[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[3]
Chen, W.Q.; Zheng, R.S.; Baade, P.D.; Zhang, S.W.; Zeng, H.M.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer Statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[4]
Parkin, A.; Man, J.; Chou, A.; Nagrial, A.M.; Samra, J.; Gill, A.J.; Timpson, P.; Pajic, M. The evolving understanding of the molecular and therapeutic landscape of pancreatic ductal adenocarcinoma. Diseases, 2018, 6(4)E103
[5]
Cameron, M.E.; Yakovenko, A.; Trevino, J.G. Glucose and lactate transport in pancreatic cancer: Glycolytic metabolism revisited. J. Oncol., 2018, 20186214838
[6]
Ben, Q.W.; Xu, M.J.; Ning, X.Y.; Liu, J.; Hong, S.Y.; Huang, W.; Zhang, H.G.; Li, Z.S. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur. J. Cancer, 2011, 47(13), 1928-1937.
[7]
Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic Syndrome and risk of cancer a systematic review and meta-analysis. Diabetes Care, 2012, 35(11), 2402-2411.
[8]
Ren, H.B.; Yu, T.; Liu, C.; Li, Y.Q. Diabetes mellitus and increased risk of biliary tract cancer: Systematic review and meta-analysis. Cancer Causes Control, 2011, 22(6), 837-847.
[9]
Wu, L.; Yu, C.; Jiang, H.; Tang, J.; Huang, H.L.; Gao, J.; Zhang, X. Diabetes mellitus and the occurrence of colorectal cancer: An updated meta-analysis of cohort studies. Diabetes Technol. Ther., 2013, 15(5), 419-427.
[10]
Li, W.; Ma, Q.Y.; Liu, J.B.; Han, L.; Ma, G.D.; Liu, H.; Shan, T.; Xie, K.P.; Wu, E.X. Hyperglycemia as a mechanism of pancreatic cancer metastasis. Front. Biosci-Landmrk., 2012, 17, 1761-1774.
[11]
Han, L.; Ma, Q.Y.; Li, J.H.; Liu, H.; Li, W.; Ma, G.D.; Xu, Q.H.; Zhou, S.; Wu, E.X. High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS One, 2011, 6(11)e27074
[12]
Li, W.; Ma, Q.Y.; Li, J.H.; Guo, K.; Liu, H.; Han, L.; Ma, G.D. Hyperglycemia enhances the invasive and migratory activity of pancreatic cancer cells via hydrogen peroxide. Oncol. Rep., 2011, 25(5), 1279-1287.
[13]
Li, W.; Ma, Z.H.; Ma, J.G.; Li, X.Q.; Xu, Q.H.; Duan, W.X.; Chen, X.; Lv, Y.F.; Zhou, S.; Wu, E.X.; Ma, Q.Y.; Huo, X.W. Hydrogen peroxide mediates hyperglycemia-induced invasive activity via ERK and p38 MAPK in human pancreatic cancer. Oncotarget, 2015, 6(31), 31119-31133.
[14]
Li, J.H.; Ma, Q.Y.; Liu, H.; Guo, K.; Li, F.; Li, W.; Han, L.A.; Wang, F.F.; Wu, E.X. Relationship between neural alteration and perineural invasion in pancreatic cancer patients with hyperglycemia. PLoS One, 2011, 6(2)e17385
[15]
Prochazka, B.; Qureshi, M.A.; Matty, A.J. Lactate dehydrogenase activity and isoenzyme patterns in skeletal muscle, fat, exocrine pancreas and isolated pancreatic islets of normal and obese-hyperglycaemic mice. Diabetologia, 1970, 6(5), 493-498.
[16]
Li, J.; Zhu, S.C.; Tong, J.; Hao, H.; Yang, J.; Liu, Z.K.; Wang, Y.X. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma. Neuroreport, 2016, 27(2), 110-115.
[17]
Rajeshkumar, N.V.; Dutta, P.; Yabuuchi, S.; de Wilde, R.F.; Martinez, G.V.; Le, A.; Kamphorst, J.J.; Rabinowitz, J.D.; Jain, S.K.; Hidalgo, M.; Dang, C.V.; Gillies, R.J.; Maitra, A. Therapeutic targeting of the warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res., 2015, 75(16), 3355-3364.
[18]
Dai, Q.S.; Yin, Q.; Wei, L.B.; Zhou, Y.X.; Qiao, C.; Guo, Y.J.; Wang, X.T.; Ma, S.P.; Lu, N. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells. Mol. Carcinog., 2016, 55(8), 1275-1289.
[19]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5)e1600200
[20]
Yang, W.W.; Zheng, Y.H.; Xia, Y.; Ji, H.T.; Chen, X.M.; Guo, F.; Lyssiotis, C.A.; Aldape, K.; Cantley, L.C.; Liu, Z.M. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol., 2012, 14(12), 1295-1304.
[21]
Girgis, H.; Masui, O.; White, N.M.A.; Scorilas, A.; Rotondo, F.; Seivwright, A.; Gabril, M.; Filter, E.R.; Girgis, A.H.A.; Bjarnason, G.A.; Jewett, M.A.S.; Evans, A.; Al-Haddad, S.; Siu, K.W.M.; Yousef, G.M. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol. Cancer, 2014, 13, 101.
[22]
Sheng, S.L.; Liu, J.J.; Dai, Y.H.; Sun, X.G.; Xiong, X.P.; Huang, G. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J., 2012, 279(20), 3898-3910.
[23]
Cai, Z.; Zhao, J.S.; Li, J.J.; Peng, D.N.; Wang, X.Y.; Chen, T.L.; Qiu, Y.P.; Chen, P.P.; Li, W.J.; Xu, L.Y.; Li, E.M.; Tam, J.P.M.; Qi, R.Z.; Jia, W.; Xie, D. A combined proteomics and metabolomics profiling of gastric cardia cancer reveals characteristic dysregulations in glucose metabolism. Mol. Cell. Proteomics, 2010, 9(12), 2617-2628.
[24]
Fritz, P.J. Rabbit muscle lactate dehydrogenase 5 - A regulatory enzyme. Science, 1965, 150(3694), 364-366.
[25]
Semenza, G.L.; Jiang, B.H.; Leung, S.W.; Passantino, R.; Concordet, J.P.; Maire, P.; Giallongo, A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem., 1996, 271(51), 32529-32537.
[26]
Liang, X.J.; Liu, L.; Fu, T.T.; Zhou, Q.; Zhou, D.X.; Xiao, L.W.; Liu, J.; Kong, Y.; Xie, H.; Yi, F.C.; Lai, L.; Vega, R.B.; Kelly, D.P.; Smith, S.R.; Gan, Z.J. Exercise inducible lactate dehydrogenase B regulates mitochondrial function in skeletal muscle. J. Biol. Chem., 2016, 291(49), 25306-25318.
[27]
Pertega-Gomes, N.; Felisbino, S.; Massie, C.E.; Vizcaino, J.R.; Coelho, R.; Sandi, C.; Simoes-Sousa, S.; Jurmeister, S.; Ramos-Montoya, A.; Asim, M.; Tran, M.; Oliveira, E.; da Cunha, A.L.; Maximo, V.; Baltazar, F.; Neal, D.E.; Fryer, L.G.D. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: A role for monocarboxylate transporters as metabolic targets for therapy. J. Pathol., 2015, 236(4), 517-530.
[28]
Mraz, J.; Vrubel, F.; Hanselova, M. Carcinoma of the prostate. II. Serum activity of acid phosphatase, prostatic acid phosphatase, LDH and its isoenzymes. Int. Urol. Nephrol., 1979, 11(4), 301-309.
[29]
Vrubel, F.; Mraz, J.; Nemecek, R.; Papousek, F.; Hanselova, M. Carcinoma of the prostate. I. Histochemical examination as an aid in evaluating prostate carcinoma. Int. Urol. Nephrol., 1979, 11(4), 295-299.
[30]
Mathupala, S.P.; Rempel, A.; Pedersen, P.L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem., 2001, 276(46), 43407-43412.
[31]
Chen, G.; Liu, H.; Zhang, Y.; Liang, J.; Zhu, Y.; Zhang, M.; Yu, D.; Wang, C.; Hou, J. Silencing PFKP inhibits starvation-induced autophagy, glycolysis, and epithelial mesenchymal transition in oral squamous cell carcinoma. Exp. Cell Res., 2018, 370(1), 46-57.
[32]
Kim, N.H.; Cha, Y.H.; Lee, J.; Lee, S.H.; Yang, J.H.; Yun, J.S.; Cho, E.S.; Zhang, X.; Nam, M.; Kim, N.; Yuk, Y.S.; Cha, S.Y.; Lee, Y.; Ryu, J.K.; Park, S.; Cheong, J.H.; Kang, S.W.; Kim, S.Y.; Hwang, G.S.; Yook, J.I.; Kim, H.S. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat. Commun., 2017, 8, 14374.
[33]
Zhou, K.; Yao, Y.L.; He, Z.C.; Chen, C.; Zhang, X.N.; Yang, K.D.; Liu, Y.Q.; Liu, Q.; Fu, W.J.; Chen, Y.P.; Niu, Q.; Ma, Q.H.; Zhou, R.; Yao, X.H.; Zhang, X.; Cui, Y.H.; Bian, X.W.; Shi, Y.; Ping, Y.F. VDAC2 interacts with PFKP to regulate glucose metabolism and phenotypic reprogramming of glioma stem cells. Cell Death Dis., 2018, 9(10), 988.
[34]
Bachem, M.G.; Schneider, E.; Gross, H.; Weidenbach, H.; Schmid, R.M.; Menke, A.; Siech, M.; Beger, H.; Grunert, A.; Adler, G. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology, 1998, 115(2), 421-432.
[35]
Gao, Z.; Wang, X.; Wu, K.; Zhao, Y.; Hu, G. Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis. Pancreatology, 2010, 10(2-3), 186-193.
[36]
Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 2008, 3(6), 1101-1108.
[37]
Vanderlinde, R.E. Measurement of total lactate dehydrogenase activity. Ann. Clin. Lab. Sci., 1985, 15(1), 13-31.
[38]
Li, J.H.; Cao, G.; Ma, Q.Y.; Liu, H.; Li, W.; Han, L. The bidirectional interation between pancreatic cancer and diabetes. World J. Surg. Oncol., 2012, 10, 171.
[39]
Stevens, R.J.; Roddam, A.W.; Beral, V. Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis. Br. J. Cancer, 2007, 96(3), 507-509.
[40]
Wang, Z.; Lai, S.T.; Xie, L.; Zhao, J.D.; Ma, N.Y.; Zhu, J.; Ren, Z.G.; Jiang, G.L. Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res. Clin. Pract., 2014, 106(1), 19-26.
[41]
Wang, M.; Kirk, J.S.; Venkataraman, S.; Domann, F.E.; Zhang, H.J.; Schafer, F.Q.; Flanagan, S.W.; Weydert, C.J.; Spitz, D.R.; Buettner, G.R.; Oberley, L.W. Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Oncogene, 2005, 24(55), 8154-8166.
[42]
Semenza, G.L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Genet. Dev., 1998, 8(5), 588-594.
[43]
Wenger, R.H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J., 2002, 16(10), 1151-1162.
[44]
Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 2006, 3(3), 177-185.