Sullivan, R.J.; Fodor, B.D.; Yonezawa, M.; Peters, A.H.; Jenuwein, T. The role of histone modifications in epigenetic transitions during normal and perturbed development. Ernst Schering Res. Found. Workshop, 2006, (57), 1-27.
[http://dx.doi.org/10.1007/3-540-37633-X_1] [PMID: 16568946]
[12]
Ellis, L.; Atadja, P.W.; Johnstone, R.W. Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther., 2009, 8(6), 1409-1420.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0860] [PMID: 19509247]
[13]
Konsoula, Z.; Barile, F.A. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J. Pharmacol. Toxicol. Methods, 2012, 66(3), 215-220.
[http://dx.doi.org/10.1016/j.vascn.2012.08.001] [PMID: 22902970]
[14]
Wang, G.G.; Allis, C.D.; Chi, P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med., 2007, 13(9), 363-372.
[http://dx.doi.org/10.1016/j.molmed.2007.07.003] [PMID: 17822958]
[15]
Ziemka-Nalecz, M.; Jaworska, J.; Sypecka, J.; Zalewska, T. histone deacetylase inhibitors: a therapeutic key in neurological disorders? J. Neuropathol. Exp. Neurol., 2018, 77(10), 855-870.
[http://dx.doi.org/10.1093/jnen/nly073] [PMID: 30165682]
[16]
Lopez, A.T.; Bates, S.; Geskin, L. Current status of HDAC inhibitors in cutaneous T-cell lymphoma. Am. J. Clin. Dermatol., 2018, 19(6), 805-819.
[http://dx.doi.org/10.1007/s40257-018-0380-7] [PMID: 30173294]
[17]
Hadden, M.J.; Advani, A. Histone deacetylase inhibitors and diabetic kidney disease. Int. J. Mol. Sci., 2018, 19(9)E2630
[http://dx.doi.org/10.3390/ijms19092630] [PMID: 30189630]
[18]
Berger, S.L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev., 2002, 12(2), 142-148.
[http://dx.doi.org/10.1016/S0959-437X(02)00279-4] [PMID: 11893486]
[19]
Liu, Y.; Liu, K.; Qin, S.; Xu, C.; Min, J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol. Ther., 2014, 143(3), 275-294.
[http://dx.doi.org/10.1016/j.pharmthera.2014.03.007] [PMID: 24704322]
[20]
Tsukada, Y.; Fang, J.; Erdjument-Bromage, H.; Warren, M.E.; Borchers, C.H.; Tempst, P.; Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078), 811-816.
[http://dx.doi.org/10.1038/nature04433] [PMID: 16362057]
[21]
Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature, 2000, 403(6765), 41-45.
[http://dx.doi.org/10.1038/47412] [PMID: 10638745]
[22]
Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J.R.; Cole, P.A.; Casero, R.A.; Shi, Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7), 941-953.
[http://dx.doi.org/10.1016/j.cell.2004.12.012] [PMID: 15620353]
[23]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[24]
Klose, R.J.; Yamane, K.; Bae, Y.; Zhang, D.; Erdjument-Bromage, H.; Tempst, P.; Wong, J.; Zhang, Y. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature, 2006, 442(7100), 312-316.
[http://dx.doi.org/10.1038/nature04853] [PMID: 16732292]
[25]
Klose, R.J.; Kallin, E.M.; Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet., 2006, 7(9), 715-727.
[http://dx.doi.org/10.1038/nrg1945] [PMID: 16983801]
[26]
Karytinos, A.; Forneris, F.; Profumo, A.; Ciossani, G.; Battaglioli, E.; Binda, C.; Mattevi, A. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem., 2009, 284(26), 17775-17782.
[http://dx.doi.org/10.1074/jbc.M109.003087] [PMID: 19407342]
[27]
Chi, P.; Allis, C.D.; Wang, G.G. Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer, 2010, 10(7), 457-469.
[http://dx.doi.org/10.1038/nrc2876] [PMID: 20574448]
[28]
Black, J.C.; Van Rechem, C.; Whetstine, J.R. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell, 2012, 48(4), 491-507.
[http://dx.doi.org/10.1016/j.molcel.2012.11.006] [PMID: 23200123]
[29]
Nakamura, T.; Mori, T.; Tada, S.; Krajewski, W.; Rozovskaia, T.; Wassell, R.; Dubois, G.; Mazo, A.; Croce, C.M.; Canaani, E. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell, 2002, 10(5), 1119-1128.
[http://dx.doi.org/10.1016/S1097-2765(02)00740-2] [PMID: 12453419]
[30]
Milne, T.A.; Briggs, S.D.; Brock, H.W.; Martin, M.E.; Gibbs, D.; Allis, C.D.; Hess, J.L. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell, 2002, 10(5), 1107-1117.
[http://dx.doi.org/10.1016/S1097-2765(02)00741-4] [PMID: 12453418]
[31]
Dou, Y.; Milne, T.A.; Tackett, A.J.; Smith, E.R.; Fukuda, A.; Wysocka, J.; Allis, C.D.; Chait, B.T.; Hess, J.L.; Roeder, R.G. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell, 2005, 121(6), 873-885.
[http://dx.doi.org/10.1016/j.cell.2005.04.031] [PMID: 15960975]
[32]
Abramovich, C.; Humphries, R.K. Hox regulation of normal and leukemic hematopoietic stem cells. Curr. Opin. Hematol., 2005, 12(3), 210-216.
[http://dx.doi.org/10.1097/01.moh.0000160737.52349.aa] [PMID: 15867577]
[33]
Lim, D.A.; Huang, Y.C.; Swigut, T.; Mirick, A.L.; Garcia-Verdugo, J.M.; Wysocka, J.; Ernst, P.; Alvarez-Buylla, A. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature, 2009, 458(7237), 529-533.
[http://dx.doi.org/10.1038/nature07726] [PMID: 19212323]
[34]
Yu, B.D.; Hess, J.L.; Horning, S.E.; Brown, G.A.; Korsmeyer, S.J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature, 1995, 378(6556), 505-508.
[http://dx.doi.org/10.1038/378505a0] [PMID: 7477409]
[35]
Harper, D.P.; Aplan, P.D. Chromosomal rearrangements leading to MLL gene fusions: clinical and biological aspects. Cancer Res., 2008, 68(24), 10024-10027.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2208] [PMID: 19074864]
[36]
Ferrando, A.A.; Armstrong, S.A.; Neuberg, D.S.; Sallan, S.E.; Silverman, L.B.; Korsmeyer, S.J.; Look, A.T. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood, 2003, 102(1), 262-268.
[http://dx.doi.org/10.1182/blood-2002-10-3221] [PMID: 12637319]
[37]
Argiropoulos, B.; Humphries, R.K. Hox genes in hematopoiesis and leukemogenesis. Oncogene, 2007, 26(47), 6766-6776.
[http://dx.doi.org/10.1038/sj.onc.1210760] [PMID: 17934484]
[38]
Dou, Y.; Hess, J.L. Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int. J. Hematol., 2008, 87(1), 10-18.
[http://dx.doi.org/10.1007/s12185-007-0009-8] [PMID: 18224408]
[39]
Ayton, P.M.; Cleary, M.L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene, 2001, 20(40), 5695-5707.
[http://dx.doi.org/10.1038/sj.onc.1204639] [PMID: 11607819]
[40]
Milne, T.A.; Martin, M.E.; Brock, H.W.; Slany, R.K.; Hess, J.L. Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res., 2005, 65(24), 11367-11374.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1041] [PMID: 16357144]
[41]
Thiel, A.T.; Blessington, P.; Zou, T.; Feather, D.; Wu, X.; Yan, J.; Zhang, H.; Liu, Z.; Ernst, P.; Koretzky, G.A.; Hua, X. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell, 2010, 17(2), 148-159.
[http://dx.doi.org/10.1016/j.ccr.2009.12.034] [PMID: 20159607]
[42]
Wu, M.; Shu, H.B. MLL1/WDR5 complex in leukemogenesis and epigenetic regulation. Chin. J. Cancer, 2011, 30(4), 240-246.
[http://dx.doi.org/10.5732/cjc.011.10055] [PMID: 21439245]
[43]
Steward, M.M.; Lee, J.S.; O’Donovan, A.; Wyatt, M.; Bernstein, B.E.; Shilatifard, A. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat. Struct. Mol. Biol., 2006, 13(9), 852-854.
[http://dx.doi.org/10.1038/nsmb1131] [PMID: 16892064]
[44]
Dou, Y.; Milne, T.A.; Ruthenburg, A.J.; Lee, S.; Lee, J.W.; Verdine, G.L.; Allis, C.D.; Roeder, R.G. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol., 2006, 13(8), 713-719.
[http://dx.doi.org/10.1038/nsmb1128] [PMID: 16878130]
[45]
Wysocka, J.; Swigut, T.; Milne, T.A.; Dou, Y.; Zhang, X.; Burlingame, A.L.; Roeder, R.G.; Brivanlou, A.H.; Allis, C.D. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell, 2005, 121(6), 859-872.
[http://dx.doi.org/10.1016/j.cell.2005.03.036] [PMID: 15960974]
[46]
Patel, A.; Vought, V.E.; Dharmarajan, V.; Cosgrove, M.S. A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex. J. Biol. Chem., 2008, 283(47), 32162-32175.
[http://dx.doi.org/10.1074/jbc.M806317200] [PMID: 18829457]
[47]
Trievel, R.C.; Shilatifard, A. WDR5, a complexed protein. Nat. Struct. Mol. Biol., 2009, 16(7), 678-680.
[http://dx.doi.org/10.1038/nsmb0709-678] [PMID: 19578375]
[48]
Patel, A.; Dharmarajan, V.; Cosgrove, M.S. Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide. J. Biol. Chem., 2008, 283(47), 32158-32161.
[http://dx.doi.org/10.1074/jbc.C800164200] [PMID: 18829459]
[49]
Wang, Z.H.; Li, D.D.; Chen, W.L.; You, Q.D.; Guo, X.K. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy. Bioorg. Med. Chem., 2018, 26(2), 356-365.
[http://dx.doi.org/10.1016/j.bmc.2017.11.045] [PMID: 29254892]
[50]
Cosgrove, M.S.; Patel, A. Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J., 2010, 277(8), 1832-1842.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07609.x] [PMID: 20236310]
[51]
Shinsky, S.A.; Cosgrove, M.S. Unique role of the WD-40 repeat protein 5 (WDR5) subunit within the mixed lineage leukemia 3 (MLL3) histone methyltransferase complex. J. Biol. Chem., 2015, 290(43), 25819-25833.
[http://dx.doi.org/10.1074/jbc.M115.684142] [PMID: 26324722]
[52]
Guarnaccia, A.D.; Tansey, W.P. Moonlighting with WDR5: a cellular multitasker. J. Clin. Med., 2018, 7(2)E21
[http://dx.doi.org/10.3390/jcm7020021] [PMID: 29385767]
[53]
Zhang, P.; Lee, H.; Brunzelle, J.S.; Couture, J.F. The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases. Nucleic Acids Res., 2012, 40(9), 4237-4246.
[http://dx.doi.org/10.1093/nar/gkr1235] [PMID: 22266653]
[54]
Song, J.J.; Kingston, R.E. WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem., 2008, 283(50), 35258-35264.
[http://dx.doi.org/10.1074/jbc.M806900200] [PMID: 18840606]
[55]
Dharmarajan, V.; Lee, J.H.; Patel, A.; Skalnik, D.G.; Cosgrove, M.S. Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases. J. Biol. Chem., 2012, 287(33), 27275-27289.
[http://dx.doi.org/10.1074/jbc.M112.364125] [PMID: 22665483]
[56]
Ruthenburg, A.J.; Wang, W.; Graybosch, D.M.; Li, H.; Allis, C.D.; Patel, D.J.; Verdine, G.L. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat. Struct. Mol. Biol., 2006, 13(8), 704-712.
[http://dx.doi.org/10.1038/nsmb1119] [PMID: 16829959]
[57]
Alicea-Velázquez, N.L.; Shinsky, S.A.; Loh, D.M.; Lee, J.H.; Skalnik, D.G.; Cosgrove, M.S. Targeted disruption of the interaction between WD-40 repeat protein 5 (WDR5) and mixed lineage leukemia (MLL)/SET1 family proteins specifically inhibits MLL1 and SETd1A methyltransferase complexes. J. Biol. Chem., 2016, 291(43), 22357-22372.
[http://dx.doi.org/10.1074/jbc.M116.752626] [PMID: 27563068]
[58]
Karatas, H.; Townsend, E.C.; Bernard, D.; Dou, Y.; Wang, S. Analysis of the binding of mixed lineage leukemia 1 (MLL1) and histone 3 peptides to WD repeat domain 5 (WDR5) for the design of inhibitors of the MLL1-WDR5 interaction. J. Med. Chem., 2010, 53(14), 5179-5185.
[http://dx.doi.org/10.1021/jm100139b] [PMID: 20575550]
[59]
Couture, J.F.; Collazo, E.; Trievel, R.C. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat. Struct. Mol. Biol., 2006, 13(8), 698-703.
[http://dx.doi.org/10.1038/nsmb1116] [PMID: 16829960]
[60]
Schuetz, A.; Allali-Hassani, A.; Martín, F.; Loppnau, P.; Vedadi, M.; Bochkarev, A.; Plotnikov, A.N.; Arrowsmith, C.H.; Min, J. Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J., 2006, 25(18), 4245-4252.
[http://dx.doi.org/10.1038/sj.emboj.7601316] [PMID: 16946699]
[61]
Karatas, H.; Townsend, E.C.; Cao, F.; Chen, Y.; Bernard, D.; Liu, L.; Lei, M.; Dou, Y.; Wang, S. High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein-protein interaction. J. Am. Chem. Soc., 2013, 135(2), 669-682.
[http://dx.doi.org/10.1021/ja306028q] [PMID: 23210835]
[62]
Cao, F.; Townsend, E.C.; Karatas, H.; Xu, J.; Li, L.; Lee, S.; Liu, L.; Chen, Y.; Ouillette, P.; Zhu, J.; Hess, J.L.; Atadja, P.; Lei, M.; Qin, Z.S.; Malek, S.; Wang, S.; Dou, Y. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol. Cell, 2014, 53(2), 247-261.
[http://dx.doi.org/10.1016/j.molcel.2013.12.001] [PMID: 24389101]
[63]
Karatas, H.; Li, Y.; Liu, L.; Ji, J.; Lee, S.; Chen, Y.; Yang, J.; Huang, L.; Bernard, D.; Xu, J.; Townsend, E.C.; Cao, F.; Ran, X.; Li, X.; Wen, B.; Sun, D.; Stuckey, J.A.; Lei, M.; Dou, Y.; Wang, S. Discovery of a highly potent, cell-permeable macrocyclic peptidomimetic (MM-589) targeting the WD repeat domain 5 protein (WDR5)-mixed lineage leukemia (MLL) protein-protein interaction. J. Med. Chem., 2017, 60(12), 4818-4839.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01796] [PMID: 28603984]
[64]
Senisterra, G.; Wu, H.; Allali-Hassani, A.; Wasney, G.A.; Barsyte-Lovejoy, D.; Dombrovski, L.; Dong, A.; Nguyen, K.T.; Smil, D.; Bolshan, Y.; Hajian, T.; He, H.; Seitova, A.; Chau, I.; Li, F.; Poda, G.; Couture, J.F.; Brown, P.J.; Al-Awar, R.; Schapira, M.; Arrowsmith, C.H.; Vedadi, M. Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem. J., 2013, 449(1), 151-159.
[http://dx.doi.org/10.1042/BJ20121280] [PMID: 22989411]
[65]
Avdic, V.; Zhang, P.; Lanouette, S.; Groulx, A.; Tremblay, V.; Brunzelle, J.; Couture, J.F. Structural and biochemical insights into MLL1 core complex assembly. Structure, 2011, 19(1), 101-108.
[http://dx.doi.org/10.1016/j.str.2010.09.022] [PMID: 21220120]
[66]
Bolshan, Y.; Getlik, M.; Kuznetsova, E.; Wasney, G.A.; Hajian, T.; Poda, G.; Nguyen, K.T.; Wu, H.; Dombrovski, L.; Dong, A.; Senisterra, G.; Schapira, M.; Arrowsmith, C.H.; Brown, P.J.; Al-Awar, R.; Vedadi, M.; Smil, D. Synthesis, optimization, and evaluation of novel small molecules as antagonists of WDR5-MLL interaction. ACS Med. Chem. Lett., 2013, 4(3), 353-357.
[http://dx.doi.org/10.1021/ml300467n] [PMID: 24900672]
[67]
Getlik, M.; Smil, D.; Zepeda-Velázquez, C.; Bolshan, Y.; Poda, G.; Wu, H.; Dong, A.; Kuznetsova, E.; Marcellus, R.; Senisterra, G.; Dombrovski, L.; Hajian, T.; Kiyota, T.; Schapira, M.; Arrowsmith, C.H.; Brown, P.J.; Vedadi, M.; Al-Awar, R. Structure-based optimization of a small molecule antagonist of the interaction between WD repeat-containing protein 5 (WDR5) and mixed-lineage leukemia 1 (MLL1). J. Med. Chem., 2016, 59(6), 2478-2496.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01630] [PMID: 26958703]
[68]
Grebien, F.; Vedadi, M.; Getlik, M.; Giambruno, R.; Grover, A.; Avellino, R.; Skucha, A.; Vittori, S.; Kuznetsova, E.; Smil, D.; Barsyte-Lovejoy, D.; Li, F.; Poda, G.; Schapira, M.; Wu, H.; Dong, A.; Senisterra, G.; Stukalov, A.; Huber, K.V.M.; Schönegger, A.; Marcellus, R.; Bilban, M.; Bock, C.; Brown, P.J.; Zuber, J.; Bennett, K.L.; Al-Awar, R.; Delwel, R.; Nerlov, C.; Arrowsmith, C.H.; Superti-Furga, G. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat. Chem. Biol., 2015, 11(8), 571-578.
[http://dx.doi.org/10.1038/nchembio.1859] [PMID: 26167872]
[69]
Zhu, J.; Sammons, M.A.; Donahue, G.; Dou, Z.; Vedadi, M.; Getlik, M.; Barsyte-Lovejoy, D.; Al-awar, R.; Katona, B.W.; Shilatifard, A.; Huang, J.; Hua, X.; Arrowsmith, C.H.; Berger, S.L. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature, 2015, 525(7568), 206-211.
[http://dx.doi.org/10.1038/nature15251] [PMID: 26331536]
[70]
Sun, Y.; Bell, J.L.; Carter, D.; Gherardi, S.; Poulos, R.C.; Milazzo, G.; Wong, J.W.; Al-Awar, R.; Tee, A.E.; Liu, P.Y.; Liu, B.; Atmadibrata, B.; Wong, M.; Trahair, T.; Zhao, Q.; Shohet, J.M.; Haupt, Y.; Schulte, J.H.; Brown, P.J.; Arrowsmith, C.H.; Vedadi, M.; MacKenzie, K.L.; Hüttelmaier, S.; Perini, G.; Marshall, G.M.; Braithwaite, A.; Liu, T. WDR5 supports an N-Myc transcriptional complex that drives a protumorigenic gene expression signature in neuroblastoma. Cancer Res., 2015, 75(23), 5143-5154.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0423] [PMID: 26471359]
[71]
Li, D.D.; Chen, W.L.; Wang, Z.H.; Xie, Y.Y.; Xu, X.L.; Jiang, Z.Y.; Zhang, X.J.; You, Q.D.; Guo, X.K. High-affinity small molecular blockers of mixed lineage leukemia 1 (MLL1)-WDR5 interaction inhibit MLL1 complex H3K4 methyltransferase activity. Eur. J. Med. Chem., 2016, 124, 480-489.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.036] [PMID: 27598236]
[72]
Li, D.D.; Chen, W.L.; Xu, X.L.; Jiang, F.; Wang, L.; Xie, Y.Y.; Zhang, X.J.; Guo, X.K.; You, Q.D.; Sun, H.P. Structure-based design and synthesis of small molecular inhibitors disturbing the interaction of MLL1-WDR5. Eur. J. Med. Chem., 2016, 118, 1-8.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.032] [PMID: 27116709]
[73]
Li, D.D.; Wang, Z.H.; Chen, W.L.; Xie, Y.Y.; You, Q.D.; Guo, X.K. Structure-based design of ester compounds to inhibit MLL complex catalytic activity by targeting mixed lineage leukemia 1 (MLL1)-WDR5 interaction. Bioorg. Med. Chem., 2016, 24(22), 6109-6118.
[http://dx.doi.org/10.1016/j.bmc.2016.09.073] [PMID: 27720555]
[74]
Chen, W.L.; Li, D.D.; Wang, Z.H.; Xu, X.L.; Zhang, X.J.; Jiang, Z.Y.; Guo, X.K.; You, Q.D. Design, synthesis, and initial evaluation of affinity-based small molecular probe for detection of WDR5. Bioorg. Chem., 2018, 76, 380-385.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.018] [PMID: 29241110]
[75]
Wang, F.; Jeon, K.O.; Salovich, J.M.; Macdonald, J.D.; Alvarado, J.; Gogliotti, R.D.; Phan, J.; Olejniczak, E.T.; Sun, Q.; Wang, S.; Camper, D.; Yuh, J.P.; Shaw, J.G.; Sai, J.; Rossanese, O.W.; Tansey, W.P.; Stauffer, S.R.; Fesik, S.W. Discovery of potent 2-aryl-6,7-dihydro-5 H-pyrrolo[1,2- a]imidazoles as WDR5-WIN-site inhibitors using fragment-based methods and structure-based design. J. Med. Chem., 2018, 61(13), 5623-5642.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00375] [PMID: 29889518]
[76]
Zou, H.; Zhu, X.X.; Zhang, G.B.; Ma, Y.; Wu, Y.; Huang, D.S. Silibinin: an old drug for hematological disorders. Oncotarget, 2017, 8(51), 89307-89314.
[http://dx.doi.org/10.18632/oncotarget.19153] [PMID: 29179521]
[77]
Lu, J.; Li, X.; Wang, Q.; Pei, G. Dopamine D2 receptor and β-arrestin 2 mediate amyloid-β elevation induced by anti-Parkinson’s disease drugs, levodopa and piribedil, in neuronal cells. PLoS One, 2017, 12(3)e0173240
[http://dx.doi.org/10.1371/journal.pone.0173240] [PMID: 28253352]
[78]
Zhang, X.; Zheng, X.; Yang, H.; Yan, J.; Fu, X.; Wei, R.; Xu, X.; Zhang, Z.; Yu, A.; Zhou, K.; Ding, J.; Geng, M.; Huang, X. Piribedil disrupts the MLL1-WDR5 interaction and sensitizes MLL-rearranged acute myeloid leukemia (AML) to doxorubicin-induced apoptosis. Cancer Lett., 2018, 431, 150-160.
[http://dx.doi.org/10.1016/j.canlet.2018.05.034] [PMID: 29857126]
[79]
Ye, X.; Zhang, R.; Lian, F.; Zhang, W.; Lu, W.; Han, J.; Zhang, N.; Jin, J.; Luo, C.; Chen, K.; Ye, F.; Ding, H. The identification of novel small-molecule inhibitors targeting WDR5-MLL1 interaction through fluorescence polarization based high-throughput screening. Bioorg. Med. Chem. Lett., 2019, 29(4), 638-645.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.035] [PMID: 30626558]
[80]
Macalino, S.J.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[81]
Basith, S.; Cui, M.; Macalino, S.J.Y.; Choi, S. Expediting the design, discovery and development of anticancer drugs using computational approaches. Curr. Med. Chem., 2017, 24(42), 4753-4778.
[http://dx.doi.org/10.2174/0929867323666160902160535] [PMID: 27593958]
[82]
Vrontaki, E.; Melagraki, G.; Kaffe, E.; Mavromoustakos, T.; Kokotos, G.; Aidinis, V.; Afantitis, A. Computer aided drug design approaches for identification of novel autotaxin (ATX) inhibitors. Curr. Med. Chem., 2016, 23(17), 1708-1724.
[http://dx.doi.org/10.2174/0929867323666160321122228] [PMID: 26997151]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy