Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of NIR Fluorescence in MDR Cancer Treatment: From Targeted Imaging to Phototherapy

Author(s): Zengtao Wang, Qingqing Meng* and Shaoshun Li*

Volume 27, Issue 33, 2020

Page: [5510 - 5529] Pages: 20

DOI: 10.2174/0929867326666190627123719

Price: $65

Abstract

Background: Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity.

Objective: This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment.

Results: Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed.

Conclusion: We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.

Keywords: Molecular imaging, near infrared dyes, multidrug resistance, P-glycoprotein, probes, phototherapy.

[1]
Larsen, A.K.; Escargueil, A.E.; Skladanowski, A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther., 2000, 85(3), 217-229.
[http://dx.doi.org/10.1016/S0163-7258(99)00073-X] [PMID: 10739876]
[2]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[3]
Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. A review of NIR dyes in cancer targeting and imaging. Biomaterials, 2011, 32(29), 7127-7138.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.024] [PMID: 21724249]
[4]
Zhang, R.R.; Schroeder, A.B.; Grudzinski, J.J.; Rosenthal, E.L.; Warram, J.M.; Pinchuk, A.N.; Eliceiri, K.W.; Kuo, J.S.; Weichert, J.P. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol., 2017, 14(6), 347-364.
[http://dx.doi.org/10.1038/nrclinonc.2016.212] [PMID: 28094261]
[5]
Haque, A.; Faizi, M.S.H.; Rather, J.A.; Khan, M.S. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg. Med. Chem., 2017, 25(7), 2017-2034.
[http://dx.doi.org/10.1016/j.bmc.2017.02.061] [PMID: 28284863]
[6]
Kennedy, G.T.; Newton, A.; Predina, J.; Singhal, S. Intraoperative near-infrared imaging of mesothelioma. Transl. Lung Cancer Res., 2017, 6(3), 279-284.
[http://dx.doi.org/10.21037/tlcr.2017.05.01] [PMID: 28713673]
[7]
Yi, X.; Wang, F.; Qin, W.; Yang, X.; Yuan, J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int. J. Nanomedicine, 2014, 9, 1347-1365.
[http://dx.doi.org/10.2147/IJN.S60206] [PMID: 24648733]
[8]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[9]
Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transporter-mediat7ed multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat., 2016, 27, 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[10]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[11]
Hodgkinson, N.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol., 2017, 39(10) 1010428317734691
[http://dx.doi.org/10.1177/1010428317734691] [PMID: 28990490]
[12]
Fink, C.; Enk, A.; Gholam, P. Photodynamic therapy-aspects of pain management. J. Dtsch. Dermatol. Ges., 2015, 13(1), 15-22.
[http://dx.doi.org/10.1111/ddg.12546] [PMID: 25640485]
[13]
Choi, Y.M.; Adelzadeh, L.; Wu, J.J. Photodynamic therapy for psoriasis. J. Dermatolog. Treat., 2015, 26(3), 202-207.
[http://dx.doi.org/10.3109/09546634.2014.927816] [PMID: 24881473]
[14]
Prażmo, E.J.; Kwaśny, M.; Łapiński, M.; Mielczarek, A. Photodynamic therapy as a promising method used in the treatment of oral diseases. Adv. Clin. Exp. Med., 2016, 25(4), 799-807.
[http://dx.doi.org/10.17219/acem/32488] [PMID: 27629857]
[15]
Lee, H.H.; Choi, M.G.; Hasan, T. Application of photodynamic therapy in gastrointestinal disorders: an outdated or re-emerging technique? Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2017, 32(1), 1-10.
[http://dx.doi.org/10.3904/kjim.2016.200] [PMID: 28049283]
[16]
Sotiriou, E.; Apalla, Z.; Vrani, F.; Lazaridou, E.; Vakirlis, E.; Lallas, A.; Ioannides, D. Daylight photodynamic therapy vs. Conventional photodynamic therapy as skin cancer preventive treatment in patients with face and scalp cancerization: an intra-individual comparison study. J. Eur. Acad. Dermatol. Venereol., 2017, 31(8), 1303-1307.
[http://dx.doi.org/10.1111/jdv.14177] [PMID: 28222225]
[17]
Li, W.; Peng, J.; Tan, L.; Wu, J.; Shi, K.; Qu, Y.; Wei, X.; Qian, Z. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Biomaterials, 2016, 106, 119-133.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.016] [PMID: 27561883]
[18]
Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun., 2016, 7, 13193.
[http://dx.doi.org/10.1038/ncomms13193] [PMID: 27767031]
[19]
Giddabasappa, A.; Gupta, V.R.; Norberg, R.; Gupta, P.; Spilker, M.E.; Wentland, J.; Rago, B.; Eswaraka, J.; Leal, M.; Sapra, P. Biodistribution and targeting of anti-5T4 antibody-drug conjugate using fluorescence molecular tomography. Mol. Cancer Ther., 2016, 15(10), 2530-2540.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-1012] [PMID: 27466353]
[20]
Ito, K.; Mitsunaga, M.; Nishimura, T.; Kobayashi, H.; Tajiri, H. Combination photoimmunotherapy with monoclonal antibodies recognizing different epitopes of human epidermal growth factor receptor 2: an assessment of phototherapeutic effect based on fluorescence molecular imaging. Oncotarget, 2016, 7(12), 14143-14152.
[http://dx.doi.org/10.18632/oncotarget.7490] [PMID: 26909859]
[21]
Keating, J.J.; Runge, J.J.; Singhal, S.; Nims, S.; Venegas, O.; Durham, A.C.; Swain, G.; Nie, S.; Low, P.S.; Holt, D.E. Intraoperative near-infrared fluorescence imaging targeting folate receptors identifies lung cancer in a large-animal model. Cancer, 2017, 123(6), 1051-1060.
[http://dx.doi.org/10.1002/cncr.30419] [PMID: 28263385]
[22]
Wang, W.; Ma, Z.; Zhu, S.; Wan, H.; Yue, J.; Ma, H.; Ma, R.; Yang, Q.; Wang, Z.; Li, Q.; Qian, Y.; Yue, C.; Wang, Y.; Fan, L.; Zhong, Y.; Zhou, Y.; Gao, H.; Ruan, J.; Hu, Z.; Liang, Y.; Dai, H. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe. Adv. Mater., 2018, 30(22) e1800106
[http://dx.doi.org/10.1002/adma.201800106] [PMID: 29682821]
[23]
Zhou, Y.; Pei, W.; Zhang, X.; Chen, W.; Wu, J.; Yao, C.; Huang, L.; Zhang, H.; Huang, W.; Chye Loo, J.S.; Zhang, Q. A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo. Biomaterials, 2015, 54, 34-43.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.003] [PMID: 25907037]
[24]
Liu, Z.; Chen, N.; Dong, C.; Li, W.; Guo, W.; Wang, H.; Wang, S.; Tan, J.; Tu, Y.; Chang, J. Facile construction of near infrared fluorescence nanoprobe with amphiphilic protein-polymer bioconjugate for targeted cell imaging. ACS Appl. Mater. Interfaces, 2015, 7(34), 18997-19005.
[http://dx.doi.org/10.1021/acsami.5b05406] [PMID: 26262596]
[25]
Wu, C.; Zhang, Y.; Li, Z.; Li, C.; Wang, Q. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale, 2016, 8(25), 12531-12539.
[http://dx.doi.org/10.1039/C6NR00060F] [PMID: 26853187]
[26]
Kim, E.J.; Kumar, R.; Sharma, A.; Yoon, B.; Kim, H.M.; Lee, H.; Hong, K.S.; Kim, J.S. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe. Biomaterials, 2017, 122, 83-90.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.009] [PMID: 28110172]
[27]
Gu, K.; Xu, Y.; Li, H.; Guo, Z.; Zhu, S.; Zhu, S.; Shi, P.; James, T.D.; Tian, H.; Zhu, W.H. Real-time tracking and in vivo visualization of beta-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J. Am. Chem. Soc., 2016, 138(16), 5334-5340.
[http://dx.doi.org/10.1021/jacs.6b01705] [PMID: 27054782]
[28]
Sun, C.; Zhang, H.; Du, W.; Wang, B.; Ji, M. Synthesis of a Novel IR-822-Met near-infrared probe for in vivo tumor diagnosis. Biotechnol. Lett., 2017, 39(4), 491-499.
[http://dx.doi.org/10.1007/s10529-016-2275-0] [PMID: 28050673]
[29]
Tanaka, N.; Lajud, S.A.; Ramsey, A.; Szymanowski, A.R.; Ruffner, R.; O’Malley, B.W., Jr; Li, D. Application of infrared-based molecular imaging to a mouse model with head and neck cancer. Head Neck, 2016, 38(Suppl. 1), E1351-E1357.
[http://dx.doi.org/10.1002/hed.24226] [PMID: 26348614]
[30]
Chen, Y.J.; Wu, S.C.; Chen, C.Y.; Tzou, S.C.; Cheng, T.L.; Huang, Y.F.; Yuan, S.S.; Wang, Y.M. Peptide-based MRI contrast agent and near-infrared fluorescent probe for intratumoral legumain detection. Biomaterials, 2014, 35(1), 304-315.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.100] [PMID: 24120038]
[31]
Wang, M.; Mao, C.; Wang, H.; Ling, X.; Wu, Z.; Li, Z.; Ming, X. Molecular imaging of P-glycoprotein in chemoresistant tumors using a dual-modality PET/fluorescence probe. Mol. Pharm., 2017, 14(10), 3391-3398.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00420] [PMID: 28813596]
[32]
Mao, C.; Zhao, Y.; Li, F.; Li, Z.; Tian, S.; Debinski, W.; Ming, X. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J. Control. Release, 2018, 286, 289-300.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.005] [PMID: 30081143]
[33]
Mao, C.; Qu, P.; Miley, M.J.; Zhao, Y.; Li, Z.; Ming, X. P-glycoprotein targeted photodynamic therapy of chemoresistant tumors using recombinant Fab fragment conjugates. Biomater. Sci., 2018, 6(11), 3063-3074.
[http://dx.doi.org/10.1039/C8BM00844B] [PMID: 30298866]
[34]
Zeiderman, M.R.; Egger, M.E.; Kimbrough, C.W.; England, C.G.; Dupre, T.V.; McMasters, K.M.; McNally, L.R. Targeting of BRAF resistant melanoma via extracellular matrix metalloproteinase inducer receptor. J. Surg. Res., 2014, 190(1), 111-118.
[http://dx.doi.org/10.1016/j.jss.2014.02.021] [PMID: 24655664]
[35]
Zhang, C.; Gao, L.; Cai, Y.; Liu, H.; Gao, D.; Lai, J.; Jia, B.; Wang, F.; Liu, Z. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials, 2016, 84, 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.027] [PMID: 26803407]
[36]
Kushal, S.; Wang, W.; Vaikari, V.P.; Kota, R.; Chen, K.; Yeh, T.S.; Jhaveri, N.; Groshen, S.L.; Olenyuk, B.Z.; Chen, T.C.; Hofman, F.M.; Shih, J.C. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression. Oncotarget, 2016, 7(12), 13842-13853.
[http://dx.doi.org/10.18632/oncotarget.7283] [PMID: 26871599]
[37]
Li, J.; Chen, K.; Liu, H.; Cheng, K.; Yang, M.; Zhang, J.; Cheng, J.D.; Zhang, Y.; Cheng, Z. Activatable near-infra-red fluorescent probe for in vivo imaging of fibroblast activation protein-alpha. Bioconjug. Chem., 2012, 23(8), 1704-1711.
[http://dx.doi.org/10.1021/bc300278r] [PMID: 22812530]
[38]
Luo, Z.; Feng, L.; An, R.; Duan, G.; Yan, R.; Shi, H.; He, J.; Zhou, Z.; Ji, C.; Chen, H.Y.; Ye, D.; Ji, C.; Chen, H.Y.; Ye, D. Activatable near-infrared probe for fluorescence imaging of gamma-glutamyl transpeptidase in tumor cells and in vivo. Chemistry, 2017, 23(59), 14778-14785.
[http://dx.doi.org/10.1002/chem.201702210] [PMID: 28653778]
[39]
Shimizu, Y.; Temma, T.; Hara, I.; Makino, A.; Kondo, N.; Ozeki, E.; Ono, M.; Saji, H. In vivo imaging of membrane type-1 matrix metalloproteinase with a novel activatable near-infrared fluorescence probe. Cancer Sci., 2014, 105(8), 1056-1062.
[http://dx.doi.org/10.1111/cas.12457] [PMID: 24863849]
[40]
Li, L.; Shi, W.; Wu, X.; Li, X.; Ma, H. In vivo tumor imaging by a γ-glutamyl transpeptidase-activatable near-infrared fluorescent probe. Anal. Bioanal. Chem., 2018, 410(26), 6771-6777.
[http://dx.doi.org/10.1007/s00216-018-1181-9] [PMID: 29909457]
[41]
Shibata, K.; Kajiyama, H.; Mizokami, Y.; Ino, K.; Nomura, S.; Mizutani, S.; Terauchi, M.; Kikkawa, F. Placental leucine aminopeptidase (P-LAP) and glucose transporter 4 (GLUT4) expression in benign, borderline and malignant ovarian epithelia. Gynecol. Oncol., 2005, 98(1), 11-18.
[http://dx.doi.org/10.1016/j.ygyno.2005.03.043] [PMID: 15907336]
[42]
Pilar Carrera, M.; Ramírez-Expósito, M.J.; Dueñas, B.; Dolores Mayas, M.; Jesús García, M.; De la Chica, S.; Cortés, P.; Ruíz-Sanjuan, M.; Martínez-Martos, J.M. Insulin-regulated aminopeptidase/placental leucil Aminopeptidase (IRAP/P-lAP) and angiotensin IV-forming activities are modified in serum of rats with breast cancer induced by N-methyl-nitrosourea. Anticancer Res., 2006, 26(2A), 1011-1014.
[PMID: 16619500]
[43]
Fang, C.; Zhang, J.; Yang, H.; Peng, L.; Wang, K.; Wang, Y.; Zhao, X.; Liu, H.; Dou, C.; Shi, L.; Zhao, C.; Liang, S.; Li, D.; Wang, X. Leucine aminopeptidase 3 promotes migration and invasion of breast cancer cells through upregulation of fascin and matrix metalloproteinases-2/9 expression. J. Cell. Biochem., 2019, 120(3), 3611-3620.
[http://dx.doi.org/10.1002/jcb.27638] [PMID: 30417585]
[44]
Gong, Q.; Shi, W.; Li, L.; Ma, H. Leucine aminopeptidase may contribute to the intrinsic resistance of cancer cells toward cisplatin as revealed by an ultrasensitive fluorescent probe. Chem. Sci. (Camb.), 2016, 7(1), 788-792.
[http://dx.doi.org/10.1039/C5SC03600C] [PMID: 28966770]
[45]
Gu, K.; Liu, Y.; Guo, Z.; Lian, C.; Yan, C.; Shi, P.; Tian, H.; Zhu, W.H. In situ ratiometric quantitative tracing of intracellular leucine aminopeptidase activity via an activatable near-infrared fluorescent probe. ACS Appl. Mater. Interfaces, 2016, 8(40), 26622-26629.
[http://dx.doi.org/10.1021/acsami.6b10238] [PMID: 27667645]
[46]
Zhang, W.; Liu, F.; Zhang, C.; Luo, J.G.; Luo, J.; Yu, W.; Kong, L. Near-infrared fluorescent probe with remarkable large stokes shift and favorable water solubility for real-time tracking leucine aminopeptidase in living cells and in vivo. Anal. Chem., 2017, 89(22), 12319-12326.
[http://dx.doi.org/10.1021/acs.analchem.7b03332] [PMID: 29048879]
[47]
Zhou, Z.; Wang, F.; Yang, G.; Lu, C.; Nie, J.; Chen, Z.; Ren, J.; Sun, Q.; Zhao, C.; Zhu, W.H. A ratiometric fluorescent probe for monitoring leucine aminopeptidase in living cells and zebrafish model. Anal. Chem., 2017, 89(21), 11576-11582.
[http://dx.doi.org/10.1021/acs.analchem.7b02910] [PMID: 28992691]
[48]
Huang, S.; Wu, Y.; Zeng, F.; Chen, J.; Wu, S. A turn-on fluorescence probe based on aggregation-induced emission for leucine aminopeptidase in living cells and tumor tissue. Anal. Chim. Acta, 2018, 1031, 169-177.
[http://dx.doi.org/10.1016/j.aca.2018.05.032] [PMID: 30119736]
[49]
He, X.; Li, L.; Fang, Y.; Shi, W.; Li, X.; Ma, H. In vivo imaging of leucine aminopeptidase activity in drug-induced liver injury and liver cancer via a near-infrared fluorescent probe. Chem. Sci. (Camb.), 2017, 8(5), 3479-3483.
[http://dx.doi.org/10.1039/C6SC05712H] [PMID: 28507720]
[50]
Hettiarachchi, S.U.; Prasai, B.; McCarley, R.L. Detection and cellular imaging of human cancer enzyme using a turn-on, wavelength-shiftable, self-immolative profluorophore. J. Am. Chem. Soc., 2014, 136(21), 7575-7578.
[http://dx.doi.org/10.1021/ja5030707] [PMID: 24813575]
[51]
Calatrava-Pérez, E.; Bright, S.A.; Achermann, S.; Moylan, C.; Senge, M.O.; Veale, E.B.; Williams, D.C.; Gunnlaugsson, T.; Scanlan, E.M. Glycosidase activated release of fluorescent 1,8-naphthalimide probes for tumor cell imaging from glycosylated ‘pro-probes’. Chem. Commun. (Camb.), 2016, 52(89), 13086-13089.
[http://dx.doi.org/10.1039/C6CC06451E] [PMID: 27722254]
[52]
Kruspe, S.; Dickey, D.D.; Urak, K.T.; Blanco, G.N.; Miller, M.J.; Clark, K.C.; Burghardt, E.; Gutierrez, W.R.; Phadke, S.D.; Kamboj, S.; Ginader, T.; Smith, B.J.; Grimm, S.K.; Schappet, J.; Ozer, H.; Thomas, A.; McNamara, J.O., II; Chan, C.H.; Giangrande, P.H. Rapid and sensitive detection of breast cancer cells in patient blood with nuclease-activated probe technology. Mol. Ther. Nucleic Acids, 2017, 8, 542-557.
[http://dx.doi.org/10.1016/j.omtn.2017.08.004] [PMID: 28918054]
[53]
Kobayashi, H.; Choyke, P.L. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc. Chem. Res., 2011, 44(2), 83-90.
[http://dx.doi.org/10.1021/ar1000633] [PMID: 21062101]
[54]
Portnoy, E.; Gurina, M.; Magdassi, S.; Eyal, S. Evaluation of the near infrared compound indocyanine green as a probe substrate of p-glycoprotein. Mol. Pharm., 2012, 9(12), 3595-3601.
[http://dx.doi.org/10.1021/mp300472y] [PMID: 23098218]
[55]
On, N.H.; Chen, F.; Hinton, M.; Miller, D.W. Assessment of p-glycoprotein activity in the blood-brain barrier (BBB) using near infrared fluorescence (NIRF) imaging techniques. Pharm. Res., 2011, 28(10), 2505-2515.
[http://dx.doi.org/10.1007/s11095-011-0478-6] [PMID: 21598079]
[56]
Wang, Y.; Liu, T.; Zhang, E.; Luo, S.; Tan, X.; Shi, C. Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells. Biomaterials, 2014, 35(13), 4116-4124.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.061] [PMID: 24529902]
[57]
Ning, J.; Huang, B.; Wei, Z.; Li, W.; Zheng, H.; Ma, L.; Xing, Z.; Niu, H.; Huang, W. Mitochondria targeting and near-infrared fluorescence imaging of a novel heptamethine cyanine anticancer agent. Mol. Med. Rep., 2017, 15(6), 3761-3766.
[http://dx.doi.org/10.3892/mmr.2017.6451] [PMID: 28440435]
[58]
Tan, X.; Luo, S.; Long, L.; Wang, Y.; Wang, D.; Fang, S.; Ouyang, Q.; Su, Y.; Cheng, T.; Shi, C. Structure-guided design and synthesis of a mitochondria-targeting near-infrared fluorophore with multimodal therapeutic activities. Adv. Mater., 2017, 29(43) 1704196
[http://dx.doi.org/10.1002/adma.201704196] [PMID: 28980731]
[59]
Condie, A.G.; Yan, Y.; Gerson, S.L.; Wang, Y. A fluorescent probe to measure DNA damage and repair. PLoS One, 2015, 10(8) e0131330
[http://dx.doi.org/10.1371/journal.pone.0131330] [PMID: 26309022]
[60]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
[61]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[62]
Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng., 2016, 44(6), 2049-2061.
[http://dx.doi.org/10.1007/s10439-016-1583-9] [PMID: 26951462]
[63]
Ashfaq, U.A.; Riaz, M.; Yasmeen, E.; Yousaf, M.Z. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit. Rev. Ther. Drug Carrier Syst., 2017, 34(4), 317-353.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017017845] [PMID: 29199588]
[64]
Das, M.; Mishra, D.; Dhak, P.; Gupta, S.; Maiti, T.K.; Basak, A.; Pramanik, P. Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small, 2009, 5(24), 2883-2893.
[http://dx.doi.org/10.1002/smll.200901219] [PMID: 19856326]
[65]
Tang, L.; Zhang, F.; Yu, F.; Sun, W.; Song, M.; Chen, X.; Zhang, X.; Sun, X. Croconaine nanoparticles with enhanced tumor accumulation for multimodality cancer theranostics. Biomaterials, 2017, 129, 28-36.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.009] [PMID: 28324863]
[66]
Liu, F.; He, X.; Lei, Z.; Liu, L.; Zhang, J.; You, H.; Zhang, H.; Wang, Z. Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy. Adv. Healthc. Mater., 2015, 4(4), 559-568.
[http://dx.doi.org/10.1002/adhm.201400676] [PMID: 25471617]
[67]
Huang, S.; Chen, P.; Xu, C. Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging. Talanta, 2017, 165, 161-166.
[http://dx.doi.org/10.1016/j.talanta.2016.12.048] [PMID: 28153236]
[68]
Liu, F.; Le, W.; Mei, T.; Wang, T.; Chen, L.; Lei, Y.; Cui, S.; Chen, B.; Cui, Z.; Shao, C. In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with anti-mesothelin antibody. Int. J. Nanomedicine, 2016, 11, 2195-2207.
[http://dx.doi.org/10.2147/ijn.s104501] [PMID: 27274243]
[69]
Wei, Z.; Wu, Y.; Zhao, Y.; Mi, L.; Wang, J.; Wang, J.; Zhao, J.; Wang, L.; Liu, A.; Li, Y.; Wei, W.; Zhang, Y.; Liu, S. Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging. Anal. Chim. Acta, 2016, 938, 156-164.
[http://dx.doi.org/10.1016/j.aca.2016.07.037] [PMID: 27619098]
[70]
Hsu, B.Y.; Ng, M.; Tan, A.; Connell, J.; Roberts, T.; Lythgoe, M.; Zhang, Y.; Wong, S.Y.; Bhakoo, K.; Seifalian, A.M.; Li, X.; Wang, J. pH-Activatable MnO-based fluorescence and magnetic resonance bimodal nanoprobe for cancer imaging. Adv. Healthc. Mater., 2016, 5(6), 721-729.
[http://dx.doi.org/10.1002/adhm.201500908] [PMID: 26895111]
[71]
Lee, S.M.; Kim, H.J.; Kim, S.Y.; Kwon, M.K.; Kim, S.; Cho, A.; Yun, M.; Shin, J.S.; Yoo, K.H. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials, 2014, 35(7), 2272-2282.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.068] [PMID: 24342728]
[72]
Li, B.; Xu, Q.; Li, X.; Zhang, P.; Zhao, X.; Wang, Y. Redox-responsive hyaluronic acid nanogels for hyperthermia-assisted chemotherapy to overcome multidrug resistance. Carbohydr. Polym., 2019, 203, 378-385.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.076] [PMID: 30318226]
[73]
Qiu, L.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C.; Zhu, G.; You, M.; Han, D.; Jiang, J.; Yu, R.; Tan, W. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett., 2015, 15(1), 457-463.
[http://dx.doi.org/10.1021/nl503777s] [PMID: 25479133]
[74]
Xu, L.; Liu, J.; Xi, J.; Li, Q.; Chang, B.; Duan, X.; Wang, G.; Wang, S.; Wang, Z.; Wang, L. Synergized multimodal therapy for safe and effective reversal of cancer multidrug resistance based on low-level photothermal and photodynamic effects. Small, 2018. e1800785
[http://dx.doi.org/10.1002/smll.201800785] [PMID: 29931728]
[75]
Zhang, W.; Wang, F.; Wang, Y.; Wang, J.; Yu, Y.; Guo, S.; Chen, R.; Zhou, D. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J. Control. Release, 2016, 232, 9-19.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.001] [PMID: 27072026]
[76]
Min, Y.; Li, J.; Liu, F.; Yeow, E.K.; Xing, B. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. Engl., 2014, 53(4), 1012-1016.
[http://dx.doi.org/10.1002/anie.201308834] [PMID: 24311528]
[77]
Zeng, L.; Pan, Y.; Tian, Y.; Wang, X.; Ren, W.; Wang, S.; Lu, G.; Wu, A. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials, 2015, 57, 93-106.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.006] [PMID: 25913254]
[78]
Hu, M.; Zhao, J.; Ai, X.; Budanovic, M.; Mu, J.; Webster, R.D.; Cao, Q.; Mao, Z.; Xing, B. Near infrared light-mediated photoactivation of cytotoxic Re(I) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Trans., 2016, 45(36), 14101-14108.
[http://dx.doi.org/10.1039/C6DT01569G] [PMID: 27711690]
[79]
Tran, T.H.; Nguyen, H.T.; Pham, T.T.; Choi, J.Y.; Choi, H.G.; Yong, C.S.; Kim, J.O. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl. Mater. Interfaces, 2015, 7(51), 28647-28655.
[http://dx.doi.org/10.1021/acsami.5b10426] [PMID: 26641922]
[80]
Wang, M.; Wu, J.; Li, Y.; Li, F.; Hu, X.; Wang, G.; Han, M.; Ling, D.; Gao, J. A tumor targeted near-infrared light-controlled nanocomposite to combat with multidrug resistance of cancer. J. Control. Release, 2018, 288, 34-44.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.037] [PMID: 30171977]
[81]
Wang, H.; Gao, Z.; Liu, X.; Agarwal, P.; Zhao, S.; Conroy, D.W.; Ji, G.; Yu, J.; Jaroniec, C.P.; Liu, Z.; Lu, X.; Li, X.; He, X. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat. Commun., 2018, 9(1), 562.
[http://dx.doi.org/10.1038/s41467-018-02915-8] [PMID: 29422620]
[82]
Suo, X.; Eldridge, B.N.; Zhang, H.; Mao, C.; Min, Y.; Sun, Y.; Singh, R.; Ming, X. P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces, 2018, 10(39), 33464-33473.
[http://dx.doi.org/10.1021/acsami.8b11974] [PMID: 30188117]
[83]
Li, Z.; Cai, Y.; Zhao, Y.; Yu, H.; Zhou, H.; Chen, M. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy. Int. J. Nanomedicine, 2017, 12, 6595-6604.
[http://dx.doi.org/10.2147/IJN.S138235] [PMID: 28919756]
[84]
Li, Y.; Deng, Y.; Tian, X.; Ke, H.; Guo, M.; Zhu, A.; Yang, T.; Guo, Z.; Ge, Z.; Yang, X.; Chen, H. Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor. ACS Nano, 2015, 9(10), 9626-9637.
[http://dx.doi.org/10.1021/acsnano.5b05097] [PMID: 26365698]
[85]
Peng, Y.; Nie, J.; Cheng, W.; Liu, G.; Zhu, D.; Zhang, L.; Liang, C.; Mei, L.; Huang, L.; Zeng, X. A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomater. Sci., 2018, 6(5), 1084-1098.
[http://dx.doi.org/10.1039/C7BM01206C] [PMID: 29512657]
[86]
Cabuzu, D.; Cirja, A.; Puiu, R.; Grumezescu, A.M. Biomedical applications of gold nanoparticles. Curr. Top. Med. Chem., 2015, 15(16), 1605-1613.
[http://dx.doi.org/10.2174/1568026615666150414144750] [PMID: 25877087]
[87]
Chen, J.; Li, X.; Zhao, X.; Wu, Q.; Zhu, H.; Mao, Z.; Gao, C. Doxorubicin-conjugated pH-responsive gold nanorods for combined photothermal therapy and chemotherapy of cancer. Bioact. Mater., 2018, 3(3), 347-354.
[http://dx.doi.org/10.1016/j.bioactmat.2018.05.003] [PMID: 29992194]
[88]
Zhang, Y.; Shen, T.T.; Kirillov, A.M.; Liu, W.S.; Tang, Y. NIR light/H2O2-triggered nanocomposites for a highly efficient and selective synergistic photodynamic and photothermal therapy against hypoxic tumor cells. Chem. Commun. (Camb.), 2016, 52(51), 7939-7942.
[http://dx.doi.org/10.1039/C6CC02571D] [PMID: 27172102]
[89]
Rao, L.; Bu, L.L.; Cai, B.; Xu, J.H.; Li, A.; Zhang, W.F.; Sun, Z.J.; Guo, S.S.; Liu, W.; Wang, T.H.; Zhao, X.Z. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater., 2016, 28(18), 3460-3466.
[http://dx.doi.org/10.1002/adma.201506086] [PMID: 26970518]
[90]
Rao, L.; He, Z.; Meng, Q.F.; Zhou, Z.; Bu, L.L.; Guo, S.S.; Liu, W.; Zhao, X.Z. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J. Biomed. Mater. Res. A, 2017, 105(2), 521-530.
[http://dx.doi.org/10.1002/jbm.a.35927] [PMID: 27718539]
[91]
Chen, C.W.; Chan, Y.C.; Hsiao, M.; Liu, R.S. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces, 2016, 8(47), 32108-32119.
[http://dx.doi.org/10.1021/acsami.6b07770] [PMID: 27933825]
[92]
Dou, Q.Q.; Rengaramchandran, A.; Selvan, S.T.; Paulmurugan, R.; Zhang, Y. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy. Sci. Rep., 2015, 5, 8252.
[http://dx.doi.org/10.1038/srep08252] [PMID: 25652742]
[93]
Ai, F.; Sun, T.; Xu, Z.; Wang, Z.; Kong, W.; To, M.W.; Wang, F.; Zhu, G. An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance. Dalton Trans., 2016, 45(33), 13052-13060.
[http://dx.doi.org/10.1039/C6DT01404F] [PMID: 27430044]
[94]
Dong, C.; Liu, Z.; Wang, S.; Zheng, B.; Guo, W.; Yang, W.; Gong, X.; Wu, X.; Wang, H.; Chang, J.; Wu, X.; Wang, H.; Chang, J. A protein-polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy. ACS Appl. Mater. Interfaces, 2016, 8(48), 32688-32698.
[http://dx.doi.org/10.1021/acsami.6b11803] [PMID: 27934134]
[95]
Zhao, N.; Wu, B.; Hu, X.; Xing, D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials, 2017, 141, 40-49.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.031] [PMID: 28666101]
[96]
Lin, M.; Gao, Y.; Diefenbach, T.J.; Shen, J.K.; Hornicek, F.J.; Park, Y.I.; Xu, F.; Lu, T.J.; Amiji, M.; Duan, Z. Facial layer-by-layer engineering of upconversion nanoparticles for gene delivery: near-infrared-initiated fluorescence resonance energy transfer tracking and overcoming drug resistance in ovarian cancer. ACS Appl. Mater. Interfaces, 2017, 9(9), 7941-7949.
[http://dx.doi.org/10.1021/acsami.6b15321] [PMID: 28177223]
[97]
Barth, B.M.; Altinoğlu, I. E.; Shanmugavelandy, S.S.; Kaiser, J.M.; Crespo-Gonzalez, D.; DiVittore, N.A.; McGovern, C.; Goff, T.M.; Keasey, N.R.; Adair, J.H.; Loughran, T.P., Jr; Claxton, D.F.; Kester, M. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano, 2011, 5(7), 5325-5337.
[http://dx.doi.org/10.1021/nn2005766] [PMID: 21675727]
[98]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[99]
Zeng, X.; Yuan, Y.; Wang, T.; Wang, H.; Hu, X.; Fu, Z.; Zhang, G.; Liu, B.; Lu, G. Targeted imaging and induction of apoptosis of drug-resistant hepatoma cells by miR-122-loaded graphene-InP nanocompounds. J. Nanobiotechnology, 2017, 15(1), 9.
[http://dx.doi.org/10.1186/s12951-016-0237-2] [PMID: 28114997]
[100]
Dong, X.; Yin, W.; Zhang, X.; Zhu, S.; He, X.; Yu, J.; Xie, J.; Guo, Z.; Yan, L.; Liu, X.; Wang, Q.; Gu, Z.; Zhao, Y. Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl. Mater. Interfaces, 2018, 10(4), 4271-4284.
[http://dx.doi.org/10.1021/acsami.7b17506] [PMID: 29318879]
[101]
Chen, X.; Hai, X.; Wang, J. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal. Chim. Acta, 2016, 922, 1-10.
[http://dx.doi.org/10.1016/j.aca.2016.03.050] [PMID: 27154826]
[102]
Durán, N.; Martinez, D.S.; Silveira, C.P.; Durán, M.; de Moraes, A.C.; Simões, M.B.; Alves, O.L.; Fávaro, W.J. Graphene oxide: a carrier for pharmaceuticals and a scaffold for cell interactions. Curr. Top. Med. Chem., 2015, 15(4), 309-327.
[http://dx.doi.org/10.2174/1568026615666150108144217] [PMID: 25579346]
[103]
Khan, A.A.P.; Khan, A.; Asiri, A.M.; Ashraf, G.M.; Alhogbia, B.G. Graphene oxide based metallic nanoparticles and their some biological and environmental application. Curr. Drug Metab., 2017, 18(11), 1020-1029.
[http://dx.doi.org/10.2174/1389200218666171016100507] [PMID: 29034831]
[104]
Zhang, H.; Zhang, H.; Aldalbahi, A.; Zuo, X.; Fan, C.; Mi, X. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens. Bioelectron., 2017, 89(Pt 1), 96-106.
[http://dx.doi.org/10.1016/j.bios.2016.07.030] [PMID: 27459883]
[105]
He, Q.; Kiesewetter, D.O.; Qu, Y.; Fu, X.; Fan, J.; Huang, P.; Liu, Y.; Zhu, G.; Liu, Y.; Qian, Z.; Chen, X. NIR-responsive on-demand release of CO from metal carbonyl-caged graphene oxide nanomedicine. Adv. Mater., 2015, 27(42), 6741-6746.
[http://dx.doi.org/10.1002/adma.201502762] [PMID: 26401893]
[106]
Kalluru, P.; Vankayala, R.; Chiang, C.S.; Hwang, K.C. Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials, 2016, 95, 1-10.
[http://dx.doi.org/10.1016/j.biomaterialss.2016.04.006] [PMID: 27108401]
[107]
Zeng, Y.; Yang, Z.; Li, H.; Hao, Y.; Liu, C.; Zhu, L.; Liu, J.; Lu, B.; Li, R. Multifunctional nanographene oxide for targeted gene-mediated thermochemotherapy of drug-resistant tumour. Sci. Rep., 2017, 7, 43506.
[http://dx.doi.org/10.1038/srep43506] [PMID: 28272412]
[108]
Wang, L.; Sun, Q.; Wang, X.; Wen, T.; Yin, J.J.; Wang, P.; Bai, R.; Zhang, X.Q.; Zhang, L.H.; Lu, A.H.; Chen, C. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc., 2015, 137(5), 1947-1955.
[http://dx.doi.org/10.1021/ja511560b] [PMID: 25597855]
[109]
Isoglu, I.A.; Ozsoy, Y.; Isoglu, S.D. Advances in micelle-based drug delivery: cross-linked systems. Curr. Top. Med. Chem., 2017, 17(13), 1469-1489.
[http://dx.doi.org/10.2174/1568026616666161222110600] [PMID: 28017154]
[110]
Jain, V.; Jain, S.; Mahajan, S.C. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Curr. Drug Deliv., 2015, 12(2), 177-191.
[http://dx.doi.org/10.2174/1567201811666140822112516] [PMID: 25146439]
[111]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[112]
Li, Z.; Wang, H.; Chen, Y.; Wang, Y.; Li, H.; Han, H.; Chen, T.; Jin, Q.; Ji, J. pH- and NIR light-responsive polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy to reverse drug resistance in cancer treatment. Small, 2016, 12(20), 2731-2740.
[http://dx.doi.org/10.1002/smll.201600365] [PMID: 27043935]
[113]
Liu, H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. Colloids Surf. B Biointerfaces, 2017, 157, 398-406.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.080] [PMID: 28624725]
[114]
Wang, T.; Wang, D.; Yu, H.; Wang, M.; Liu, J.; Feng, B.; Zhou, F.; Yin, Q.; Zhang, Z.; Huang, Y.; Li, Y. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano, 2016, 10(3), 3496-3508.
[http://dx.doi.org/10.1021/acsnano.5b07706] [PMID: 26866752]
[115]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[116]
Madni, A.; Sarfraz, M.; Rehman, M.; Ahmad, M.; Akhtar, N.; Ahmad, S.; Tahir, N.; Ijaz, S.; Al-Kassas, R.; Löbenberg, R. Liposomal drug delivery: a versatile platform for challenging clinical applications. J. Pharm. Pharm. Sci., 2014, 17(3), 401-426.
[http://dx.doi.org/10.18433/J3CP55] [PMID: 25224351]
[117]
Yao, C.; Wang, P.; Li, X.; Hu, X.; Hou, J.; Wang, L.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater., 2016, 28(42), 9341-9348.
[http://dx.doi.org/10.1002/adma.201503799] [PMID: 27578301]
[118]
Gao, C.; Liang, X.; Mo, S.; Zhang, N.; Sun, D.; Dai, Z. Near-infrared cyanine-loaded liposome-like nanocapsules of camptothecin-floxuridine conjugate for enhanced chemophotothermal combination cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(4), 3219-3228.
[http://dx.doi.org/10.1021/acsami.7b14125] [PMID: 29299917]
[119]
Allahyari, M.; Mohit, E. Peptide/protein vaccine delivery system based on PLGA particles. Hum. Vaccin. Immunother., 2016, 12(3), 806-828.
[http://dx.doi.org/10.1080/21645515.2015.1102804] [PMID: 26513024]
[120]
Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: a unique polymer for drug delivery. Ther. Deliv., 2015, 6(1), 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[121]
Mir, M.; Ahmed, N.; Rehman, A.U. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[122]
Wang, H.; Zhao, Y.; Wang, H.; Gong, J.; He, H.; Shin, M.C.; Yang, V.C.; Huang, Y. Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. J. Control. Release, 2014, 192, 47-56.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.051] [PMID: 25003794]
[123]
Yuan, X.; Ji, W.; Chen, S.; Bao, Y.; Tan, S.; Lu, S.; Wu, K.; Chu, Q. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int. J. Nanomedicine, 2016, 11, 2119-2131.
[http://dx.doi.org/10.2147/ijn.s92271] [PMID: 27307727]
[124]
Nagheh, Z.; Irani, S.; Mirfakhraie, R.; Dinarvand, R. SN38-PEG-PLGA-verapamil nanoparticles inhibit proliferation and downregulate drug transporter ABCG2 gene expression in colorectal cancer cells. Prog. Biomater., 2017, 6(4), 137-145.
[http://dx.doi.org/10.1007/s40204-017-0073-y] [PMID: 28948511]
[125]
Gao, D.Y.; Lin, TsT.; Sung, Y.C.; Liu, Y.C.; Chiang, W.H.; Chang, C.C.; Liu, J.Y.; Chen, Y. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials, 2015, 67, 194-203.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.035] [PMID: 26218745]
[126]
Chen, S.; Liu, Y.; Zhu, S.; Chen, C.; Xie, W.; Xiao, L.; Zhu, Y.; Hao, L.; Wang, Z.; Sun, J.; Chang, S. Dual-mode imaging and therapeutic effects of drug-loaded phase-transition nanoparticles combined with near-infrared laser and low-intensity ultrasound on ovarian cancer. Drug Deliv., 2018, 25(1), 1683-1693.
[http://dx.doi.org/10.1080/10717544.2018.1507062] [PMID: 30343601]
[127]
Gao, Y.; Zhang, H.; Zhang, Y.; Lv, T.; Zhang, L.; Li, Z.; Xie, X.; Li, F.; Chen, H.; Jia, L. Erlotinib-guided self-assembled trifunctional click nanotheranostics for distinguishing druggable mutations and synergistic therapy of nonsmall cell lung cancer. Mol. Pharm., 2018, 15(11), 5146-5161.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00561] [PMID: 30296375]
[128]
Li, X.; Mu, J.; Liu, F.; Tan, E.W.; Khezri, B.; Webster, R.D.; Yeow, E.K.; Xing, B. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging. Bioconjug. Chem., 2015, 26(5), 955-961.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00170] [PMID: 25938732]
[129]
Cui, J.; Meng, Q.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S. Design and synthesis of new alpha-Naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J. Med. Chem., 2015, 58(8), 3534-3547.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00265] [PMID: 25799264]
[130]
Meng, Q.; Wang, Z.; Cui, J.; Cui, Q.; Dong, J.; Zhang, Q.; Li, S. Design, synthesis, and biological evaluation of cytochrome P450 1B1 targeted molecular imaging probes for colorectal tumor detection. J. Med. Chem., 2018, 61(23), 10901-10909.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01633] [PMID: 30422652]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy