Generic placeholder image

Current Smart Materials (Discontinued)

Editor-in-Chief

ISSN (Print): 2405-4658
ISSN (Online): 2405-4666

Review Article

Review of Self-Healing Polymers as Propituous Biomaterials

Author(s): Smita Nayak*, Bhaskar Vaidhun and Kiran Kedar

Volume 5, Issue 1, 2021

Published on: 19 August, 2020

Page: [38 - 53] Pages: 16

DOI: 10.2174/2405465805999200819105621

Price: $65

Abstract

In the last few decades, as an understanding of polymers grew, their applications in healthcare gained prominence. However, their widespread use was limited due to inevitable ageing, unavoidable degradation and excessive wear and tear. In order to overcome this drawback, researchers took inspiration from the capability of the human body to heal itself. Scientific curiosity and focussed efforts in this direction have laid the foundation for the successful conceptualization of selfhealing polymeric biomaterials and their commercial utilization for ancillary purposes. This review familiarizes the readers with recent literature in self-healing polymers, their fabrication techniques as well as applications in medical and pharmaceutical arenas. It is heartening to note that these polymeric materials have overcome the disadvantages of conventional polymers and shown immense promise in breakthrough technologies such as tissue engineering, anti-biofouling as well as 3D and 4D printing. Self-healing polymers are poised to become critical supporting biomaterials in traditional disciplines such as orthopaedics, dentistry and pharmaceutical drug delivery. Efforts are on to design novel self-healing materials that meet the regulatory requirements of safety and biocompatibility. Research trends indicate that self-healing polymers may play a pivotal supporting role in furthering advances in therapeutics. The authors have, through this review, attempted to spark interest and stimulate creative minds to work in this domain.

Keywords: 4D printing, anti-fouling, bioink, glass ionomer cement, hyaluronic acid, polycaprolactone, scaffolds, self-healing hydrogel, superparamagnetic iron oxide nanoparticles.

Graphical Abstract

[1]
Arif, U.; Haider, S.; Haider, A.; Khan, N.; Alghyamah, A.A.; Jamila, N.; Khan, M.I.; Almasry, W.A.; Kang, I.K. Biocompatible polymers and their potential biomedical applications: A review. Curr. Pharm. Des., 2019, 25(34), 3608-3619.
[http://dx.doi.org/10.2174/1381612825999191011105148] [PMID: 31604409]
[2]
Bhola, R.; Bhola, S.M.; Liang, H.; Mishra, B. Biocompatible denture polymers- a review. Trends Biomater. Artif. Organs, 2010, 23(3), 129-136.
[3]
Pandey, E.; Srivastava, K.; Gupta, S.; Srivastava, S.; Mishra, N. Some biocompatible materials used in medical practices- a review. Int. J. Pharm. Sci. Res., 2016, 7(7), 2748-2755.
[4]
Ogata, N. Biocompatible polymers and their applications.Frontier of polymers and advanced materials; Prasad, P.N., Ed.; Springer: US, 1994, pp. 509-517.
[http://dx.doi.org/10.1007/978-1-4615-2447-2_47]
[5]
Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 185-192.
[http://dx.doi.org/10.3109/21691401.2016.1146731 ] [PMID: 26923861]
[6]
Liu, X.; Holzwarth, J.M.; Ma, P.X. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol. Biosci., 2012, 12(7), 911-919.
[http://dx.doi.org/10.1002/mabi.201100466] [PMID: 22396193]
[7]
Balaji, A.B.; Pakalapati, H.; Khalid, M.; Walvekar, R.; Siddiqui, H. Natural and synthetic biocompatible and biodegradable polymers.Biodegradable and biocompatible polymer composites; Shimpi, N.G., Ed.; Woodhead Publishing, 2018, pp. 3-32.
[http://dx.doi.org/10.1016/B978-0-08-100970-3.00001-8]
[8]
Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2), 103-114.
[http://dx.doi.org/10.1016/0142-9612(96)85755-3] [PMID: 8624387]
[9]
Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv., 2008, 26(3), 246-265.
[http://dx.doi.org/10.1016/j.biotechadv.2007.12.005 ] [PMID: 18337047]
[10]
Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere, 2008, 73(4), 429-442.
[http://dx.doi.org/10.1016/j.chemosphere.2008.06.064 ] [PMID: 18723204]
[11]
Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene. Review Springerplus, 2013, 2, 398.[review]..
[http://dx.doi.org/10.1186/2193-1801-2-398] [PMID: 25674392]
[12]
Leja, K.; Lewandowicz, G. Polymers biodegradation and biodegradable polymers- a review. Pol. J. Environ. Stud., 2010, 19(2), 255-266.
[13]
Sazali, N.; Ibrahim, H.; Jamaludin, A.S.; Mohamed, M.A.; Norharyati, W.; Abidin, M.N.Z. Degradation and stability of polymer: A mini review. IOP Conf Ser Mater Sci Eng, 2020, pp. 1-15.
[14]
Thirumalini, P.; Ravi, R.; Sekar, S.K.; Nambirajan, M. Study on the performance enhancement of lime mortar used in ancient temples and monuments in India. Indian J. Sci. Technol, 2011, l4(11),1484-1487.,
[http://dx.doi.org/10.17485/ijst/2011/v4i11.23]
[15]
Wayman, E. The secrets of ancient Rome’s buildings., 2011.https://www.smithsonianmag.com/history/the-secrets-of-ancient-romes-buildings-234992/?all
[16]
Trask, R.S.; Williams, H.R.; Bond, I.P. Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim., 2007, 2(1), 1-9.
[http://dx.doi.org/10.1088/1748-3182/2/1/P01] [PMID: 17671320]
[17]
Youngblood, J.P.; Sottos, N.R. Bioinspired materials for self-cleaning and self-healing. MRS Bull., 2008, 33(8), 732-741.
[http://dx.doi.org/10.1557/mrs2008.158]
[18]
Cremaldi, J.C.; Bhushan, B. Bioinspired self-healing materials: lessons from nature. Beilstein J. Nanotechnol., 2018, 9, 907-935.
[http://dx.doi.org/10.3762/bjnano.9.85] [PMID: 29600152]
[19]
Malinskii, Y.M.; Prokopenko, V.V.; Ivanova, N.A.; Kargin, V.A. Investigation of self-healing of cracks in polymers. Mech. Compos. Mater., 1970, 6, 240-244.
[20]
Wool, R.P. Crack healing in semicrystalline polymers, block copolymers and filled elastomers. Adhes. Adsorpt. Polym., 1979, 12, 341-362.
[21]
Wool, R.P.; O’Connor, K.M. A theory of crack healing in polymers. J. Appl. Phys., 1981, 52, 5953-5963.
[http://dx.doi.org/10.1063/1.328526]
[22]
Dry, C. Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct., 1996, 35(3), 263-269.
[http://dx.doi.org/10.1016/0263-8223(96)00033-5]
[23]
White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature, 2001, 409(6822), 794-797.
[http://dx.doi.org/10.1038/35057232] [PMID: 11236987]
[24]
Van Tittelboom, K.; De Belie, N. Self-healing in cementitious materials- a review. Materials (Basel), 2013, 6(6), 2182-2217.
[http://dx.doi.org/10.3390/ma6062182] [PMID: 28809268]
[25]
Bekas, D.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self- healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos., Part B Eng., 2016, 87, 92-119.
[http://dx.doi.org/10.1016/j.compositesb.2015.09.057]
[26]
Yuan, V.; Wang, C. Self-healing hydrogels as biomedical scaffolds for cell, gene and drug delivery. J. Mater. Sci., 2017, 5(4), 23-37.
[27]
Taylor, D.L. In Het Panhuis, M. Self-healing hydrogels. Adv. Mater., 2016, 28(41), 9060-9093.
[http://dx.doi.org/10.1002/adma.201601613] [PMID: 27488822]
[28]
Hager, M.D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U.S. Self-healing materials. Adv. Mater., 2010, 22(47), 5424-5430.
[http://dx.doi.org/10.1002/adma.201003036] [PMID: 20839257]
[29]
Nosonovsky, M.; Rohatgi, P.K. Self-healing, self-lubricating and self-cleaning materials. Biomimetics in Material Science; Hull, R.; Jagdish, C.; Kawazoe, Y.; Kruzic, J.; Osgood, R.M.; Parisi, J.; Pohl, U.W.; Seong, T-Y.; Uchida, S-I; Wang, Z.M., Ed.; Springer Series in Material Science: New York, 2012, Vol. 152, pp. 343-418.
[http://dx.doi.org/10.1007/978-1-4614-0926-7_12]
[30]
Diesendruck, C.E.; Sottos, N.R.; Moore, J.S.; White, S.R. Biomimetic Self-Healing. Angew. Chem. Int. Ed. Engl., 2015, 54(36), 10428-10447.
[http://dx.doi.org/10.1002/anie.201500484] [PMID: 26216654]
[31]
Aïssa, B.; Daniel, T.; Haddad, E.; Jamroz, W. Self-healing materials systems: overview of major approaches and recent developed technologies. Adv. Mater. Sci. Eng., 2012, 2012, 1-17.
[http://dx.doi.org/10.1155/2012/854203]
[32]
Williams, H.R.; Trask, R.S.; Weaver, P.M.; Bond, I.P. Minimum mass vascular networks in multifunctional materials. J. R. Soc. Interface, 2008, 5(18), 55-65.
[http://dx.doi.org/10.1098/rsif.2007.1022] [PMID: 17426011]
[33]
Ghosh, S.K. Self-healing materials: fundamentals, design strategies, and applications.WILEY-VCH Verlag GmbH & Co. KGaA,2009, 1-23.,
[34]
Madara, S.R.; Sarath Raj, N.S.; Selvan, C.P. Review of research and developments in self healing composite materials. Conf. Ser. Mater. Sci. Eng., 2018, 346, 1-16.
[http://dx.doi.org/10.1088/1757-899X/346/1/012011]
[35]
Sobczak, J.J.; Drenchev, L. Self-healing Materials as Biomimetic Smart Structures; Foundry Research Institute Krakow, 2014, pp. 40-63.
[36]
Thangavel, G.; Tan, M.W.M.; Lee, P.S. Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg., 2019, 6(1), 29.
[http://dx.doi.org/10.1186/s40580-019-0199-9] [PMID: 31414249]
[37]
Zhao, Y.; Kim, A.; Wan, G.; Tee, B.C.K. Design and applications of stretchable and self-healable conductors for soft electronics. Nano Converg., 2019, 6(1), 25.
[http://dx.doi.org/10.1186/s40580-019-0195-0] [PMID: 31367883]
[38]
Xi, X.; Ye, T.; Wang, S.; Na, X.; Wang, J.; Qing, S.; Gao, X.; Wang, C.; Li, F.; Wei, W.; Ma, G. Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination.Sci Adv, 2020, 6(21), EAAY7735.,
[http://dx.doi.org/10.1126/sciadv.aay7735]
[39]
Jones, A.S.; Rule, J.D.; Moore, J.S.; Sottos, N.R.; White, S.R. Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R. Soc. Interface, 2007, 4(13), 395-403.
[http://dx.doi.org/10.1098/rsif.2006.0199] [PMID: 17251129]
[40]
Brown, E.N.; Kessler, M.R.; Sottos, N.R.; White, S.R. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J. Microencapsul., 2003, 20(6), 719-730.
[http://dx.doi.org/10.3109/02652040309178083] [PMID: 14594661]
[41]
Ullah, H.; Azizli, K.A.M.; Man, Z.B.; Ismail, M.B.C.; Khan, M.I. The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: A review. Polym. Rev. (Phila. Pa.), 2016, 56(3), 429-485.
[http://dx.doi.org/10.1080/15583724.2015.1107098]
[42]
Althaqafi, K.A.; Satterthwaite, J.; Silikas, N. A review and current state of autonomic self-healing microcapsules-based dental resin composites. Dent. Mater., 2020, 36(3), 329-342.
[http://dx.doi.org/10.1016/j.dental.2019.12.005] [PMID: 31883618]
[43]
Zhu, D.Y.; Rong, M.Z.; Zhang, M.Q. Microcapsule-based self-healing materials. Recent Advances in Smart Self-Healing Polymers and Composites; Li, G; Meng, H., Ed.; Woodhead Publishing, 2015, pp. 101-127.
[http://dx.doi.org/10.1016/B978-1-78242-280-8.00004-2]
[44]
Mauldin, T.C.; Kessler, M.R. Self-healing polymers and composites. Int. Mater. Rev., 2010, 55(6), 317-346.
[http://dx.doi.org/10.1179/095066010X12646898728408]
[45]
Blaiszik, B.J.; Caruso, M.M.; McIlroy, D.A.; Moore, J.S.; White, S.R.; Sottos, N.R. Microcapsules filled with reactive solution for self-healing materials. Polymer (Guildf.), 2009, 50(4), 990-997.
[http://dx.doi.org/10.1016/j.polymer.2008.12.040]
[46]
Keller, M.W.; White, S.R.; Sottos, N.R. A self-healing poly (dimethyl siloxane) elastomer. Adv. Funct. Mater., 2007, 17(14), 2399-2404.
[http://dx.doi.org/10.1002/adfm.200700086]
[47]
Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. Preparation and characterization of microencapsulated polythiol. Polymer (Guildf.), 2008, 49, 2531-2541.
[http://dx.doi.org/10.1016/j.polymer.2008.03.044]
[48]
Liu, X.; Sheng, X.; Lee, J.K.; Kessler, M.R. Synthesis and characterization of melamine-urea-formaldehyde microcapsules containing ENB-based self-healing agents. Macromol. Mater. Eng., 2009, 294(6), 389-395.
[http://dx.doi.org/10.1002/mame.200900015]
[49]
Tanasa, F.; Zanoaga, M. International Conference of Scientific Paper AFASES, BrasovMay 24-26, 2012, pp. 1-8.
[50]
Zhu, D.Y.; Rong, M.Z.; Zhang, M.Q. Microcapsule-based self-healing materials.Recent Advances in Smart Self-healing Polymers and Composites; Li, G; Meng, H., Ed.; Woodhead Publishing, 2015, pp. 101-127.
[http://dx.doi.org/10.1016/B978-1-78242-280-8.00004-2]
[51]
Gan, S.N.; Shahabudin, N. Applications of microcapsules in self-healing polymeric materials.Microencapsulation- Process, Technologies and Industrial Applications; Salaiin, F., Ed.; IntechOpen, 2019, pp. 1-14.
[http://dx.doi.org/10.5772/intechopen.83475]
[52]
Kanu, N.J.; Gupta, E.; Vates, U.K.; Singh, G.K. Self-healing composites: a state-of-the-art review. Compos., Part A Appl. Sci. Manuf., 2019, 121, 474-486.
[http://dx.doi.org/10.1016/j.compositesa.2019.04.012]
[53]
Brown, E.N.; White, S.R.; Sottos, N.R. Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci., 2004, 39, 1703-1710.
[http://dx.doi.org/10.1023/B:JMSC.0000016173.73733.dc]
[54]
Aniskevich, A.; Kulakov, V.; Bulderberga, O.; Knotek, P.; Tendim, J.; Maia, F.; Leisis, V.; Zeleniakiene, D. Experimental characterisation and modelling of mechanical behaviour of microcapsules. J. Mater. Sci., 2020, 55, 13457-13471.
[http://dx.doi.org/10.1007/s10853-020-04925-8]
[55]
Na, X.; Gao, F.; Zhang, L.; Su, Z.; Ma, G. Biodegradable microcapsules prepared by self-healing of porous microspheres. ACS Macro Lett., 2012, 1, 697-700.
[http://dx.doi.org/10.1021/mz200222d]
[56]
Trask, R.S.; Williams, G.J.; Bond, I.P. Bioinspired self-healing of advanced composite structures using hollow glass fibres. J. R. Soc. Interface, 2007, 4(13), 363-371.
[http://dx.doi.org/10.1098/rsif.2006.0194] [PMID: 17251131]
[57]
Han, S.; Zhang, X.L.; Guo, Y.; Wang, Y.; Su, J. Research process of self-healing materials using hollow fibres. New Chem. Mater., 2017, 8(12), 473-495.
[58]
Trask, R.S.; Bond, I.P. Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater. Struct., 2006, 15(3), 704-710.
[http://dx.doi.org/10.1088/0964-1726/15/3/005]
[59]
Pang, J.W.C.; Bond, I.P. ‘Bleeding composites’- damaged detection and self-repair using a biomimetic approach. Compos., Part A Appl. Sci. Manuf., 2005, 36(2), 183-188.
[http://dx.doi.org/10.1016/S1359-835X(04)00166-6]
[60]
Pang, J.W.C.; Bond, I.P. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol., 2005, 65(11), 1791-1799.
[http://dx.doi.org/10.1016/j.compscitech.2005.03.008]
[61]
Williams, H.R.; Trask, R.; Bond, I.P. Vascular self-healing composite sandwich structures. Smart Mater. Struct., 2007, 16(4), 1198.
[http://dx.doi.org/10.1088/0964-1726/16/4/031]
[62]
Williams, H.R.; Trask, R.; Bond, I. A self-healing carbon fibre reinforced polymer for aerospace applications. Compos. Part AApl. Sci. Manuf., 2007, 38(6), 1525-1532.
[http://dx.doi.org/10.1016/j.compositesa.2007.01.013]
[63]
Pang, J.W.C.; Ian, P. Bond. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol., 2005, 65(11), 1791-1799.
[http://dx.doi.org/10.1016/j.compscitech.2005.03.008]
[64]
Mehta, N.K. Self-healing fiber-reinforced epoxy composites: Solvent-epoxy filled hollow glass fibers. Int. J. Compos. Mater., 2013, 3(6), 145-155.
[65]
Pulikkalparambil, H.; Sanjay, M.R.; Siengchin, S.; Khan, A.; Jawaid, M.; Pruncu, C.I. Self-repairing hollow-fiber polymer composites.Self-healing Composite Materials From Design to Applications; Khan, A.; Jawaid, M.; Raveendran, S.N; Asiri, A.M.A., Ed.; Woodhead Publishing, 2020, pp. 313-326.
[http://dx.doi.org/10.1016/B978-0-12-817354-1.00017-X]
[66]
Williams, H.R.; Trask, R.S.; Knights, A.C.; Williams, E.R.; Bond, I.P. Biomimetic reliability strategies for self-healing vascular networks in engineering materials. J. R. Soc. Interface, 2008, 5(24), 735-747.
[http://dx.doi.org/10.1098/rsif.2007.1251] [PMID: 17999947]
[67]
Therriault, D.; White, S.R.; Lewis, J.A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater., 2003, 2(4), 265-271.
[http://dx.doi.org/10.1038/nmat863] [PMID: 12690401]
[68]
Therriault, D.; Shepherd, R.F.; White, S.R.; Lewis, J.A. Fugitive inks for direct-write assembly of three dimensional microvascular networks. Adv. Mater., 2005, 17(4), 395-399.
[http://dx.doi.org/10.1002/adma.200400481]
[69]
Toohey, K.S.; Sottos, N.R.; Lewis, J.A.; Moore, J.S.; White, S.R. Self-healing materials with microvascular networks. Nat. Mater., 2007, 6(8), 581-585.
[http://dx.doi.org/10.1038/nmat1934] [PMID: 17558429]
[70]
Toohey, K.S.; Sottos, N.R.; White, S.R. Characterization of microvascular-based self-healing coatings. Exp. Mech., 2008, 49, 707-717.
[http://dx.doi.org/10.1007/s11340-008-9176-7]
[71]
Postiglione, G.; Alberini, M.; Leigh, S.; Levi, M.; Turri, S. Effect of 3D-printed microvascular network design on the self-healing behaviour of crosslinked polymers. ACS Appl. Mater. Interfaces, 2017, 9(16), 14371-14378.
[http://dx.doi.org/10.1021/acsami.7b01830] [PMID: 28387500]
[72]
Tubio, C.R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitian, F.; Sotelo, E.; Gil, A. 3D printing of a heterogeneous copper-based catalyst. J. Catal., 2016, 334, 110-115.
[http://dx.doi.org/10.1016/j.jcat.2015.11.019]
[73]
Kruisová, A.; Seiner, H.; Sedlák, P.; Landa, M.; Román-Manso, B.; Miranzo, P.; Belmonte, M. Acoustic metamaterial behaviour of three-dimensional periodic architectures assembled by robocasting. Appl. Phys. Lett., 2014, 105(21), 166-167.
[http://dx.doi.org/10.1063/1.4902810]
[74]
Miranda, P.; Saiz, E.; Gryn, K.; Tomsia, A.P. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater., 2006, 2(4), 457-466.
[http://dx.doi.org/10.1016/j.actbio.2006.02.004] [PMID: 16723287]
[75]
Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater., 2005, 4(7), 518-524.
[http://dx.doi.org/10.1038/nmat1421] [PMID: 16003400]
[76]
Eqtesadi, S.; Motealleh, A.; Miranda, P.; Lemos, A.; Rebelo, A.; Ferreira, J. A simple recipe for direct writing complex 45S5 bioglass (R) 3D scaffolds. Mater. Lett., 2013, 93, 68-71.
[http://dx.doi.org/10.1016/j.matlet.2012.11.043]
[77]
Li, P.; Liu, G.; Liu, Y.; Huang, J. Microvascular network optimization of self-healing materials using non-dominated sorting genetic algorithm II and experimental validation. Sci. Prog., 2020, 103(1)36850419883541
[http://dx.doi.org/10.1177/0036850419883541] [PMID: 31829895]
[78]
Davami, K.; Mohsenizadeh, M.; Mitcham, M.; Damasus, P.; Williams, Q.; Munther, M. Additively manufactured self-healing structures with embedded healing agent reservoirs. Sci. Rep., 2019, 9(1), 7474.
[http://dx.doi.org/10.1038/s41598-019-43883-3] [PMID: 31097757]
[79]
Lucci, J.M.; Amano, R.S.; Rohatgi, P. Proceedings of the ASME Design Engineering Technical Conference, Brooklyn, New York, USAAugust 3-6, 2008, pp. 409-417.
[80]
White, S.R.; Moore, J.S.; Sottos, N.R.; Krull, B.P.; Santa Cruz, W.A.; Gergely, R.C.R. Restoration of large damage volumes in polymers. Science, 2014, 344(6184), 620-623.
[http://dx.doi.org/10.1126/science.1251135] [PMID: 24812399]
[81]
Gergely, R.C.R.; Santa Cruz, W.A.; Krull, B.P.; Pruitt, E.L.; Wang, J.; Sottos, N.R.; White, S.R. Biomimetics: Restoration of impact damage in polymers via a hybrid microcapsule-microvascular self-healing system. Adv. Funct. Mater., 2018, 28(2)1870012
[http://dx.doi.org/10.1002/adfm.201870012]
[82]
Neuberger, T.; Schȍpf, B.; Hofmann, H.; Hofmann, M.; Rechenberg, B.V. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater., 2005, 293(1), 483-496.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.064]
[83]
Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles- current and prospective medical applications. Materials (Basel), 2019, 12(4), 1-26.
[http://dx.doi.org/10.3390/ma12040617] [PMID: 30791358]
[84]
Mahmoudi, M.; Stroeve, P.; Milani, A.S.; Arbab, A.S. Superparamagnetic iron oxide nanoparticles: synthesis, surface engineering, cytotoxicity and biomedical applications; Nova Science Publishers: New York, 2011.
[85]
Laurent, S.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int. J. Mol. Epidemiol. Genet., 2011, 2(4), 367-390.
[PMID: 22199999]
[86]
Xiao, Y.; Du, J. Superparamagnetic nanoparticles for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(3), 354-367.
[http://dx.doi.org/10.1039/C9TB01955C] [PMID: 31868197]
[87]
Yang, Y.; Urban, M.W. Self-healing polymeric materials. Chem. Soc. Rev., 2013, 42(17), 7446-7467.
[http://dx.doi.org/10.1039/c3cs60109a] [PMID: 23864042]
[88]
Yang, Y.; He, J.; Li, Q.; Gao, L.; Hu, J.; Zeng, R.; Qin, J.; Wang, S.X.; Wang, Q. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol., 2019, 14(2), 151-155.
[http://dx.doi.org/10.1038/s41565-018-0327-4] [PMID: 30598524]
[89]
Bertorelle, F.; Wilhelm, C.; Roger, J.; Gazeau, F.; Ménager, C.; Cabuil, V. Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir, 2006, 22(12), 5385-5391.
[http://dx.doi.org/10.1021/la052710u] [PMID: 16732667]
[90]
Farjadian, F.; Moradi, S.; Hosseini, M. Thin chitosan films containing superparamagnetic nanoparticles with contrasting capability in magnetic resonance imaging. J. Mater. Sci. Mater. Med., 2017, 28(3), 46-55.
[http://dx.doi.org/10.1007/s10856-017-5854-2] [PMID: 28161832]
[91]
Khafaji, M.; Zamani, M.; Vossoughi, M.; Iraji Zad, A. Doxorubicin/cisplatin-loaded superparamagnetic nanoparticles as a stimuli-responsive co-delivery system for chemo-photothermal therapy. Int. J. Nanomedicine, 2019, 14, 8769-8786.
[http://dx.doi.org/10.2147/IJN.S226254] [PMID: 31806971]
[92]
Dos Santos, P.C.M.; Feuser, P.E.; Cordeiro, A.P.; Scussel, R.; Abel, J.D.S.; Machado-de-Ávila, R.A.; Rocha, M.E.M.; Sayer, C.; Hermes de Araújo, P.H. Antitumor activity associated with hyperthermia and 4-nitrochalcone loaded in superparamagnetic poly(thioether-ester) nanoparticles. J. Biomater. Sci. Polym. Ed., 2020, 31, 1-17.
[http://dx.doi.org/10.1080/09205063.2020.1782699 ] [PMID: 32552460]
[93]
Lai, H.Y.; Wang, H.Q.; Lai, J.C.; Li, C.H. A self-healing and shape memory polymer that functions at body temperature. Molecules, 2019, 24(18), 1-12.
[http://dx.doi.org/10.3390/molecules24183224] [PMID: 31487954]
[94]
Hornat, C.C.; Urban, M.W. Shape memory effects in self-healing polymers. Prog. Polym. Sci., 2020, 102, 1-16.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101208]
[95]
Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater., In Press
[96]
Huang, H-J.; Tsai, Y-L.; Lin, S-H.; Hsu, S-H. Smart polymers for cell therapy and precision medicine. J. Biomed. Sci., 2019, 26(1), 73.
[http://dx.doi.org/10.1186/s12929-019-0571-4] [PMID: 31623607]
[97]
Blaiszik, B.j.; Kramer, S.L.D.; Olugebefola, S.C.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-healing polymers and composites. Annu. Rev. Mater. Res., 2010, 40, 179-211.
[http://dx.doi.org/10.1146/annurev-matsci-070909-104532]
[98]
Hornat, C.C.; Urban, M.W. Entropy and interfacial energy driven self-healable polymers. Nat. Commun., 2020, 11(1), 1028.
[http://dx.doi.org/10.1038/s41467-020-14911-y] [PMID: 32098954]
[99]
Suryanarayana, C.; Rao, K.C.; Kumar, D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog. Org. Coat., 2008, 63(1), 72-78.
[http://dx.doi.org/10.1016/j.porgcoat.2008.04.008]
[100]
Kumar, A.; Stephenson, L.D.; Murray, J.N. Self-healing coatings for steel. Prog. Org. Coat., 2006, 55(3), 244-253.
[http://dx.doi.org/10.1016/j.porgcoat.2005.11.010]
[101]
Chen, J.; Huang, Y.; Ma, X.; Lei, Y. Functional self-healing materials and their potential applications in biomedical engineering. Adv. Compos Hybrid Mater, 2018, 1, 94-113.
[http://dx.doi.org/10.1007/s42114-017-0009-y]
[102]
Raggatt, L.J.; Partridge, N.C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem., 2010, 285(33), 25103-25108.
[http://dx.doi.org/10.1074/jbc.R109.041087] [PMID: 20501658]
[103]
Henriksen, K.; Neutzsky-Wulff, A.V.; Bonewald, L.F.; Karsdal, M.A. Local communication on and within bone controls bone remodeling. Bone, 2009, 44(6), 1026-1033.
[http://dx.doi.org/10.1016/j.bone.2009.03.671] [PMID: 19345750]
[104]
Canal, C.; Ginebra, M.P. Fibre-reinforced calcium phosphate cements: A review. J. Mech. Behav. Biomed. Mater., 2011, 4(8), 1658-1671.
[http://dx.doi.org/10.1016/j.jmbbm.2011.06.023] [PMID: 22098867]
[105]
dos Santos, L.A.; de Oliveira, L.C.; da Silva Rigo, E.C.; Carrodéguas, R.G.; Boschi, A.O.; Fonseca de Arruda, A.C. Fiber reinforced calcium phosphate cement. Artif. Organs, 2000, 24(3), 212-216.
[http://dx.doi.org/10.1046/j.1525-1594.2000.06541.x ] [PMID: 10759644]
[106]
Bohner, M. Reactivity of calcium phosphate cements. J. Mater. Chem., 2007, 38, 3980-3986.
[http://dx.doi.org/10.1039/b706411j]
[107]
Boehm, A.V.; Meininger, S.; Tesch, A.; Gbureck, U.; Müller, F.A. The mechanical properties of biocompatible apatite bone cement reinforced with chemically activated carbon fibers. Materials (Basel), 2018, 11(2), 192.
[http://dx.doi.org/10.3390/ma11020192] [PMID: 29373487]
[108]
Li, Q.; Liu, Z.; Chen, W.; Yuan, B.; Liu, X.; Chen, W. A novel bio-inspired bone-mimic self-healing cement paste based on hydroxyapatite formation. Cement Concr. Compos., 2019.1040103357
[http://dx.doi.org/10.1016/j.cemconcomp.2019.103357]
[109]
Boehm, A.V.; Meininger, S.; Gbureck, U.; Müller, F.A. Self-healing capacity of fiber-reinforced calcium phosphate cements. Sci. Rep., 2020, 10(1), 9430.
[http://dx.doi.org/10.1038/s41598-020-66207-2] [PMID: 32523063]
[110]
Diba, M.; Spaans, S.; Ning, K. Self-Healing biomaterials: from molecular concepts to clinical applications. Adv. Mater. Interfaces, 2018, 5(17)1800118
[http://dx.doi.org/10.1002/admi.201800118]
[111]
Gladman, A.S.; Celestine, A.D.N.; Sottos, N.R.; White, S.R. Autonomic healing of acrylic bone cement. Adv. Healthc. Mater., 2015, 4(2), 202-207.
[http://dx.doi.org/10.1002/adhm.201400084] [PMID: 25116439]
[112]
Kim, D.M.; Cho, Y.J.; Choi, J.Y.; Kim, B.J.S.W.; Chung, C.M. Low-Temperature Self-Healing of a Microcapsule-Type Protective Coating., 2017, 10(9), 1079.
[113]
Wu, J.; Weir, M.D.; Melo, M.A.; Xu, H.H. Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles. J. Dent., 2015, 43(3), 317-326.
[http://dx.doi.org/10.1016/j.jdent.2015.01.009] [PMID: 25625674]
[114]
Wu, J.; Zhang, Q.; Weir, M.D.; Oates, T.W.; Zhou, C.; Chang, X.; Xu, H.H.K.; Xu, H. Novel self-healing dental luting cements with microcapsules for indirect restorations. J. Dent., 2017, 66, 76-82.
[http://dx.doi.org/10.1016/j.jdent.2017.08.006] [PMID: 28826985]
[115]
Guo, J.; Pan, Q.; Huang, C. The role of surfactant and costabilizer in controlling size of nanocapsules containing TEGDMA in miniemulsion. Mater. Sci., 2009, 24, 1004.
[116]
Brochu, A.B.; Craig, S.L.; Reichert, W.M. Self-healing biomaterials. J. Biomed. Mater. Res. A, 2011, 96(2), 492-506.
[http://dx.doi.org/10.1002/jbm.a.32987] [PMID: 21171168]
[117]
Tomás, H.; Alves, C.S.; Rodrigues, J. Laponite®: A key nanoplatform for biomedical applications? Nanomedicine (Lond.), 2018, 14(7), 2407-2420.
[http://dx.doi.org/10.1016/j.nano.2017.04.016] [PMID: 28552649]
[118]
Zhang, Y.; Chen, M.; Dai, Z.; Cao, H.; Li, J.; Zhang, W. Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomater. Sci., 2020, 8(2), 682-693.
[http://dx.doi.org/10.1039/C9BM01455A] [PMID: 31776523]
[119]
Hosseinzadeh, H.; Seyyedhosseinzadeh, H. Opinion on prospective application of self-healing materials in orthopedic prostheses. Biomed J Sci & Tech Res., 2019, 17(2), 12638-12639.
[http://dx.doi.org/10.26717/BJSTR.2019.17.002970]
[120]
Jin, J.; Cai, L.; Jia, Y-G.; Liu, S.; Chen, Y.; Ren, L. Progress in self-healing hydrogels assembled by host-guest interactions: preparation and biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(10), 1637-1651.
[http://dx.doi.org/10.1039/C8TB02547A] [PMID: 32254906]
[121]
Tu, Y.; Chen, N.; Li, C.; Liu, H.; Zhu, R.; Chen, S.; Xiao, Q.; Liu, J.; Ramakrishna, S.; He, L. Advances in injectable self-healing biomedical hydrogels. Acta Biomater., 2019, 90, 1-20.
[http://dx.doi.org/10.1016/j.actbio.2019.03.057] [PMID: 30951899]
[122]
Wang, W.; Narain, R.; Zeng, H. Rational design of self-healing tough hydrogels: a mini review. Front Chem., 2018, 6, 497.
[http://dx.doi.org/10.3389/fchem.2018.00497] [PMID: 30460224]
[123]
Talebian, S.; Mehrali, M.; Taebnia, N.; Pennisi, C.P.; Kadumudi, F.B.; Foroughi, J.; Hasany, M.; Nikkhah, M.; Akbari, M.; Orive, G.; Dolatshahi-Pirouz, A. Self-Healing hydrogels: the next paradigm shift in tissue engineering. Adv. Sci. (Weinh.), 2019, 6(16)1801664
[http://dx.doi.org/10.1002/advs.201801664] [PMID: 31453048]
[124]
Wang, X.; Liu, C.; Xu, Y.; Chen, P.; Shen, Y.; Xu, Y.; Zhao, Y.; Chen, W.; Zhang, X.; Ouyang, Y.; Wang, Y.; Xie, C.; Zhou, M.; Liu, C. Combination of mesenchymal stem cell injection with icariin for the treatment of diabetes-associated erectile dysfunction. PLoS One, 2017, 12(3)e0174145
[http://dx.doi.org/10.1371/journal.pone.0174145] [PMID: 28350842]
[125]
Ouyang, B.; Xie, Y.; Zhang, C.; Deng, C.; Lv, L.; Yao, J.; Zhang, Y.; Liu, G.; Deng, J.; Deng, C. Extracellular vesicles from human urine -derived stem cells ameliorate erectile dysfunction in a diabetic rat model by delivering proangiogenic microRNA. Sex. Med., 2019, 7(2), 241-250.
[http://dx.doi.org/10.1016/j.esxm.2019.02.001] [PMID: 30910509]
[126]
Yan, H.; Rong, L.; Xiao, D.; Zhang, M.; Sheikh, S.P.; Sci, X.; Lu, M. Injectable and self-healing hydrogel as a stem cells carrier for treatment of diabetic erectile dysfunction., Mater. Sci. Eng. C, In Press
[127]
Liu, Y.; Hsu, S.H. Synthesis and biomedical applications of self-healing hydrogels. Front Chem., 2018, 6, 449.
[http://dx.doi.org/10.3389/fchem.2018.00449] [PMID: 30333970]
[128]
Wang, J.; Wang, D.; Yan, H.; Tao, L.; Wei, Y.; Li, Y.; Wang, X.; Zhao, W.; Zhang, Y.; Zhao, L.; Sun, X. An injectable ionic hydrogel inducing high temperature hyperthermia for microwave tumor ablation. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(22), 4110-4120.
[http://dx.doi.org/10.1039/C7TB00556C] [PMID: 32264143]
[129]
Wang, L.L.; Sloand, J.N.; Gaffey, A.C.; Venkataraman, C.M.; Wang, Z.; Trubelja, A.; Hammer, D.A.; Atluri, P.; Burdick, J.A. Injectable, guest-host assembled polyethylenimine hydrogel for siRNA delivery. Biomacromolecules, 2017, 18(1), 77-86.
[http://dx.doi.org/10.1021/acs.biomac.6b01378] [PMID: 27997133]
[130]
Wang, C.; Wang, M.; Xu, T.; Zhang, X.; Lin, C.; Gao, W.; Xu, H.; Lei, B.; Mao, C. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics, 2019, 9(1), 65-76.
[http://dx.doi.org/10.7150/thno.29766] [PMID: 30662554]
[131]
Yang, L.; Li, Y.; Gou, Y.; Wang, X.; Zhao, X.; Tao, L. Improving tumor chemotherapy effect using an injectable self-healing hydrogel as drug carrier. Polym. Chem., 2017, 8(34), 5071-5076.
[http://dx.doi.org/10.1039/C7PY00112F]
[132]
An, H.; Bo, Y.; Chen, D.; Wang, Y.; Wang, H.; He, Y.; Qin, J. Cellulose-based self-healing hydrogel through boronic ester bonds with excellent biocompatibility and conductivity. RSC Advances, 2020, 10(19), 11300-11310.
[http://dx.doi.org/10.1039/C9RA10736C]
[133]
Han, F.; Wang, J.; Ding, L.; Hu, Y.; Li, W.; Yuan, Z.; Guo, Q.; Zhu, C.; Yu, L.; Wang, H.; Zhao, Z.; Jia, L.; Li, J.; Yu, Y.; Zhang, W.; Chu, G.; Chen, S.; Li, B. Tissue engineering and regenerative medicine: achievements, future, and sustainability in asia. Front. Bioeng. Biotechnol., 2020, 8, 83.
[http://dx.doi.org/10.3389/fbioe.2020.00083] [PMID: 32266221]
[134]
Howard, D.; Buttery, L.D.; Shakesheff, K.M.; Roberts, S.J. Tissue engineering: strategies, stem cells and scaffolds. J. Anat., 2008, 213(1), 66-72.
[http://dx.doi.org/10.1111/j.1469-7580.2008.00878.x ] [PMID: 18422523]
[135]
Shafiee, A.; Atala, A. Tissue engineering: toward a new era of medicine. Annu. Rev. Med., 2017, 68, 29-40.
[http://dx.doi.org/10.1146/annurev-med-102715-092331] [PMID: 27732788]
[136]
O’Donnell, B.T.; Ives, C.J.; Mohiuddin, O.A.; Bunnell, B.A. beyond the present constraints that prevent a wide spread of tissue engineering and regenerative medicine approaches. Front. Bioeng. Biotechnol., 2019, 7, 95.
[http://dx.doi.org/10.3389/fbioe.2019.00095] [PMID: 31134194]
[137]
Silini, A.R.; Masserdotti, A.; Papait, A.; Parolini, O. shaping the future of perinatal cells: lessons from the past and interpretations of the present. Front. Bioeng. Biotechnol., 2019, 7, 75.
[http://dx.doi.org/10.3389/fbioe.2019.00075] [PMID: 31024907]
[138]
Gomez-Salazar, M.; Gonzalez-Galofre, Z.N.; Casamitjana, J.; Crisan, M.; James, A.W.; Péault, B. five decades later, are mesenchymal stem cells still relevant? Front. Bioeng. Biotechnol., 2020, 8, 148.
[http://dx.doi.org/10.3389/fbioe.2020.00148] [PMID: 32185170]
[139]
Mastrullo, V.; Cathery, W.; Velliou, E.; Madeddu, P.; Campagnolo, P. Angiogenesis in tissue engineering: as nature intended? Front. Bioeng. Biotechnol., 2020, 8, 188.
[http://dx.doi.org/10.3389/fbioe.2020.00188] [PMID: 32266227]
[140]
Zhang, K.; Wang, S.; Zhou, C.; Cheng, L.; Gao, X.; Xie, X.; Sun, J.; Wang, H.; Weir, M.D.; Reynolds, M.A.; Zhang, N.; Bai, Y.; Xu, H.H.K. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res., 2018, 6, 31.
[http://dx.doi.org/10.1038/s41413-018-0032-9] [PMID: 30374416]
[141]
Park, K.M.; Shin, Y.M.; Kim, K.; Shin, H. Tissue engineering and regenerative medicine 2017: A year in review. Tissue Eng. Part B Rev., 2018, 24(5), 327-344.
[http://dx.doi.org/10.1089/ten.teb.2018.0027] [PMID: 29652594]
[142]
Gomes, M.E.; Rodrigues, M.T.; Domingues, R.M.A.; Reis, R.L. Tissue Engineering and Regenerative Medicine: New Trends and Directions-A Year in Review. Tissue Eng. Part B Rev., 2017, 23(3), 211-224.
[http://dx.doi.org/10.1089/ten.teb.2017.0081] [PMID: 28457175]
[143]
Park, K.M.; Park, K.D. In situ cross-linkable hydrogels as a dynamic matrix for tissue regenerative medicine. Tissue Eng. Regen. Med., 2018, 15(5), 547-557.
[http://dx.doi.org/10.1007/s13770-018-0155-5] [PMID: 30603578]
[144]
Sun, J.; Mou, C.; Shi, Q.; Chen, B.; Hou, X.; Zhang, W.; Li, X.; Zhuang, Y.; Shi, J.; Chen, Y.; Dai, J. Controlled release of collagen-binding SDF-1α from the collagen scaffold promoted tendon regeneration in a rat Achilles tendon defect model. Biomaterials, 2018, 162, 22-33.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.008 ] [PMID: 29428676]
[145]
Esaki, S.; Katsumi, S.; Hamajima, Y.; Nakamura, Y.; Murakami, S. Transplantation of olfactory stem cells with biodegradable hydrogel accelerates facial nerve regeneration after crush injury. Stem Cells Transl. Med., 2019, 8(2), 169-178.
[http://dx.doi.org/10.1002/sctm.15-0399] [PMID: 30417987]
[146]
Chen, L.; Xiang, B.; Wang, X.; Xiang, C. Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res. Ther., 2017, 8(1), 9.
[http://dx.doi.org/10.1186/s13287-016-0453-6] [PMID: 28115012]
[147]
Yu, Y.; Shang, L.; Guo, J.; Wang, J.; Zhao, Y. Design of capillary microfluidics for spinning cell-laden microfibers. Nat. Protoc., 2018, 13(11), 2557-2579.
[http://dx.doi.org/10.1038/s41596-018-0051-4] [PMID: 30353174]
[148]
Zhao, P.; Gu, H.; Mi, H.; Rao, C.; Fu, J.; Turng, L. Fabrication of scaffolds in tissue engineering: A review. Front. Mech. Eng., 2018, 13, 107-119.
[http://dx.doi.org/10.1007/s11465-018-0496-8]
[149]
Gaffey, A.C.; Chen, M.H.; Venkataraman, C.M.; Trubelja, A.; Rodell, C.B.; Dinh, P.V.; Hung, G.; MacArthur, J.W.; Soopan, R.V.; Burdick, J.A.; Atluri, P. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium. J. Thorac. Cardiovasc. Surg., 2015, 150(5), 1268-1276.
[http://dx.doi.org/10.1016/j.jtcvs.2015.07.035] [PMID: 26293548]
[150]
Rodell, C.B.; MacArthur, J.W.; Dorsey, S.M.; Wade, R.J.; Wang, L.L.; Woo, Y.J.; Burdick, J.A. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties In Vivo. Adv. Funct. Mater., 2015, 25(4), 636-644.
[http://dx.doi.org/10.1002/adfm.201403550] [PMID: 26526097]
[151]
Grgic, I.; Duffield, J.S.; Humphreys, B.D. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr. Nephrol., 2012, 27(2), 183-193.
[http://dx.doi.org/10.1007/s00467-011-1772-6] [PMID: 21311912]
[152]
Schrimpf, C.; Duffield, J.S. Mechanisms of fibrosis: the role of the pericyte. Curr. Opin. Nephrol. Hypertens., 2011, 20(3), 297-305.
[http://dx.doi.org/10.1097/MNH.0b013e328344c3d4 ] [PMID: 21422927]
[153]
Dankers, P.Y.W.; Hermans, T.M.; Baughman, T.W.; Kamikawa, Y.; Kieltyka, R.E.; Bastings, M.M.C.; Janssen, H.M.; Sommerdijk, N.A.; Larsen, A.; van Luyn, M.J.; Bosman, A.W.; Popa, E.R.; Fytas, G.; Meijer, E.W. Hierarchical formation of supramolecular transient networks in water: A modular injectable delivery system. Adv. Mater., 2012, 24(20), 2703-2709.
[http://dx.doi.org/10.1002/adma.201104072] [PMID: 22528786]
[154]
Tseng, T.C.; Tao, L.; Hsieh, F.Y.; Wei, Y.; Chiu, I.M.; Hsu, S.H. An injectable, self-healing hydrogel to repair the central nervous system. Adv. Mater., 2015, 27(23), 3518-3524.
[http://dx.doi.org/10.1002/adma.201500762] [PMID: 25953204]
[155]
Hsieh, F.Y.; Han, H.W.; Chen, X.R.; Yang, C.S.; Wei, Y.; Hsu, S.H. Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials, 2018, 174, 31-40.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.014 ] [PMID: 29777961]
[156]
Hsieh, F.; Tao, L.; Wei, Y.; Hsu, S. A novel biodegradable self-healing hydrogel to induce blood capillary formation.NPG Asia Mater., 2017, 9e363,
[http://dx.doi.org/10.1038/am.2017.23]
[157]
Highley, C.B.; Rodell, C.B.; Burdick, J.A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater., 2015, 27(34), 5075-5079.
[http://dx.doi.org/10.1002/adma.201501234] [PMID: 26177925]
[158]
Loebel, C.; Rodell, C.B.; Chen, M.H.; Burdick, J.A. Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat. Protoc., 2017, 12(8), 1521-1541.
[http://dx.doi.org/10.1038/nprot.2017.053] [PMID: 28683063]
[159]
Ouyang, L.; Highley, C.B.; Rodell, C.B.; Sun, W.; Burdick, J.A. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary crosslinking. ACS Biomater. Sci. Eng., 2016, 2(10), 1743-1751.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00158]
[160]
Kim, S.W.; Kim, D.Y.; Roh, H.H.; Kim, H.S.; Lee, J.W.; Lee, K.Y. Three-dimensional bioprinting of cell-laden constructs using polysaccharide-based self-healing hydrogels. Biomacromolecules, 2019, 20(5), 1860-1866.
[http://dx.doi.org/10.1021/acs.biomac.8b01589] [PMID: 30912929]
[161]
Wang, L.L.; Highley, C.B.; Yeh, Y.C.; Galarraga, J.H.; Uman, S.; Burdick, J.A. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J. Biomed. Mater. Res. A, 2018, 106(4), 865-875.
[http://dx.doi.org/10.1002/jbm.a.36323] [PMID: 29314616]
[162]
Chen, Z.; Zhao, D.; Liu, B.; Nian, G.; Li, X.; Yin, J.; Qu, S. Yang, w. 3D printing of multifunctional hydrogels. Adv. Funct. Mater., 2019, 29(20)1900971
[http://dx.doi.org/10.1002/adfm.201900971]
[163]
Zhang, H.; Cong, Y.; Osi, A.R.; Zhou, Y.; Huang, F.; Zaccaria, R.P.; Chen, J.; Wang, R.; Fu, J. Direct 3d printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth. Adv. Funct. Mater., 2020, 30(13)1910573
[http://dx.doi.org/10.1002/adfm.201910573]
[164]
Bixler, G.D.; Bhushan, B. Biofouling: Lessons from nature. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2012(370)1967. , 2381-2417.
[http://dx.doi.org/10.1098/rsta.2011.0502] [PMID: 22509063]
[165]
Smeltzer, M.S.; Nelson, C.L.; Evans, R.P. Biofilms and aseptic loosening, 2008.
[166]
Thomas, J.G.; Corum, L.; Miller, K. Biofilms and ventilation.The role of biofilms in device-related infections; Shirtliff, M; Leid, J.G., Ed.; Springer-Verlag: Berlin, Germany, 2009, pp. 75-106.
[http://dx.doi.org/10.1007/978-3-540-68119-9_4]
[167]
Su, X.; Hao, D.; Xu, X.; Guo, X.; Li, Z.; Jiang, L. Hydrophilic/hydrophobic heterogeneity anti-biofouling hydrogels with well-regulated rehydration. ACS Appl. Mater. Interfaces, 2020, 12(22), 25316-25323.
[http://dx.doi.org/10.1021/acsami.0c05406] [PMID: 32378403]
[168]
Francolini, I.; Donelli, G.; Stoodley, P. Polymer designs to control biofilm growth on medical devices. Rev. Environ. Sci. Biotechnol., 2003, 2, 307-319.
[http://dx.doi.org/10.1023/B:RESB.0000040469.26208.83]
[169]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284(5418), 1318-1322.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[170]
Vetri, K.; Gawande, P.; Yakandawala, N.; Madhyastha, S. Biofouling and anti-fouling of medical devices.Biofouling: Types, Impact and Anti-Fouling; Chan, J; Wong, S., Ed.; Nova Science Publishers, 2010, pp. 2-15.
[171]
Chen, D.; Wu, M.; Li, B.; Ren, K.; Cheng, Z.; Ji, J.; Li, Y.; Sun, J. Layer-by-layer-assembled healable antifouling films. Adv. Mater., 2015, 27(39), 5882-5888.
[http://dx.doi.org/10.1002/adma.201501726] [PMID: 26455733]
[172]
Wang, W.; Siegel, R.A.; Wang, C. Nanocomposite polymer with “slimy” surface that refresh following abrasion. ACS Biomater. Sci. Eng., 2016, 2(2), 180-187.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00182]
[173]
Chen, K.; Zhou, S.; Wu, L. Self-healing underwater superoleophobic and antifouling coating based on the assembly of hierarchial microgel spheres. ACS Nano, 2016, 10(1), 1386-1394.
[http://dx.doi.org/10.1021/acsnano.5b06816] [PMID: 26687925]
[174]
Wang, Z.; Fei, G.; Xia, H.; Zuilhof, H. Dual water-healable zwitterionic polymer coatings for anti-biofouling surfaces. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(43), 6930-6935.
[http://dx.doi.org/10.1039/C8TB01863D] [PMID: 32254577]
[175]
Brynda, E.; Cepalova, N.A.; Štol, M. Equilibrium adsorption of human serum albumin and human fibrinogen on hydrophobic and hydrophilic surfaces. J. Biomed. Mater. Res., 1984, 18(6), 685-693.
[http://dx.doi.org/10.1002/jbm.820180609] [PMID: 6544770]
[176]
Li, L.; Yan, B.; Yang, J.; Chen, L.; Zeng, H. Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv. Mater., 2015, 27(7), 1294-1299.
[http://dx.doi.org/10.1002/adma.201405166] [PMID: 25581601]
[177]
Zhang, H.; Chiao, M. Anti-fouling Coatings of Poly(dimethylsilox-ane) devices for biological and biomedical applications. J. Med. Biol. Eng., 2015, 35(2), 143-155.
[http://dx.doi.org/10.1007/s40846-015-0029-4] [PMID: 25960703]
[178]
Damodaran, V.B.; Murthy, N.S. Bio-inspired strategies for designing antifouling biomaterials. Biomater. Res., 2016, 20, 18.
[http://dx.doi.org/10.1186/s40824-016-0064-4] [PMID: 27326371]
[179]
Wang, Z.; Scheres, L.; Xia, H.; Zuilhof, H. Developments and challenges in self-healing antifouling materials. Adv. Funct. Mater., 2020, 30(26)1908098
[http://dx.doi.org/10.1002/adfm.201908098]
[180]
Liu, S.; Guo, W. Anti-biofouling and healable materials: Preparation, mechanisms, and biomedical applications. Adv. Funct. Mater., 2018, 28(41)1800596
[http://dx.doi.org/10.1002/adfm.201800596]
[181]
Winkeljann, B.; Bauer, M.G.; Marczynski, M.; Rauh, T.; Sieber, S.A.; Lieleg, O. Covalent mucin coatings form stable anti-biofouling layers on a broad range of medical polymer materials. Adv. Mater. Interfaces, 2020, 7(4)1902069
[http://dx.doi.org/10.1002/admi.201902069]
[182]
Huyang, G.; Debertin, A.E.; Sun, J. Design and development of self-healing dental composites. Mater. Des., 2016, 94, 295-302.
[http://dx.doi.org/10.1016/j.matdes.2016.01.046] [PMID: 26955205]
[183]
De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A critical review of the durability of adhesion to tooth tissue: Methods and results. J. Dent. Res., 2005, 84(2), 118-132.
[http://dx.doi.org/10.1177/154405910508400204] [PMID: 15668328]
[184]
Nicholson, J.W. Polyacid-modified composite resins (“compomers”) and their use in clinical dentistry. Dent. Mater., 2007, 23(5), 615-622.
[http://dx.doi.org/10.1016/j.dental.2006.05.002] [PMID: 16790271]
[185]
Wiegand, A.; Buchalla, W.; Attin, T. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent. Mater., 2007, 23(3), 343-362.
[http://dx.doi.org/10.1016/j.dental.2006.01.022] [PMID: 16616773]
[186]
Junling, W.; Xianju, X.; Zhou, H.; Franklin, C.M.; Weir, M.D.; Melo, M.A.; Oates, T.W.; Zhang, N.; Zhang, Q.; Hockin, H.K. Development of a new class of self-healing and therapeutic dental resins. Polym. Degrad. Stabil., 2019, 163, 87-99.
[http://dx.doi.org/10.1016/j.polymdegradstab.2019.02.024]
[187]
Hia, I.; Vahedi, V.; Pasbakhsh, P. Self-healing polymer composites: prospects, challenges, and applications. Polym. Rev. (Phila. Pa.), 2016, 56(2), 225-261.
[http://dx.doi.org/10.1080/15583724.2015.1106555]
[188]
Seifan, M.; Sarabadani, Z.; Berenjian, A. Microbially induced calcium carbonate precipitation to design a new type of bio self-healing dental composite. Appl. Microbiol. Biotechnol., 2020, 104(5), 2029-2037.
[http://dx.doi.org/10.1007/s00253-019-10345-9] [PMID: 31940083]
[189]
Miao, S.N.; Castro, M.; Nowicki, L.; Xia, H.; Cui, X.; Zhou, W.; Zhu, S.; Lee, K.; Sarkar, G.; Vozzi, Y.; Tabata, J.; Fisher, L. Zhang. 4D printing of polymeric materials for tissue and organ regeneration. Mater. Today, 2017, 20(10), 577-591.
[http://dx.doi.org/10.1016/j.mattod.2017.06.005]
[190]
Zhang, H.; Demir, K.; Gu, G. Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int. J. Smart Nano Mater., 2019, 10(3), 205-224.
[http://dx.doi.org/10.1080/19475411.2019.1591541]
[191]
Xie, T. Recent advances in polymer shape memory. Polymer (Guildf.), 2011, 52(22), 4985-5000.
[http://dx.doi.org/10.1016/j.polymer.2011.08.003]
[192]
Gu, X.; Mather, P. Entanglement-based shape memory polyurethanes: Synthesis and characterization. Polymer (Guildf.), 2012, 53(25), 5924-5934.
[http://dx.doi.org/10.1016/j.polymer.2012.09.056]
[193]
Zhang, B.; Zhang, W.; Zhang, Z.; Zhang, Y.F.; Hingorani, H.; Liu, Z.; Liu, J.; Ge, Q. Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Appl. Mater. Interfaces, 2019, 11(10), 10328-10336.
[http://dx.doi.org/10.1021/acsami.9b00359] [PMID: 30785262]
[194]
Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. 4D printing of shape memory‐based personalized endoluminal medical devices. Macromol. Rapid Commun., 2017, 38(2)1600628
[http://dx.doi.org/10.1002/marc.201600628] [PMID: 27918636]
[195]
Ye, T.; Lining, Y.; Jianzhe, G.; Byoungkwon, A.; Tingyu, C.; Anthony, C.; Xiaoxiao, Z.; Wei, Z.; Youngwook, D.; Teng, Z. Demonstrating thermorph. democratizing 4D printing of selffolding materials and interfaces. CHI 2018, 2018, Montréal, QC, Canada, 1-4..

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy