Abstract
Reliable energy storage is a censorious need for an extensive range of requisite such as portable electronic devices, transportation, medical devices, spacecraft and elsewhere. Among the known storage devices, the lithium ion (Li+) batteries have enticed attention because of higher theoretical energy density. Nevertheless, the state-of-the-art electrolyte in lithium batteries utilizing a Li+ salt dissolved in organic-type solvents poses severe safety concerns like flammability arising from dendrite formation. Next generation (beyond Li+) battery systems such as lithium sulphur (Li-S) batteries have gained interest in recent times. This battery system has been extensively revisited in an attempt to develop high energy batteries and is now considered as the technology of choice for hybrid vehicle electrification and grid storage. Higher theoretical capacity and higher theoretical energy density, environmental friendliness and low cost of active material make the Li-S batteries an ideal candidate to meet increasing energy requirements. This review looks at various advanced electrolytic systems with much emphasis on solid state electrolytic systems for Li-S batteries because of their striking properties. The technical issues of the sulphur cathode are also summarized and the strategies followed in recent years are highlighted in this review to address these issues. It is anticipated that Li-S batteries with efficient solid electrolytic system may replace the conventional insertion-type low energy density Li+ batteries in the near future.
Keywords: High energy density, lithium garnets, lithium sulphur batteries, solid electrolytes, high Li-ion conductivity, interface engineering.
Graphical Abstract
[http://dx.doi.org/10.1039/c4cs00020j] [PMID: 24681593]
[http://dx.doi.org/10.1021/am405025n] [PMID: 24524220]
[http://dx.doi.org/10.1038/ncomms5759] [PMID: 25154399]
[http://dx.doi.org/10.1021/ar300179v] [PMID: 23095063]
[http://dx.doi.org/10.1021/cr500062v] [PMID: 25026475]
[http://dx.doi.org/10.1016/j.ensm.2017.06.016]
[http://dx.doi.org/10.1149/1.1503076]
[http://dx.doi.org/10.1039/C6EE03033E]
[http://dx.doi.org/10.1149/1.2129079]
[http://dx.doi.org/10.1149/1.2095868]
[http://dx.doi.org/10.1149/1.1503076]
[http://dx.doi.org/10.1149/1.1571532]
[http://dx.doi.org/10.1149/1.1806394]
[http://dx.doi.org/10.1016/j.jelechem.2014.12.003]
[http://dx.doi.org/10.1039/c2cs35256g] [PMID: 23325336]
[http://dx.doi.org/10.1039/c3ta11045a]
[http://dx.doi.org/10.1002/adma.201504765] [PMID: 26677000]
[http://dx.doi.org/10.1002/adfm.201401501]
[http://dx.doi.org/10.1016/j.nanoen.2014.11.025]
[http://dx.doi.org/10.1002/adma.201405689] [PMID: 25605465]
[http://dx.doi.org/10.1038/srep04629] [PMID: 24717445]
[http://dx.doi.org/10.1038/ncomms9850] [PMID: 26608228]
[http://dx.doi.org/10.1016/j.nanoen.2013.12.013]
[http://dx.doi.org/10.1039/C4CC03410D] [PMID: 24978617]
[http://dx.doi.org/10.1021/acsami.5b07468] [PMID: 26378622]
[http://dx.doi.org/10.1002/adma.201506014] [PMID: 26932832]
[http://dx.doi.org/10.1021/jacs.5b08113] [PMID: 26325146]
[http://dx.doi.org/10.1021/cm5044667]
[http://dx.doi.org/10.1039/c3ta00004d]
[http://dx.doi.org/10.1039/c2cc17912a] [PMID: 22434263]
[http://dx.doi.org/10.1039/C3EE42223B]
[http://dx.doi.org/10.1103/PhysRevApplied.2.034004]]
[http://dx.doi.org/10.1038/ncomms2327] [PMID: 23299881]
[http://dx.doi.org/10.1021/nl200658a] [PMID: 21699259]
[http://dx.doi.org/10.1016/j.jpowsour.2015.01.180]
[http://dx.doi.org/10.1021/ja409508q] [PMID: 24112042]
[http://dx.doi.org/10.1039/C3CC47223J] [PMID: 24326574]
[http://dx.doi.org/10.1039/c2ra20393f]
[http://dx.doi.org/10.1039/C6TA06164H]
[http://dx.doi.org/10.1002/ange.201100637]
[http://dx.doi.org/10.1039/c002639e]
[http://dx.doi.org/10.1016/j.jpowsour.2017.05.043]
[http://dx.doi.org/10.1002/adma.201405637] [PMID: 25820906]
[http://dx.doi.org/10.1038/nmat3191] [PMID: 22169914]
[http://dx.doi.org/10.1021/acsnano.5b07458] [PMID: 26910648]
[http://dx.doi.org/10.1016/S0378-7753(03)00113-7]
(b)Hu, C.; Chen, H.; Xie, Y.; Fang, L.; Fang, J.; Xu, J.; Zhao, H.; Zhang, J. Alleviating polarization by designing ultra-small Li2S nanocrystals encapsulated in N-rich carbon as a cathode material for high-capacity, long-life Li-S batteries. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 18284-18288.
[http://dx.doi.org/10.1039/C6TA08572E]
[http://dx.doi.org/10.1021/nl202297p] [PMID: 21928817]
[http://dx.doi.org/10.1039/C5TA01970B]
[http://dx.doi.org/10.1016/j.electacta.2014.02.077]
(b)Li, J.; Huang, Y.; Zhang, S.; Jia, W.; Wang, X.; Guo, Y.; Jia, D.; Wang, L. Decoration of silica nanoparticles on polypropylene separator for lithium-sulfur batteries., ACS Appl. Mater. Interfaces, 2017, 9(8), 7499-7504..
[http://dx.doi.org/10.1021/acsami.7b00065] [PMID: 28186728]
(c)Din, M.M.U.; Murugan, R. Garnet structured solid fast Li+ conductor as polysulfide Shuttle inhibitor in Li-S battery. Electrochem. Commun., 2018, 93, 109-113..
[http://dx.doi.org/10.1016/j.elecom.2018.07.001]
(d)Din, M.M.U.; Sahu, B.K.; Das, A.; Murugan, R. Enhanced electrochemical performance of lithium-sulfur battery by negating polysulfide shuttling and interfacial resistance through aluminum nanolayer deposition on polypropylene separator. Ionics, 2019, 25, 1645-1657.
[http://dx.doi.org/10.1007/s11581-019-02891-z]
[http://dx.doi.org/10.1002/aenm.201500738]
[http://dx.doi.org/10.1002/celc.201500342]
[http://dx.doi.org/10.1039/C5TA00681C]
[http://dx.doi.org/10.1016/j.memsci.2016.01.020]
[http://dx.doi.org/10.1021/nn507178a] [PMID: 25682962]
[http://dx.doi.org/10.1039/C4TA00597J]
[http://dx.doi.org/10.1016/j.ssi.2003.11.033]
[http://dx.doi.org/10.1039/c2jm16802b]
[http://dx.doi.org/10.1002/anie.201605931] [PMID: 27461554]
[http://dx.doi.org/10.1016/j.electacta.2012.11.001]
[http://dx.doi.org/10.1021/acsami.5b02160]
[http://dx.doi.org/10.1149/1.2096981]
[http://dx.doi.org/10.1016/0022-1902(77)80198-X]
[http://dx.doi.org/10.1016/j.gee.2016.04.006]
[http://dx.doi.org/10.1149/1.3148721]
[http://dx.doi.org/10.1021/nl2027684] [PMID: 21916442]
[http://dx.doi.org/10.1039/c2cp42796f] [PMID: 23033056]
[http://dx.doi.org/10.1038/srep33154] [PMID: 27629986]
[http://dx.doi.org/10.1038/nenergy.2016.132]
[http://dx.doi.org/10.3390/membranes2030553] [PMID: 24958296]
[http://dx.doi.org/10.1016/S0921-5107(02)00226-X]
[http://dx.doi.org/10.1016/j.electacta.2013.10.069]
[http://dx.doi.org/10.1039/C6GC00444J]
[http://dx.doi.org/10.1016/j.polymer.2017.02.021]
[http://dx.doi.org/10.1016/j.matlet.2016.10.069]
[http://dx.doi.org/10.1149/2.1151610jes]
[http://dx.doi.org/10.1016/j.nanoen.2016.02.008]
[http://dx.doi.org/10.1039/c3ta01169k]
[http://dx.doi.org/10.1186/1556-276X-9-137] [PMID: 24655466]
[http://dx.doi.org/10.1002/app.44594]
[http://dx.doi.org/10.1038/srep07591] [PMID: 25558001]
[http://dx.doi.org/10.1016/j.jallcom.2017.09.131]
[http://dx.doi.org/10.1149/2.022303jes]
[http://dx.doi.org/10.1002/adma.201502289] [PMID: 26305630]
[http://dx.doi.org/10.1021/nn503220h] [PMID: 25144303]
[http://dx.doi.org/10.1039/C5EE00058K]
[http://dx.doi.org/10.1021/nl4016683] [PMID: 24032420]
[http://dx.doi.org/10.1002/adma.201403337] [PMID: 25302826]
[http://dx.doi.org/10.1002/adma.19960080205]
[http://dx.doi.org/10.1016/0038-1098(93)90841-A]
[http://dx.doi.org/10.1016/S0378-7753(99)00105-6]
[http://dx.doi.org/10.1016/j.jpowsour.2012.11.098]
[http://dx.doi.org/10.1016/S0167-2738(00)00277-0]
(b)Yu, X.; Bi, Z.; Zhao, F.; Manthiram, A. Hybrid lithium-sulphur batteries with a solid electrolyte membrane and lithium polysulphide catholyte. ACS Appl. Mater. Interfaces, 2015, 7(30), 16625-16631.
[http://dx.doi.org/10.1021/acsami.5b04209] [PMID: 26161547]
[http://dx.doi.org/10.1016/0022-5088(76)90263-0]
[http://dx.doi.org/10.1063/1.89283]
[http://dx.doi.org/10.1039/C4CC05535G] [PMID: 25285341]
[http://dx.doi.org/10.1149/2.0441504jes]
[http://dx.doi.org/10.1007/s10008-014-2654-1]
[http://dx.doi.org/10.1149/2.0771609jes]
[http://dx.doi.org/10.1039/C7TA01147D]
[http://dx.doi.org/10.1038/nmat3066] [PMID: 21804556]
[http://dx.doi.org/10.1016/j.jpowsour.2016.08.058]
[http://dx.doi.org/10.1016/j.electacta.2017.01.155]
[http://dx.doi.org/10.1111/j.1151-2916.2003.tb03318.x]
[http://dx.doi.org/10.1149/1.2800764]
[http://dx.doi.org/10.1016/0025-5408(88)90264-4]
[http://dx.doi.org/10.1016/0167-577X(88)90011-0]
[http://dx.doi.org/10.1021/cm031176d]
[http://dx.doi.org/10.1039/C4CP05690F] [PMID: 25739741]
[http://dx.doi.org/10.1002/anie.200701144] [PMID: 17803180]
[http://dx.doi.org/10.1021/acs.jpcc.7b10911]
(b)Geiger, C.A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem., 2011, 50(3), 1089-1097.
[http://dx.doi.org/10.1021/ic101914e] [PMID: 21188978]
[http://dx.doi.org/10.3389/fenrg.2016.00028]
[http://dx.doi.org/10.1016/j.pmatsci.2017.04.007]
[http://dx.doi.org/10.1016/j.ssi.2011.01.002]
[http://dx.doi.org/10.1039/C5RA18543B]
[http://dx.doi.org/10.1016/j.ssi.2016.01.042]
[http://dx.doi.org/10.1039/c3cp50991e] [PMID: 23732926]
[http://dx.doi.org/10.1063/1.4818971]
[http://dx.doi.org/10.1002/adma.201606042] [PMID: 28417487]
[http://dx.doi.org/10.1016/j.electacta.2014.08.139]
[http://dx.doi.org/10.1111/jace.14572]
[http://dx.doi.org/10.1039/C4RA08674K]
[http://dx.doi.org/10.1111/jace.13578]
[http://dx.doi.org/10.1021/acs.nanolett.5b00600] [PMID: 25782069]
[http://dx.doi.org/10.1021/acs.jpcc.5b03589]
[http://dx.doi.org/10.1039/c3ta11996c]
[http://dx.doi.org/10.1039/C6RA09695F]
[http://dx.doi.org/10.1016/j.jpowsour.2017.04.014]
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.078]
[http://dx.doi.org/10.1016/j.nanoen.2016.09.002]
[http://dx.doi.org/10.1002/ange.201607539]
[http://dx.doi.org/10.1021/acs.nanolett.7b00221] [PMID: 28388080]
[http://dx.doi.org/10.1021/acs.chemmater.7b03002]
(b)Fu, K.K.; Gong, Y.; Liu, B.; Zhu, Y.; Xu, S.; Yao, Y.; Luo, W.; Wang, C.; Lacey, S.D.; Dai, J.; Chen, Y.; Mo, Y.; Wachsman, E.; Hu, L. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv., 2017, 3(4)e1601659.
[http://dx.doi.org/10.1126/sciadv.1601659] [PMID: 28435874]
(c)Shao, Y.; Wang, H.; Gong, Z.; Wang, D.; Zheng, B.; Zhu, J.; Lu, Y.; Hu, Y.S.; Guo, X.; Li, H.; Huang, X. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries.ACS Energy Lett., 2018, 3, 1212-1218.,
[http://dx.doi.org/10.1021/acsenergylett.8b00453]
(d)Duan, J.; Wu, W.; Nolan, A.M.; Wang, T.; Wen, J.; Hu, C.; Mo, Y.; Luo, W.; Huang, Y. Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries. Adv. Mater., 2019, 31(10)e1807243
[http://dx.doi.org/10.1002/adma.201807243] [PMID: 30663171]
[http://dx.doi.org/10.1038/nmat4821] [PMID: 27992420]
[http://dx.doi.org/10.1149/2.0471706jes]
[http://dx.doi.org/10.1021/jacs.6b06777] [PMID: 27570205]
[http://dx.doi.org/10.1039/C7EE01004D]
[http://dx.doi.org/10.1021/acs.chemmater.7b02339]