[1]
Hill, A.V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. In: The Journal of
Physiology; Langley, Ed.; Cambridge University Press: London;
1910; Vol. 40, pp. iv-vi.
[2]
Colquhoun, D. The quantitative analysis of drug–receptor interactions: A short history. Trends Pharmacol. Sci., 2006, 27, 149-157.
[3]
Knight, A. Single Molecule Biology, 1st ed; Academic Press: New York, 2009.
[4]
Leake, M. The physics of life: one molecule at a time. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 368, 1611.
[5]
Bensaude-Vincent, B.; Simon, J. Chemistry — The Impure Science, 2nd ed; Imperial College Press: London, 2012.
[6]
Polanski, J. Chemoinformatics: From Chemical Art to Chemistry.
in Silico Encyclopedia of Bioinformatics and Computational Biology;
Ranganathan, Ed.; Elsevier; 2019; Vol. 2, pp. 601-618.
[7]
Polanski, J.; Gasteiger, J. Computer Representation of Chemical
Compounds. In: Handbook of Computational Chemistry; Leszczynski,
Ed.; Springer: Dordrecht; 2016, pp. 1-43.
[8]
Rosenblum, B.; Kuttner, F. Quantum Enigma: Physics Encounters Consciousness, 1st ed; Oxford University Press: New York, 2006.
[9]
Polanski, J.; Tkocz, A. Between descriptors and properties: understanding the ligand efficiency trends for G protein-coupled receptor and kinase structure-activity data sets. J. Chem. Inf. Model., 2017, 57(6), 1321-1329.
[10]
Polanski, J.; Tkocz, A.; Kucia, U. Beware of ligand efficiency (LE): Understanding LE data in modeling structure-activity and structure-economy relationships. J. Cheminformatics., 2017, 9, 49.
[11]
Ginsberg, J.; Mohebbi, M.; Patel, R.; Brammer, L.; Smolinski, M.; Brilliant, L. Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232), 1012-1014.
[12]
Polanski, J. Big Data in Structure-Property Studies-From Definitions to Models. In: Advances in QSAR Modeling; Roy Ed.;
Springer: Cham, 2017, pp. 529-555.
[13]
Aldrich, C.; Bertozzi, C.; Georg, G.; Kiessling, L.; Lindsley, C.; Liotta, D.; Merz, K.; Schepartz, A.; Wang, S. The ecstasy and agony of assay interference compounds. ACS Cent. Sci., 2017, 3(3), 143-147.
[14]
Gohlke, H.; Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. Engl., 2002, 41(15), 2645-2676.
[15]
Southan, C. Caveat USOR: Assessing differences between major chemistry databases. ChemMedChem, 2018, 13(6), 470-481.
[16]
Hann, M.; Leach, A.; Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci., 2001, 41(3), 856-864.
[17]
Zartler, E.; Shapiro, M. Fragonomics: fragment-based drug discovery. Curr. Opin. Chem. Biol., 2005, 9(4), 366-370.
[18]
Walters, W.P.; Green, J.; Weiss, J.; Murcko, M. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem., 2011, 54(19), 6405-6416.
[19]
Gleeson, M.P.; Hersey, A.; Montanari, D.; Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov., 2011, 10(3), 197-208.
[20]
Kuntz, I.D.; Chen, K.; Sharp, K.A.; Kollman, P.A. The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 9997-10002.
[21]
Hopkins, A.; Keseru, G.; Leeson, P.; Rees, D.; Reynolds, C. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov., 2014, 13(2), 105-121.
[22]
Murray, C.; Erlanson, D.; Hopkins, A.; Keseru, G.; Leeson, P.; Rees, D.; Reynolds, C.; Richmond, N. Validity of ligand efficiency metrics. ACS Med. Chem. Lett., 2014, 5(6), 616-618.
[23]
Kenny, P.; Leitao, A.; Montanari, C. Ligand efficiency metrics considered harmful. J. Comput. Aided Mol. Des., 2014, 28(7), 699-710.
[24]
Matta, C.; Massa, L.; Gubskaya, A.; Knoll, E. Can one take the logarithm or the sine of a dimensioned quantity or a unit? Dimensional analysis involving transcendental functions. J. Chem. Educ., 2011, 88(1), 67-70.
[25]
Zhou, H.; Gilson, M. Theory of free energy and entropy in noncovalent binding. Chem. Rev., 2009, 109(9), 4092-4107.
[26]
Nissink, J. Simple size-independent measure of ligand efficiency. J. Chem. Inf. Model., 2009, 49(6), 1617-1622.
[27]
Scott, J.; Waring, M. Practical application of ligand efficiency metrics in lead optimisation. Bioorg. Med. Chem., 2018, 26(11), 3006-3015.
[28]
Hann, M. Molecular obesity, potency and other addictions in drug discovery. MedChemComm, 2011, 2(5), 349-355.
[29]
Shultz, M.D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem., 2019, 62(4), 1701-1714.
[30]
Williams, G.; Ferenczy, G.; Ulander, J.; Keseru, G. Binding thermodynamics discriminates fragments from druglike compounds: A thermodynamic description of fragment-based drug discovery. Drug Discov. Today, 2017, 22(4), 681-689.
[31]
Reynolds, C.H.; Reynolds, R.C. Group additivity in ligand binding affinity: an alternative approach to ligand efficiency. J. Chem. Inf. Model., 2017, 57, 3086-3093.
[32]
Polanski, J.; Pedrys, A.; Duszkiewicz, R.; Gasteiger, J. Scoring
ligand efficiency: Potency, ligand efficiency and product ligand efficiency
within big data landscape. Lett. Drug Des. Discov., 2017,
in print.
[33]
Polanski, J.; Duszkiewicz, R.; Pedrys, U.; Gasteiger, J. Scoring Ligand Efficiency. Acta Pol. Pharm., 2019, 76(4), 761-768.
[34]
Polanski, J.; Kucia, U.; Duszkiewicz, R.; Kurczyk, A.; Magdziarz, T.; Gasteiger, J. Molecular descriptor data explain market prices of a large commercial chemical compound library. Sci. Rep., 2016, 6.
[35]
Polanski, J.; Bogocz, J.; Tkocz, A. Top 100 bestselling drugs represent an arena struggling for new FDA approvals: Drug age as an efficiency indicator. Drug Discov. Today, 2015, 20(11), 1300-1304.