Generic placeholder image

Current Smart Materials (Discontinued)

Editor-in-Chief

ISSN (Print): 2405-4658
ISSN (Online): 2405-4666

Review Article

Advances in Electrolytes for High Capacity Rechargeable Lithium-Sulphur Batteries

Author(s): Mir Mehraj Ud Din*, Sampathkumar Ramakumar, Indu Muraleedharan Santhakumari and Ramaswamy Murugan

Volume 5, Issue 1, 2021

Published on: 17 June, 2019

Page: [3 - 37] Pages: 35

DOI: 10.2174/2405465804666190617114914

Abstract

Reliable energy storage is a censorious need for an extensive range of requisite such as portable electronic devices, transportation, medical devices, spacecraft and elsewhere. Among the known storage devices, the lithium ion (Li+) batteries have enticed attention because of higher theoretical energy density. Nevertheless, the state-of-the-art electrolyte in lithium batteries utilizing a Li+ salt dissolved in organic-type solvents poses severe safety concerns like flammability arising from dendrite formation. Next generation (beyond Li+) battery systems such as lithium sulphur (Li-S) batteries have gained interest in recent times. This battery system has been extensively revisited in an attempt to develop high energy batteries and is now considered as the technology of choice for hybrid vehicle electrification and grid storage. Higher theoretical capacity and higher theoretical energy density, environmental friendliness and low cost of active material make the Li-S batteries an ideal candidate to meet increasing energy requirements. This review looks at various advanced electrolytic systems with much emphasis on solid state electrolytic systems for Li-S batteries because of their striking properties. The technical issues of the sulphur cathode are also summarized and the strategies followed in recent years are highlighted in this review to address these issues. It is anticipated that Li-S batteries with efficient solid electrolytic system may replace the conventional insertion-type low energy density Li+ batteries in the near future.

Keywords: High energy density, lithium garnets, lithium sulphur batteries, solid electrolytes, high Li-ion conductivity, interface engineering.

Graphical Abstract

[1]
Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev., 2014, 43(13), 4714-4727.
[http://dx.doi.org/10.1039/c4cs00020j] [PMID: 24681593]
[2]
See, K.A.; Jun, Y.S.; Gerbec, J.A.; Sprafke, J.K.; Wudl, F.; Stucky, G.D.; Seshadri, R. Sulfur-functionalized mesoporous carbons as sulfur hosts in Li-S batteries: increasing the affinity of polysulfide intermediates to enhance performance. ACS Appl. Mater. Interfaces, 2014, 6(14), 10908-10916.
[http://dx.doi.org/10.1021/am405025n] [PMID: 24524220]
[3]
Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L.F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun., 2014, 5, 4759.
[http://dx.doi.org/10.1038/ncomms5759] [PMID: 25154399]
[4]
Manthiram, A.; Fu, Y.; Su, Y.S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res., 2013, 46(5), 1125-1134.
[http://dx.doi.org/10.1021/ar300179v] [PMID: 23095063]
[5]
Manthiram, A.; Fu, Y.; Chung, S.H.; Zu, C.; Su, Y.S. Rechargeable lithium-sulfur batteries. Chem. Rev., 2014, 114(23), 11751-11787.
[http://dx.doi.org/10.1021/cr500062v] [PMID: 25026475]
[6]
Baloch, M.; Shanmukaraj, D.; Bondarchuk, O.; Bekaert, E.; Rojo, T.; Armand, M. Variations on Li3N protective coating using ex-situ and in-situ techniques for Li+ in sulphur batteries. Energy Storage Mat, 2017, 9, 141-149.
[http://dx.doi.org/10.1016/j.ensm.2017.06.016]
[7]
Shim, J.; Striebel, K.A.; Cairns, E.J. The lithium/sulphur rechargeable cell effects of electrode composition and solvent on cell performance. J. Electrochem. Soc., 2002, 149, 1321-1325.
[http://dx.doi.org/10.1149/1.1503076]
[8]
Liu, J.; Galpaya, D.G.; Yan, L.; Sun, M.; Lin, Z.; Yan, C.; Liang, C.; Zhang, S. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery. Energy Environ. Sci., 2017, 10, 750-755.
[http://dx.doi.org/10.1039/C6EE03033E]
[9]
Rauh, R.D.; Abraham, K.M.; Pearson, G.F. Surprenant Jk, Brummer SB. A lithium/dissolved sulphur battery with an organic electrolyte. J. Electrochem. Soc., 1979, 126, 523-527.
[http://dx.doi.org/10.1149/1.2129079]
[10]
Yamin, H.; Gorenshtein, A.; Penciner, J.; Sternberg, Y.; Peled, E. Lithium sulphur battery. J. Electrochem. Soc., 1988, 135, 1045-1048.
[http://dx.doi.org/10.1149/1.2095868]
[11]
Shim, J.; Striebel, K.A.; Cairns, E.J. The lithium/sulphur rechargeable cell. J. Electrochem. Soc., 2002, 149, 1321-1325.
[http://dx.doi.org/10.1149/1.1503076]
[12]
Cheon, S.E.; Ko, K.S.; Cho, J.H.; Kim, S.W.; Chin, E.Y.; Kim, H.T. Rechargeable lithium sulphur battery. J. Electrochem. Soc., 2003, 150, 796-799.
[http://dx.doi.org/10.1149/1.1571532]
[13]
Mikhaylik, Y.V.; Akridge, J.R. Polysulphide shuttle study in Li/S battery system. J. Electrochem. Soc., 2004, 151, 1969-1976.
[http://dx.doi.org/10.1149/1.1806394]
[14]
Zhang, J.X.; Ma, Z.S.; Cheng, J.J.; Wang, Y.; Wu, C.; Pan, Y.; Lu, C. Sulfur@ metal cotton with superior cycling stability as cathode materials for rechargeable lithium-sulfur batteries. J. Electroanal. Chem. (Lausanne Switz.), 2015, 738, 184-187.
[http://dx.doi.org/10.1016/j.jelechem.2014.12.003]
[15]
Yang, Y.; Zheng, G.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev., 2013, 42(7), 3018-3032.
[http://dx.doi.org/10.1039/c2cs35256g] [PMID: 23325336]
[16]
Wang, D.W.; Zeng, Q.; Zhou, G.; Yin, L.; Li, F.; Cheng, H.M.; Gentle, I.R.; Lu, G.Q.M. Carbon-sulphur composites for Li-S batteries: status and prospects. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 9382-9394.
[http://dx.doi.org/10.1039/c3ta11045a]
[17]
Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H.M.; Li, F.; Ren, W. 3d graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater., 2016, 28(8), 1603-1609.
[http://dx.doi.org/10.1002/adma.201504765] [PMID: 26677000]
[18]
Yuan, Z.; Peng, H.J.; Huang, J.Q.; Liu, X.Y.; Wang, D.W.; Cheng, X.B.; Zhang, Q. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulphur-loading for lithium-sulphur batteries. Adv. Funct. Mater., 2014, 24, 6105-6112.
[http://dx.doi.org/10.1002/adfm.201401501]
[19]
Zhou, G.; Li, L.; Ma, C.; Wang, C.S.; Shi, Y.; Koratkar, N.; Ren, W.; Li, F.; Cheng, H.M. A graphene foam electrode with high sulphur loading for flexible and high energy Li-S batteries. Nano Energy, 2015, 11, 356-365.
[http://dx.doi.org/10.1016/j.nanoen.2014.11.025]
[20]
Qie, L.; Manthiram, A. A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv. Mater., 2015, 27(10), 1694-1700.
[http://dx.doi.org/10.1002/adma.201405689] [PMID: 25605465]
[21]
Lu, S.; Chen, Y.; Wu, X.; Wang, Z.; Li, Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading. Sci. Rep., 2014, 4, 4629.
[http://dx.doi.org/10.1038/srep04629] [PMID: 24717445]
[22]
Li, Z.; Zhang, J.T.; Chen, Y.M.; Li, J.; Lou, X.W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun., 2015, 6, 8850.
[http://dx.doi.org/10.1038/ncomms9850] [PMID: 26608228]
[23]
Cheng, X.B.; Huang, J.Q.; Zhang, Q.; Peng, J.H.; Zhao, Q.M.; Wei, F. Aligned carbon nanotube/sulphur composite cathodes with high sulphur content for lithium-sulphur batteries. Nano Energy, 2014, 4, 65-72.
[http://dx.doi.org/10.1016/j.nanoen.2013.12.013]
[24]
Miao, L.; Wang, W.; Yuan, K.; Yang, Y.; Wang, A. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material. Chem. Commun. (Camb.), 2014, 50(87), 13231-13234.
[http://dx.doi.org/10.1039/C4CC03410D] [PMID: 24978617]
[25]
Du, W.C.; Yin, Y.X.; Zeng, X.X.; Shi, J.L.; Zhang, S.F.; Wan, L.J.; Guo, Y.G. Wet chemistry synthesis of multidimensional nanocarbon-sulphur hybrid materials with ultrahigh sulphur loading for lithium-sulphur batteries. ACS Appl. Mater. Interfaces, 2016, 8(6), 3584-3590.
[http://dx.doi.org/10.1021/acsami.5b07468] [PMID: 26378622]
[26]
Fang, R.; Zhao, S.; Hou, P.; Cheng, M.; Wang, S.; Cheng, H.M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulphur loading for Li-S batteries. Adv. Mater., 2016, 28(17), 3374-3382.
[http://dx.doi.org/10.1002/adma.201506014] [PMID: 26932832]
[27]
Wei, S.; Ma, L.; Hendrickson, K.E.; Tu, Z.; Archer, L.A. Metal-sulphur battery cathodes based on PAN-sulphur composites. J. Am. Chem. Soc., 2015, 137(37), 12143-12152.
[http://dx.doi.org/10.1021/jacs.5b08113] [PMID: 26325146]
[28]
Chen, J.J.; Yuan, R.M.; Feng, J.M.; Zhang, Q.; Huang, J.X.; Fu, G.; Zheng, M.S.; Ren, B.; Dong, Q.F. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulphur redox cycle in Li-S battery. Chem. Mater., 2015, 27, 2048-2055.
[http://dx.doi.org/10.1021/cm5044667]
[29]
Xu, G.; Ding, B.; Shen, L.; Nie, P.; Han, J.; Zhan, X. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 4490-4496.
[http://dx.doi.org/10.1039/c3ta00004d]
[30]
Li, N.; Zheng, M.; Lu, H.; Hu, Z.; Shen, C.; Chang, X.; Ji, G.; Cao, J.; Shi, Y. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun. (Camb.), 2012, 48(34), 4106-4108.
[http://dx.doi.org/10.1039/c2cc17912a] [PMID: 22434263]
[31]
Huang, J.Q.; Zhang, Q.; Peng, H.J.; Liu, X.Y.; Qian, W.Z.; Wei, F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ. Sci., 2014, 7, 347-353.
[http://dx.doi.org/10.1039/C3EE42223B]
[32]
Wang, B.; Alhassan, S.M.; Pantelides, S.T. Formation of large polysulfide complexes during the lithium-sulfur battery discharge. Phys. Rev. Appl., 2014, 2034004
[http://dx.doi.org/10.1103/PhysRevApplied.2.034004]]
[33]
Wei Seh, Z.; Li, W.; Cha, J.J.; Zheng, G.; Yang, Y.; McDowell, M.T.; Hsu, P.C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun., 2013, 4, 1331.
[http://dx.doi.org/10.1038/ncomms2327] [PMID: 23299881]
[34]
Wang, H.; Yang, Y.; Liang, Y.; Robinson, J.T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett., 2011, 11(7), 2644-2647.
[http://dx.doi.org/10.1021/nl200658a] [PMID: 21699259]
[35]
Peng, Z.; Fang, W.; Zhao, H.; Fang, J.; Cheng, H.; Doan, T.N.; Xu, J.; Chen, P. Graphene-based ultrathin microporous carbon with smaller sulfur molecules for excellent rate performance of lithium-sulfur cathode. J. Power Sources, 2015, 282, 70-78.
[http://dx.doi.org/10.1016/j.jpowsour.2015.01.180]
[36]
Zhou, W.; Yu, Y.; Chen, H.; DiSalvo, F.J.; Abruña, H.D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc., 2013, 135(44), 16736-16743.
[http://dx.doi.org/10.1021/ja409508q] [PMID: 24112042]
[37]
Wang, C.; Chen, H.; Dong, W.; Ge, J.; Lu, W.; Wu, X.; Guo, L.; Chen, L. Sulfur-amine chemistry-based synthesis of multi-walled carbon nanotube-sulfur composites for high performance Li-S batteries. Chem. Commun. (Camb.), 2014, 50(10), 1202-1204.
[http://dx.doi.org/10.1039/C3CC47223J] [PMID: 24326574]
[38]
Fu, Y.; Manthiram, A. Core-shell structured sulphur-polypyrrole composite cathodes for lithium sulphur Batteries. RSC Advances, 2012, 2, 5927-5929.
[http://dx.doi.org/10.1039/c2ra20393f]
[39]
Xie, Y.; Fang, L.; Cheng, H.; Hu, C.; Zhao, H.; Xu, J.; Fang, J.; Lu, X.; Zhang, J. Biological cell derived N-doped hollow porous carbon microspheres for lithium-sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 15612-15620.
[http://dx.doi.org/10.1039/C6TA06164H]
[40]
Jayaprakash, N.; Shen, J.; Moganty, S.S.; Corona, A.; Archer, L.A. Porous hollow carbon @ sulphur composites for high-power lithium-sulphur batteries. Angew. Chem., 2011, 123, 6026-6030.
[http://dx.doi.org/10.1002/ange.201100637]
[41]
Zhang, B.; Qin, X.; Li, G.R.; Gao, X.P. Enhancement of long stability of sulphur cathode by encapsulating sulphur into micropores of carbon spheres. Energy Environ. Sci., 2010, 3, 1531-1537.
[http://dx.doi.org/10.1039/c002639e]
[42]
Zeng, T.; Hu, X.; Ji, P.; Shang, B.; Peng, Q.; Zhang, Y.; Song, R. Promotional role of Li4Ti5O12 as polysulfide adsorbent and fast Li+ conductor on electrochemical performances of sulfur cathode. J. Power Sources, 2017, 359, 250-261.
[http://dx.doi.org/10.1016/j.jpowsour.2017.05.043]
[43]
Xiao, Z.; Yang, Z.; Wang, L.; Nie, H.; Zhong, M.; Lai, Q.; Xu, X.; Zhang, L.; Huang, S. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulphide absorbent for fast, long‐life lithium-sulphur batteries. Adv. Mater., 2015, 27(18), 2891-2898.
[http://dx.doi.org/10.1002/adma.201405637] [PMID: 25820906]
[44]
Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 2011, 11(1), 19-29.
[http://dx.doi.org/10.1038/nmat3191] [PMID: 22169914]
[45]
Liang, X.; Nazar, L.F. In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano, 2016, 10(4), 4192-4198.
[http://dx.doi.org/10.1021/acsnano.5b07458] [PMID: 26910648]
[46]
(a)Jin, B.; Kim, J.U.; Gu, H.B. Electrochemical properties of lithium- sulphur batteries. J. Power Sources, 2003, 117, 148-152..
[http://dx.doi.org/10.1016/S0378-7753(03)00113-7]
(b)Hu, C.; Chen, H.; Xie, Y.; Fang, L.; Fang, J.; Xu, J.; Zhao, H.; Zhang, J. Alleviating polarization by designing ultra-small Li2S nanocrystals encapsulated in N-rich carbon as a cathode material for high-capacity, long-life Li-S batteries. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 18284-18288.
[http://dx.doi.org/10.1039/C6TA08572E]
[47]
Guo, J.; Xu, Y.; Wang, C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett., 2011, 11(10), 4288-4294.
[http://dx.doi.org/10.1021/nl202297p] [PMID: 21928817]
[48]
Li, G.C.; Jing, H.K.; Su, Z.; Lai, C.; Chen, L.; Yuan, C.C.; Li, H.H.; Liu, L. A hydrophilic separator for high performance lithium sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 11014-11020.
[http://dx.doi.org/10.1039/C5TA01970B]
[49]
(a)Zhang, Z.; Lai, Y.; Zhang, Z.; Zhang, K.; Li, J. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries.Electrochim. Acta, 2014, 129, 55-61.,
[http://dx.doi.org/10.1016/j.electacta.2014.02.077]
(b)Li, J.; Huang, Y.; Zhang, S.; Jia, W.; Wang, X.; Guo, Y.; Jia, D.; Wang, L. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries., ACS Appl. Mater. Interfaces, 2017, 9(8), 7499-7504..
[http://dx.doi.org/10.1021/acsami.7b00065] [PMID: 28186728]
(c)Din, M.M.U.; Murugan, R. Garnet structured solid fast Li+ conductor as polysulfide Shuttle inhibitor in Li-S battery. Electrochem. Commun., 2018, 93, 109-113..
[http://dx.doi.org/10.1016/j.elecom.2018.07.001]
(d)Din, M.M.U.; Sahu, B.K.; Das, A.; Murugan, R. Enhanced electrochemical performance of lithium-sulfur battery by negating polysulfide shuttling and interfacial resistance through aluminum nanolayer deposition on polypropylene separator. Ionics, 2019, 25, 1645-1657.
[http://dx.doi.org/10.1007/s11581-019-02891-z]
[50]
Chung, S.H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater., 2015, 5.
[http://dx.doi.org/10.1002/aenm.201500738]
[51]
Wang, L.; Zhao, Y.; Thomas, M.L.; Dutta, A.; Byon, H.R. Sulfur‐based catholyte solution with a glass‐ceramic membrane for Li-S batteries. ChemElectroChem, 2016, 3, 152-157.
[http://dx.doi.org/10.1002/celc.201500342]
[52]
Gu, X.; Lai, C.; Liu, F.; Yang, W.; Hou, Y.; Zhang, S. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 9502-9509.
[http://dx.doi.org/10.1039/C5TA00681C]
[53]
Zhu, J.; Yanilmaz, M.; Fu, K.; Chen, C.; Lu, Y.; Ge, Y.; Kim, D.; Zhang, X. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. J. Membr. Sci., 2016, 504, 89-96.
[http://dx.doi.org/10.1016/j.memsci.2016.01.020]
[54]
Huang, J.Q.; Zhuang, T.Z.; Zhang, Q.; Peng, H.J.; Chen, C.M.; Wei, F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. ACS Nano, 2015, 9(3), 3002-3011.
[http://dx.doi.org/10.1021/nn507178a] [PMID: 25682962]
[55]
Zhang, S.S.; Tran, D.T. A simple approach for superior performance of lithium/sulphur batteries modified with a gel polymer electrolyte. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 7383-7388.
[http://dx.doi.org/10.1039/C4TA00597J]
[56]
Machida, N.; Kobayashi, K.; Nishikawa, Y.; Shigematsu, T. Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ion., 2004, 175, 247-250.
[http://dx.doi.org/10.1016/j.ssi.2003.11.033]
[57]
Nagao, M.; Hayashi, A.; Tatsumisago, M. High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J. Mater. Chem., 2012, 22, 10015-10020.
[http://dx.doi.org/10.1039/c2jm16802b]
[58]
Xu, Z.; Wang, J.; Yang, J.; Miao, X.; Chen, R.; Qian, J.; Miao, R. Enhanced performance of a lithium-sulfur battery using a carbonate‐based electrolyte. Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10372-10375.
[http://dx.doi.org/10.1002/anie.201605931] [PMID: 27461554]
[59]
Barchasz, C.; Leprêtre, J.C.; Patoux, S.; Alloin, F. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochim. Acta, 2013, 89, 737-743.
[http://dx.doi.org/10.1016/j.electacta.2012.11.001]
[60]
Carbone, L.; Gobet, M.; Peng, J.; Devany, M.; Scrosati, B.; Greenbaum, S.; Hassoun, J. Comparative study of ether-based electrolytes for application in lithium-sulfur battery. ACS Appl. Mater. Interfaces, 2015, 7, 13859-65.
[http://dx.doi.org/10.1021/acsami.5b02160]
[61]
Mikhaylik, Y.V.; Kovalev, I.; Schock, R.; Kumaresan, K.; Xu, J.; Affinito, J. High energy rechargeable Li-S cells for EV application: status, remaining problems and solutions. ECS Trans., 2010, 25, 23-24.
[62]
Peled, E.; Sternberg, Y.; Gorenshtein, A.; Lavi, Y. Lithium-sulphur battery: evaluation of dioxolane-based electrolytes. J. Electrochem. Soc., 1989, 136, 1621-1625.
[http://dx.doi.org/10.1149/1.2096981]
[63]
Rauh, R.D.; Shuker, F.S.; Marston, J.M.; Brummer, S.B. Formation of lithium polysulphides in aprotic media. J. Inorg. Nucl. Chem., 1977, 39, 1761-1766.
[http://dx.doi.org/10.1016/0022-1902(77)80198-X]
[64]
Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ, 2016, 1, 18-42.
[http://dx.doi.org/10.1016/j.gee.2016.04.006]
[65]
Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C.S.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li-Sulphur batteries. J. Electrochem. Soc., 2009, 156, 694-702.
[http://dx.doi.org/10.1149/1.3148721]
[66]
Zheng, G.; Yang, Y.; Cha, J.J.; Hong, S.S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett., 2011, 11(10), 4462-4467.
[http://dx.doi.org/10.1021/nl2027684] [PMID: 21916442]
[67]
Su, Y.S.; Fu, Y.; Manthiram, A. Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys. Chem. Chem. Phys., 2012, 14(42), 14495-14499.
[http://dx.doi.org/10.1039/c2cp42796f] [PMID: 23033056]
[68]
Ding, N.; Zhou, L.; Zhou, C.; Geng, D.; Yang, J.; Chien, S.W.; Liu, Z.; Ng, M.F.; Yu, A.; Hor, T.S.; Sullivan, M.B.; Zong, Y. Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst. Sci. Rep., 2016, 6, 33154.
[http://dx.doi.org/10.1038/srep33154] [PMID: 27629986]
[69]
Pang, Q.; Liang, X.; Kwok, C.Y.; Nazar, L.F. Advances in lithium-sulphur batteries based on multifunctional cathodes and electrolytes. Nat. Energy, 2016, 1, 16132.
[http://dx.doi.org/10.1038/nenergy.2016.132]
[70]
Zhao, Y.; Zhang, Y.; Gosselink, D.; Doan, T.N.; Sadhu, M.; Cheang, H.J.; Chen, P. Polymer electrolytes for lithium/sulfur batteries. Membranes (Basel), 2012, 2(3), 553-564.
[http://dx.doi.org/10.3390/membranes2030553] [PMID: 24958296]
[71]
Shin, J.H.; Kim, K.W.; Ahn, H.J. Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3-TinO2n-1 composite polymer electrolytes for lithium/sulphur battery. Mater. Sci. Eng. B, 2002, 95, 148-156.
[http://dx.doi.org/10.1016/S0921-5107(02)00226-X]
[72]
Ma, Q.; Qi, X.; Tong, B.; Zheng, Y.; Feng, W.; Nie, J.; Hu, Y.S.; Li, H.; Huang, X.; Chen, L. Zhou, Z Novel Li[(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance. ACS Appl. Mater. Interfaces, 2016, 8, 29705-29712.
[73]
Zhang, S.S.; Tran, D.T. How a gel polymer electrolyte affects performance of lithium/sulfur batteries. Electrochim. Acta, 2013, 114, 296-302.
[http://dx.doi.org/10.1016/j.electacta.2013.10.069]
[74]
Lin, Y.; Li, J.; Liu, K.; Liu, Y.; Liu, J.; Wang, X. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulphur battery. Green Chem., 2016, 18, 3796-3803.
[http://dx.doi.org/10.1039/C6GC00444J]
[75]
Choudhury, S.; Saha, T.; Naskar, K.; Stamm, M.; Heinrich, G.; Das, A. A highly stretchable gel-polymer electrolyte for lithium-sulfur batteries. Polymer (Guildf.), 2017, 112, 447-456.
[http://dx.doi.org/10.1016/j.polymer.2017.02.021]
[76]
Kim, J.K. Hybrid gel polymer electrolyte for high-safety lithium-sulfur batteries. Mater. Lett., 2017, 187, 40-43.
[http://dx.doi.org/10.1016/j.matlet.2016.10.069]
[77]
Baloch, M.; Vizintin, A.; Chellappan, R.K.; Moskon, J.; Shanmukaraj, D.; Dedryvère, R.; Rojo, T.; Dominko, R. Application of gel polymer electrolytes based on ionic liquids in lithium-sulfur batteries. J. Electrochem. Soc., 2016, 163, 2390-2398.
[http://dx.doi.org/10.1149/2.1151610jes]
[78]
Liu, M.; Zhou, D.; He, Y.B.; Fu, Y.; Qin, X.; Miao, C.; Du, H.; Li, B.; Yang, Q.H.; Lin, Z.; Zhao, T.S. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy, 2016, 22, 278-289.
[http://dx.doi.org/10.1016/j.nanoen.2016.02.008]
[79]
Jeddi, K.; Ghaznavi, M.; Chen, P. A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 2769-2772.
[http://dx.doi.org/10.1039/c3ta01169k]
[80]
Zhang, Y.; Zhao, Y.; Bakenov, Z. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte. Nanoscale Res. Lett., 2014, 9(1), 137.
[http://dx.doi.org/10.1186/1556-276X-9-137] [PMID: 24655466]
[81]
Natarajan, A.; Stephan, A.M.; Chan, C.H.; Kalarikkal, N.; Thomas, S. Electrochemical studies on composite gel polymer electrolytes for lithium sulfur‐batteries. J. Appl. Polym. Sci., 2017, 134.
[http://dx.doi.org/10.1002/app.44594]
[82]
Agostini, M.; Hassoun, J. A lithium-ion sulfur battery using a polymer, polysulfide-added membrane. Sci. Rep., 2015, 5, 7591.
[http://dx.doi.org/10.1038/srep07591] [PMID: 25558001]
[83]
Zhang, Y.; Li, K.; Li, H.; Wang, Y.; Peng, Y.; Lin, S.; Hwang, B.J.; Zhao, J. The construction of high sulfur content spherical sulfur-carbon nanotube-polyethylene glycol-nickel nitrate hydroxide composites for lithium sulfur battery. J. Alloys Compd., 2017.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.131]
[84]
Céline, B.; Jean-Claude, L.; Sébastien, P.; Fannie, A. Revisiting TEGDME/DIOX binary electrolytes for lithium/sulphur batteries: importance of solvation ability and additives. J. Electrochem. Soc., 2013, 160, 430-436.
[http://dx.doi.org/10.1149/2.022303jes]
[85]
Wu, F.; Lee, J.T.; Fan, F.; Nitta, N.; Kim, H.; Zhu, T.; Yushin, G. A hierarchical particle-shell architecture for long-term cycle stability of Li2S cathodes. Adv. Mater., 2015, 27(37), 5579-5586.
[http://dx.doi.org/10.1002/adma.201502289] [PMID: 26305630]
[86]
Li, Z.; Jiang, Y.; Yuan, L.; Yi, Z.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano, 2014, 8(9), 9295-9303.
[http://dx.doi.org/10.1021/nn503220h] [PMID: 25144303]
[87]
Wang, L.; Wang, Y.; Xia, Y. A high performance lithium-ion sulphur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ. Sci., 2015, 8, 1551-1558.
[http://dx.doi.org/10.1039/C5EE00058K]
[88]
Chen, R.; Zhao, T.; Lu, J.; Wu, F.; Li, L.; Chen, J.; Tan, G.; Ye, Y.; Amine, K. Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett., 2013, 13(10), 4642-4649.
[http://dx.doi.org/10.1021/nl4016683] [PMID: 24032420]
[89]
Pu, X.; Yang, G.; Yu, C. Liquid-type cathode enabled by 3D sponge-like carbon nanotubes for high energy density and long cycling life of Li-S batteries. Adv. Mater., 2014, 26(44), 7456-7461.
[http://dx.doi.org/10.1002/adma.201403337] [PMID: 25302826]
[90]
Adachi, G.Y.; Imanaka, N.; Aono, H. Fast Li+ conducting ceramic electrolytes. Adv. Mater., 1996, 8, 127-135.
[http://dx.doi.org/10.1002/adma.19960080205]
[91]
Yoshiyuki, I.; Chen, L.; Mitsuru, I.; Tetsur, B.N. High ionic conductivity in lithium lanthanum titanate. Solid State Commun., 1993, 86, 689-693.
[http://dx.doi.org/10.1016/0038-1098(93)90841-A]
[92]
Harada, Y.; Watanabe, H.; Kuwano, J.; Saito, Y. Lithium ion conductivity of A-site deficient perovskite solid solutions. J. Power Sources, 1999, 81, 777-781.
[http://dx.doi.org/10.1016/S0378-7753(99)00105-6]
[93]
Inaguma, Y.; Nakashima, M. A rechargeable lithium-air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J. Power Sources, 2013, 228, 250-255.
[http://dx.doi.org/10.1016/j.jpowsour.2012.11.098]
[94]
(a)Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system.Solid State Ion., 2000, 130, 97-104.,
[http://dx.doi.org/10.1016/S0167-2738(00)00277-0]
(b)Yu, X.; Bi, Z.; Zhao, F.; Manthiram, A. Hybrid lithium-sulphur batteries with a solid electrolyte membrane and lithium polysulphide catholyte. ACS Appl. Mater. Interfaces, 2015, 7(30), 16625-16631.
[http://dx.doi.org/10.1021/acsami.5b04209] [PMID: 26161547]
[95]
Zintl, E.; Brauer, G.B. Konstitution des lithium nitrides, Z Elketrochem. Z. Elektrochem. Angew. Phys. Chem., 1935, 41, 102-107.
[96]
Rabenau, A.; Schulz, H.J. Re-evaluation of the lithium nitride structure. Less Common Met, 1976, 50, 155-159.
[http://dx.doi.org/10.1016/0022-5088(76)90263-0]
[97]
Alpen, U.V.; Rabenau, A.; Talat, G.H. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett., 1977, 30, 621-623.
[http://dx.doi.org/10.1063/1.89283]
[98]
Ma, G.; Wen, Z.; Wu, M.; Shen, C.; Wang, Q.; Jin, J.; Wu, X. A lithium anode protection guided highly-stable lithium-sulfur battery. Chem. Commun. (Camb.), 2014, 50(91), 14209-14212.
[http://dx.doi.org/10.1039/C4CC05535G] [PMID: 25285341]
[99]
Yamada, T.; Ito, S.; Omoda, R.; Watanabe, T.; Aihara, Y.; Agostini, M.; Ulissi, U.; Hassoun, J.; Scrosati, B. All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: benefits on anode kinetics. J. Electrochem. Soc., 2015, 162, 646-651.
[http://dx.doi.org/10.1149/2.0441504jes]
[100]
Chen, M.; Adams, S. High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electrochem., 2015, 19, 697-702.
[http://dx.doi.org/10.1007/s10008-014-2654-1]
[101]
Das, S.; Ngene, P.; Norby, P.; Vegge, T.; De Jongh, P.E.; Blanchard, D. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte. J. Electrochem. Soc., 2016, 163, 2029-2034.
[http://dx.doi.org/10.1149/2.0771609jes]
[102]
Xu, R.C.; Xia, X.H.; Li, S.H.; Zhang, S.Z.; Wang, X.L.; Tu, J.P. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 6310-6317.
[http://dx.doi.org/10.1039/C7TA01147D]
[103]
Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. A lithium superionic conductor. Nat. Mater., 2011, 10(9), 682-686.
[http://dx.doi.org/10.1038/nmat3066] [PMID: 21804556]
[104]
Nagata, H.; Chikusa, Y. An all-solid-state lithium-sulfur battery using two solid electrolytes having different functions. J. Power Sources, 2016, 329, 268-272.
[http://dx.doi.org/10.1016/j.jpowsour.2016.08.058]
[105]
Minyong, E.; Seunghyeon, S.; Chanhwi, P.; Sungwoo, N.; William, T.N.; Dongwook, S. High performance all-solid-state lithium-sulfur battery using a Li2S-VGCF nanocomposite. Electrochim. Acta, 2017, 230, 279-284.
[http://dx.doi.org/10.1016/j.electacta.2017.01.155]
[106]
Thangadurai, V.; Kaack, H.; Weppner, W. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc., 2003, 86, 437-440.
[http://dx.doi.org/10.1111/j.1151-2916.2003.tb03318.x]
[107]
Murugan, R.; Thangadurai, V.; Weppner, W. Lattice parameter and sintering temperature dependence of bulk and grain boundary conduction of garnet-like solid li-electrolytes. J. Electrochem. Soc., 2008, 155, 90-101.
[http://dx.doi.org/10.1149/1.2800764]
[108]
Hyooma, H.; Hayashi, K. Crystal structures of La3Li5M2O12 (M=Nb, Ta). Mater. Res. Bull., 1998, 23, 1399-1407.
[http://dx.doi.org/10.1016/0025-5408(88)90264-4]
[109]
Mazza, D. Remarks on a ternary phase in the La2O3-Me2O5-Li2O system (Me=Nb, Ta). Mater. Lett., 1998, 7, 205-207.
[http://dx.doi.org/10.1016/0167-577X(88)90011-0]
[110]
Thangadurai, V.; Adams, S.; Weppner, W. Crystal structure revision and identification of Li+-ion migration pathways in the garnet-like Li5La3M2O12 (M = Nb, Ta). Oxides. Chem. Mater., 2004, 16, 2998-3006.
[http://dx.doi.org/10.1021/cm031176d]
[111]
Klenk, M.; Lai, W. Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O7. Phys. Chem. Chem. Phys., 2015, 17(14), 8758-8768.
[http://dx.doi.org/10.1039/C4CP05690F] [PMID: 25739741]
[112]
Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li(7)La(3)Zr(2)O(12). Angew. Chem. Int. Ed. Engl., 2007, 46(41), 7778-7781.
[http://dx.doi.org/10.1002/anie.200701144] [PMID: 17803180]
[113]
(a)Chen, F.; Li, J.; Huang, Z.; Yang, Y.; Shen, Q.; Zhang, L. Origin of the phase transition in lithium garnets. J. Phys. Chem. C, 2018, 122, 1963-1972..
[http://dx.doi.org/10.1021/acs.jpcc.7b10911]
(b)Geiger, C.A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem., 2011, 50(3), 1089-1097.
[http://dx.doi.org/10.1021/ic101914e] [PMID: 21188978]
[114]
Inada, R.; Yasuda, S.; Tojo, M.; Tsuritani, K.; Tojo, T.; Sakurai, Y. Development of lithium-stuffed garnet-type oxide solid electrolytes with high ionic conductivity for application to all-solid-state batteries. Front. Energy Res., 2016, 4, 28.
[http://dx.doi.org/10.3389/fenrg.2016.00028]
[115]
Ramakumar, S.; Deviannapoorani, C.; Dhivya, L.; Shankar, L.S.; Murugan, R. Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog. Mater. Sci., 2017, 88, 325-411.
[http://dx.doi.org/10.1016/j.pmatsci.2017.04.007]
[116]
Kokal, I.; Somer, M.; Notten, P.H.L.; Hintzen, H.T. Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ion., 2011, 185, 42-46.
[http://dx.doi.org/10.1016/j.ssi.2011.01.002]
[117]
Dhivya, L.; Karthik, K.; Ramakumar, S.; Murugan, R. Facile synthesis of high lithium ion conductive cubic phase lithium garnets for electrochemical energy storage devices. RSC Advances, 2015, 5, 96042-96051.
[http://dx.doi.org/10.1039/C5RA18543B]
[118]
Shao, C.; Liu, H.; Yu, Z.; Zheng, Z.; Sun, N.; Diao, C. Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method. Solid State Ion., 2016, 287, 13-16.
[http://dx.doi.org/10.1016/j.ssi.2016.01.042]
[119]
Ramakumar, S.; Satyanarayana, L.; Manorama, S.V.; Murugan, R. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys. Chem. Chem. Phys., 2013, 15(27), 11327-11338.
[http://dx.doi.org/10.1039/c3cp50991e] [PMID: 23732926]
[120]
Dhivya, L.; Janani, N.; Palanivel, B.; Murugan, R. Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets. AIP Adv., 2013.3082115
[http://dx.doi.org/10.1063/1.4818971]
[121]
Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y.; Fu, K.K.; Pastel, G.; Lin, C.F.; Mo, Y.; Wachsman, E.D.; Hu, L. Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. Adv. Mater., 2017, 29(22)
[http://dx.doi.org/10.1002/adma.201606042] [PMID: 28417487]
[122]
Shin, B.R.; Nam, Y.J.; Oh, D.Y.; Kim, D.H.; Kim, J.W.; Jung, Y.S. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta, 2014, 146, 395-402.
[http://dx.doi.org/10.1016/j.electacta.2014.08.139]
[123]
Rosero‐Navarro, N.C.; Yamashita, T.; Miura, A.; Higuchi, M.; Tadanaga, K. Effect of Sintering Additives on Relative Density and Li‐ion Conductivity of Nb‐Doped Li7La3Zr2O12 Solid Electrolyte. J. Am. Ceram. Soc., 2017, 100, 276-285.
[http://dx.doi.org/10.1111/jace.14572]
[124]
Janani, N.; Deviannapoorani, C.; Dhivya, L.; Murugan, R. Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Advances, 2014, 4, 51228-51238.
[http://dx.doi.org/10.1039/C4RA08674K]
[125]
Janani, N.; Ramakumar, S.; Kannan, S.; Murugan, R. Optimization of Lithium Content and Sintering Aid for Maximized Li+ Conductivity and Density in Ta‐Doped Li7La3Zr2O12. J. Am. Ceram. Soc., 2015, 98, 2039-2046.
[http://dx.doi.org/10.1111/jace.13578]
[126]
Liu, W.; Liu, N.; Sun, J.; Hsu, P.C.; Li, Y.; Lee, H.W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett., 2015, 15(4), 2740-2745.
[http://dx.doi.org/10.1021/acs.nanolett.5b00600] [PMID: 25782069]
[127]
Yang, T.; Gordon, Z.D.; Li, Y.; Chan, C.K. Nanostructured garnet-type solid electrolytes for lithium batteries: electrospinning synthesis of Li7La3Zr2O12 Nanowires and Particle Size-Dependent Phase Transformation. J. Phys. Chem. C, 2015, 119, 14947-14953.
[http://dx.doi.org/10.1021/acs.jpcc.5b03589]
[128]
Larraz, G.; Orera, A.; Sanjuan, M.L. Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 11419-11428.
[http://dx.doi.org/10.1039/c3ta11996c]
[129]
Kumar, P.J.; Nishimura, K.; Senna, M.; Düvel, A.; Heitjans, P.; Kawaguchi, T.; Sakamoto, N.; Wakiya, N.; Suzuki, H. A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery. RSC Advances, 2016, 6, 62656-62667.
[http://dx.doi.org/10.1039/C6RA09695F]
[130]
Keller, M.; Appetecchi, G.B.; Kim, G.T.; Sharova, V.; Schneider, M.; Schuhmacher, J.; Roters, A.; Passerini, S. Electrochemical performance of a solvent free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J. Power Sources, 2017, 353, 287-297.
[http://dx.doi.org/10.1016/j.jpowsour.2017.04.014]
[131]
Choi, J.H.; Lee, C.H.; Yu, J.H.; Doh, C.H.; Lee, S.M. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene matrix. J. Power Sources, 2015, 274, 458-463.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.078]
[132]
Zhang, J.; Zhao, N.; Zhang, M.; Li, Y.; Chu, P.K.; Guo, X.; Di, Z.; Wang, X.; Li, H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28, 447-454.
[http://dx.doi.org/10.1016/j.nanoen.2016.09.002]
[133]
Zheng, J.; Tang, M.; Hu, Y.Y. Lithium ion pathway within Li7La3Zr2O12- polyethylene oxide composite electrolytes. Angew. Chem., 2016, 128, 12726-12730.
[http://dx.doi.org/10.1002/ange.201607539]
[134]
Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, H.W.; Cui, Y. Solid-State Lithium-Sulfur Batteries Operated at 37°C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. Nano Lett., 2017, 17(5), 2967-2972.
[http://dx.doi.org/10.1021/acs.nanolett.7b00221] [PMID: 28388080]
[135]
(a)Sharafi, A.; Kazyak, E.; Davis, A.L.; Yu, S.; Thompson, T.; Siegel, D.J.; Dasgupta, N.P.; Sakamoto, J. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12.Chem. Mater., 2017, 29, 7961-7968.,
[http://dx.doi.org/10.1021/acs.chemmater.7b03002]
(b)Fu, K.K.; Gong, Y.; Liu, B.; Zhu, Y.; Xu, S.; Yao, Y.; Luo, W.; Wang, C.; Lacey, S.D.; Dai, J.; Chen, Y.; Mo, Y.; Wachsman, E.; Hu, L. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv., 2017, 3(4)e1601659.
[http://dx.doi.org/10.1126/sciadv.1601659] [PMID: 28435874]
(c)Shao, Y.; Wang, H.; Gong, Z.; Wang, D.; Zheng, B.; Zhu, J.; Lu, Y.; Hu, Y.S.; Guo, X.; Li, H.; Huang, X. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries.ACS Energy Lett., 2018, 3, 1212-1218.,
[http://dx.doi.org/10.1021/acsenergylett.8b00453]
(d)Duan, J.; Wu, W.; Nolan, A.M.; Wang, T.; Wen, J.; Hu, C.; Mo, Y.; Luo, W.; Huang, Y. Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries. Adv. Mater., 2019, 31(10)e1807243
[http://dx.doi.org/10.1002/adma.201807243] [PMID: 30663171]
[136]
Han, X.; Gong, Y.; Fu, K.K.; He, X.; Hitz, G.T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; Mo, Y.; Thangadurai, V.; Wachsman, E.D.; Hu, L. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 2017, 16(5), 572-579.
[http://dx.doi.org/10.1038/nmat4821] [PMID: 27992420]
[137]
Wakasugi, J.; Munakata, H.; Kanamura, K. Effect of gold layer on interface resistance between lithium metal anode and Li6.25Al0.25La3Zr2O12 solid electrolyte. J. Electrochem. Soc., 2017, 164, 1022-1025.
[http://dx.doi.org/10.1149/2.0471706jes]
[138]
Luo, W.; Gong, Y.; Zhu, Y.; Fu, K.K.; Dai, J.; Lacey, S.D.; Wang, C.; Liu, B.; Han, X.; Mo, Y.; Wachsman, E.D.; Hu, L. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc., 2016, 138(37), 12258-12262.
[http://dx.doi.org/10.1021/jacs.6b06777] [PMID: 27570205]
[139]
Fu, K.; Gong, Y.; Li, Y.; Xu, S.; Wen, Y.; Zhang, L.; Wang, C.; Pastel, G.; Dai, J.; Liu, B.; Xie, H. Three-Dimensional Bilayer Garnet Solid Electrolyte Based High Energy Density Lithium Metal-Sulfur Batteries. Energy Environ. Sci., 2017.
[http://dx.doi.org/10.1039/C7EE01004D]
[140]
Fu, K.; Gong, Y.; Xu, S.; Zhu, Y.; Li, Y.; Dai, J.; Wang, C.; Liu, B.; Pastel, G.; Xie, H.; Yao, Y. Stabilizing the garnet solid-electrolyte/polysulfide interface in Li-s batteries. Chem. Mater., 2017, 29, 8037-8041.
[http://dx.doi.org/10.1021/acs.chemmater.7b02339]

© 2024 Bentham Science Publishers | Privacy Policy