[1]
Calvert, P.; Yao, K.S.; Hamilton, T.C.; O’Dwyer, P.J. Clinical studies of reversal of drug resistance based on glutathione. Chem. Biol. Interact., 1998, 111-112, 213-224.
[2]
Ballatori, N.; Krance, S.M.; Marchan, R.; Hammond, C.L. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Aspects Med., 2009, 30, 13-28.
[3]
Ruzza, P.; Rosato, A.; Rossi, C.R.; Floreani, M.; Quintieri, L. Glutathione transferases as targets for cancer therapy. Anticancer. Agents Med. Chem., 2009, 9, 763-777.
[4]
Dalzoppo, D.; Di Paolo, V.; Calderan, L.; Pasut, G.; Rosato, A.; Caccuri, A.M.; Quintieri, L. Thiol-activated anticancer agents: The state of the art. Anticancer. Agents Med. Chem., 2017, 17, 4-20.
[5]
Griffith, O.W.; Meister, A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem., 1979, 254, 7558-7560.
[6]
Hamilton, T.C.; Winker, M.A.; Louie, K.G.; Batist, G.; Behrens, B.C.; Tsuruo, T.; Grotzinger, K.R.; McKoy, W.M.; Young, R.C.; Ozols, R.F. Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem. Pharmacol., 1985, 34, 2583-2586.
[7]
Bailey, H.H.L-S. R-buthionine sulfoximine: historical development and clinical issues. Chem. Biol. Interact., 1998, 111-112, 239-254.
[8]
Yi, X.; Ding, L.; Jin, Y.; Ni, C.; Wang, W. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma. Int. J. Radiat. Oncol. Biol. Phys., 1994, 29, 393-396.
[9]
Anderson, C.P.; Tsai, J.; Chan, W.; Park, C.K.; Tian, L.; Lui, R.M.; Forman, H.J.; Reynolds, C.P. Buthionine sulphoximine alone and in combination with melphalan (L-PAM) is highly cytotoxic for human neuroblastoma cell lines. Eur. J. Cancer, 1997, 33, 2016-2019.
[10]
Fruehauf, J.P.; Zonis, S.; Al-Bassam, M.; Kyshtoobayeva, A.; Dasgupta, C.; Milovanovic, T.; Parker, R.J.; Buzaid, A.C. Selective and synergistic activity of L-S,R-buthionine sulfoximine on malignant melanoma is accompanied by decreased expression of glutathione-S-transferase. Pigment Cell Res., 1997, 10, 236-249.
[11]
Prezioso, J.A.; FitzGerald, G.B.; Wick, M.M. Melanoma cytotoxicity of buthionine sulfoximine (BSO) alone and in combination with 3,4-dihydroxybenzylamine and melphalan. J. Invest. Dermatol., 1992, 99, 289-293.
[12]
Villablanca, J.G.; Volchenboum, S.L.; Cho, H.; Kang, M.H.; Cohn, S.L.; Anderson, C.P.; Marachelian, A.; Groshen, S.; Tsao-Wei, D.; Matthay, K.K.; Maris, J.M.; Hasenauer, C.E.; Czarnecki, S.; Lai, H.; Goodarzian, F.; Shimada, H.; Reynolds, C.P. A Phase I new approaches to neuroblastoma therapy study of buthionine sulfoximine and melphalan with autologous stem cells for recurrent/refractory high-risk neuroblastoma. Pediatr. Blood Cancer, 2016, 63, 1349-1356.
[13]
Anderson, C.P.; Reynolds, C.P. Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy. Bone Marrow Transplant., 2002, 30, 135-140.
[14]
Bailey, H.H.; Mulcahy, R.T.; Tutsch, K.D.; Arzoomanian, R.Z.; Alberti, D.; Tombes, M.B.; Wilding Pomplun, G.M.; Spriggs, D.R. Phase I clinical trial of intravenous L-buthionine sulfoximine and melphalan: an attempt at modulation of glutathione. J. Clin. Oncol., 1994, 12, 194-205.
[15]
Anderson, C.P.; Matthay, K.K.; Perentesis, J.P.; Neglia, J.P.; Bailey, H.H.; Villablanca, J.G.; Groshen, S.; Hasenauer, B.; Maris, J.M.; Seeger, R.C.; Reynolds, C.P. Pilot study of intravenous melphalan combined with continuous infusion L-S,R-buthionine sulfoximine for children with recurrent neuroblastoma. Pediatr. Blood Cancer, 2015, 62, 1739-1746.
[16]
Paolino, D.; Cosco, D.; Licciardi, M.; Giammona, G.; Fresta, M.; Cavallaro, G. Polyaspartylhydrazide copolymer-based supramolecular vesicular aggregates as delivery devices for anticancer drugs. Biomacromolecule, 2008, 9, 1117-1130.
[17]
Di Meo, C.; Cilurzo, F.; Licciardi, M.; Scialabba, C.; Sabia, R.; Paolino, D.; Capitani, D.; Fresta, M.; Giammona, G.; Villani, C.; Matricardi, P. Polyaspartamide-doxorubicin conjugate as potential prodrug for anticancer therapy. Pharm. Res., 2015, 32, 1557-1569.
[18]
Pasut, G.; Paolino, D.; Celia, C.; Mero, A.; Joseph, A.S.; Wolfram, J.; Cosco, D.; Schiavon, O.; Shen, H.; Fresta, M. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J. Control. Release, 2015, 199, 106-113.
[19]
Celia, C.; Ferrati, S.; Bansal, S.; Van de Ven, A.; Ruozzi, B.; Zabre, E.; Hosali, S.; Paolino, D.; Sarpietro, M.G.; Fine, D.; Fresta, M.; Ferrari, M.; Grattoni, A. Sustained zero-order release of intact ultra-stable drug-loaded liposomes from an implantable nanochannel delivery system. Adv. Healthc. Mater., 2014, 3, 230-238.
[20]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9E12
[21]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1, 10-29.
[22]
Licciardi, M.; Paolino, D.; Celia, C.; Giammona, G.; Cavallaro, G.; Fresta, M. Folate-targeted supramolecular vesicular aggregates based on polyaspartyl-hydrazide copolymers for the selective delivery of antitumoral drugs. Biomaterials, 2010, 31, 7340-7354.
[23]
Paolino, D.; Licciardi, M.; Celia, C.; Giammona, G.; Fresta, M.; Cavallaro, G. Folate - targeted supramolecular vesicular aggregates as a new frontier for effective anticancer treatment. Eur. J. Pharm. Biopharm., 2012, 82, 94-102.
[24]
Canal, F.; Vicent, M.J.; Pasut, G.; Schiavon, O. Relevance of folic acid/polymer ratio in targeted PEG-epirubicin conjugates. J. Control. Release, 2010, 146, 388-399.
[25]
Pasut, G.; Canal, F.; Dalla Via, L.; Arpicco, S.; Veronese, F.M.; Schiavon, O. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J. Control. Release, 2008, 127, 239-248.
[26]
Sudimack, J.; Lee, R.J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev., 2000, 41, 147-162.
[27]
a)Leamon, C.P.; Jackman, A.L. Exploitation of the folate receptor in the management of cancer and inflammatory disease. Vitam. Horm., 2008, 79, 203-233.
b)Lu, Y.; Low, P.S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev., 2002, 54, 675-693.
[28]
Campbell, I.G.; Jones, T.A.; Foulkes, W.D.; Trowsdale, J. Folate-binding protein is a marker for ovarian cancer. Cancer Res., 1991, 51, 5329-5338.
[29]
Weitman, S.D.; Lark, R.H.; Coney, L.R.; Fort, D.W.; Frasca, V.; Zurawski, V.R., Jr; Kamen, B.A. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res., 1992, 52, 3396-3401.
[30]
Ju, H.Q.; Gocho, T.; Aguilar, M.; Wu, M.; Zhuang, Z.N.; Fu, J.; Yanaga, K.; Huang, P.; Chiao, P.J. Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the redox modulation. Mol. Cancer Ther., 2015, 14, 788-798.
[31]
Snyder, S.L.; Sobocinski, P.Z. An improved 2,4,6-trinitro-benzenesulfonic acid method for the determination of amines. Anal. Biochem., 1975, 64, 284-288.
[32]
Yoncheva, K.; Doytchinova, I.; Irache, J.M. Different approaches for determination of the attachment degree of polyethylene glycols to poly(anhydride) nanoparticles Determination of pegylation degree of nanoparticles. Drug Dev. Ind. Pharm., 2010, 36, 676-680.
[33]
Pasut, G.; Mero, A.; Caboi, F.; Scaramuzza, S.; Sollai, L.; Veronese, F.M. A new PEG-beta-alanine active derivative for releasable protein conjugation. Bioconjug. Chem., 2008, 19, 2427-2431.
[34]
Pasut, G.; Canal, F.; Dalla Via, L.; Arpicco, S.; Veronese, F.M.; Schiavon, O. Antitumoral activity of Peg-gemcitabine prodrugs targeted by folic acid. J. Control. Release, 2008, 127, 239-248.
[35]
Duncan, R.; Cable, H.C.; Lloyd, J.B.; Rejmanová, P.; Kopeček, J. Polymers containing enzymatically degradable bonds. 7. Design of oligopeptide side chains in poly [N-(2-hydroxypropyl) methacrylamide] copolymers to promote efficient degradation by lysosomal enzymes. Makromol. Chem., 1983, 184, 1997-2008.
[36]
Kopeček, J.; Rejmanová, P.; Strohalm, J.; Ulbrich, K.; Říhová, B.; Chytrý, V.; Lloyd, J.B.; Duncan, R. Synthetic polymeric drugs.
U.S. Patent 5,037,883, 1991.
[37]
Etrych, T.; Jelínková, M.; Říhová, B.; Ulbrich, K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: Synthesis and preliminary in vitro and in vivo biological properties. J. Control. Release, 2001, 73, 89-102.
[38]
Mrkvan, T.; Šírová, M.; Etrych, T.; Chytil, P.; Strohalm, J.; Plocová, D.; Ulbrich, K.; Říhová, B. Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity. J. Control. Release, 2005, 110, 119-129.
[39]
Duncan, R. N-(2-hydroxypropyl)methacrylamide copolymer conjugates,
In: Glen, S. Kwon (Ed.), Polymeric Drug Delivery Systems
(Drugs and the Pharmaceutical Sciences); , 2005; 148, pp. 1-92.
[40]
Rejmanová, P.; Kopeček, J.; Pohl, J.; Baudyš, M.; Kostka, V. Polymers containing enzymatically degradable bonds, 8*.: degradation of oligopeptide sequences in N-(2-hydroxypropyl)methacryamide copolymers by bovine spleen cathepsin B. Makromol. Chem., 1983, 184, 2009-2020.
[41]
Li, C.; Wallace, S. Polymer-drug conjugates: Recent development in clinical oncology. Adv. Drug Deliv. Rev., 2008, 60, 886-898.
[42]
Ríhová, B.; Strohalm, J.; Hovorka, O.; Subr, V.; Etrych, T.; Chytil, P.; Pola, R.; Plocová, D.; Boucek, J.; Ulbrich, K. Doxorubicin release is not a prerequisite for the in vitro cytotoxicity of HPMA-based pharmaceuticals: In vitro effect of extra drug-free GlyPheLeuGly sequences. J. Control. Release, 2008, 127, 110-120.
[43]
Duncan, R. Development of HPMA copolymer-anticancer conjugates: Clinical experience and lesson learnt. Adv. Drug Deliv. Rev., 2009, 61, 1131-1148.
[44]
Pechar, M.; Ulbrich, K.; Subr, V. Poly(ethylene glycol) multiblock copolymer as a carrier of anticancer drug doxorubicin. Bioconjug. Chem., 2000, 11, 131-139.
[45]
Veronese, F.M.; Schiavon, O.; Pasut, G.; Mendichi, R.; Andersson, L.; Tsirk, A.; Ford, J.; Wu, G.; Kneller, S.; Davies, J.; Duncan, R. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug. Chem., 2005, 16, 775-784.
[46]
Greco, F.; Arif, I.; Botting, R.; Fante, C.; Quintieri, L.; Clementi, C.; Schiavon, O.; Pasut, G. Polysialic acid as a drug carrier: evaluation of a new polysialic acid-epirubicin conjugate and its comparison against established drug carriers. Polym. Chem., 2013, 4, 1600-1609.
[47]
Paolino, D.; Cosco, D.; Gaspari, M.; Celano, M.; Wolfram, J.; Voce, P.; Puxeddu, E.; Filetti, S.; Celia, C.; Ferrari, M.; Russo, D.; Fresta, M. Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials, 2014, 35, 7101-7109.