[1]
Fernandez-Leiro, R.; Scheres, S.H.W. Unravelling biological macromolecules with cryo-electron microscopy. Nature, 2016, 537(7620), 339-346.
[2]
Ashbrook, S.E.; Griffin, J.M.; Johnston, K.E. Recent advances in solid-state nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem., 2018, 11, 485-508.
[3]
Sipe, J.D.; Cohen, A.S. Review: History of the amyloid fibril. J. Struct. Biol., 2000, 130(2-3), 88-98.
[5]
Baldwin, A.J.; Knowles, T.P.J.; Tartaglia, G.G.; Fitzpatrick, A.W.; Devlin, G.L.; Shammas, S.L.; Waudby, C.A.; Mossuto, M.F.; Meehan, S.; Gras, S.L.; Christodoulou, J.; Anthony-Cahill, S.J.; Barker, P.D.; Vendruscolo, M.; Dobson, C.M. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc., 2011, 133(36), 14160-14163.
[6]
Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci., 1999, 24(9), 329-332.
[7]
Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 384-396.
[8]
Goldschmidt, L.; Teng, P.K.; Riek, R.; Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3487-3492.
[9]
Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid, 2014, 21(4), 221-224.
[10]
Bauerlein, F.J.B.; Saha, I.; Mishra, A.; Kalemanov, M.; Martinez-Sanchez, A.; Klein, R.; Dudanova, I.; Hipp, M.S.; Hartl, F.U.; Baumeister, W.; Fernandez-Busnadiego, R. In situ architecture and cellular interactions of PolyQ inclusions. Cell, 2017, 171(1), 179-187.
[11]
Drummond, E.; Nayak, S.; Faustin, A.; Pires, G.; Hickman, R.A.; Askenazi, M.; Cohen, M.; Haldiman, T.; Kim, C.; Han, X.X.; Shao, Y.Z.; Safar, J.G.; Ueberheide, B.; Wisniewski, T. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathological., 2017, 133(6), 933-954.
[12]
Stewart, K.L.; Hughes, E.; Yates, E.A.; Akien, G.R.; Huang, T.Y.; Lima, M.A.; Rudd, T.R.; Guerrini, M.; Hung, S.C.; Radford, S.E.; Middleton, D.A. Atomic details of the interactions of glycosaminoglycans with amyloid-beta fibrils. J. Am. Chem. Soc., 2016, 138(27), 8328-8331.
[13]
Kollmer, M.; Meinhardt, K.; Haupt, C.; Liberta, F.; Wulff, M.; Linder, J.; Handl, L.; Heinrich, L.; Loos, C.; Schmidt, M.; Syrovets, T.; Simmet, T.; Westermark, P.; Westermark, G.T.; Horn, U.; Schmidt, V.; Walther, P.; Fandrich, M. Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits. Proc. Natl. Acad. Sci. USA, 2016, 113(20), 5604-5609.
[14]
Olzscha, H.; Schermann, S.M.; Woerner, A.C.; Pinkert, S.; Hecht, M.H.; Tartaglia, G.G.; Vendruscolo, M.; Hayer-Hartl, M.; Hartl, F.U.; Vabulas, R.M. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell, 2011, 144(1), 67-78.
[15]
Guo, Q.; Lehmer, C.; Martinez-Sanchez, A.; Rudack, T.; Beck, F.; Hartmann, H.; Perez-Berlanga, M.; Frottin, F.; Hipp, M.S.; Hartl, F.U.; Edbauer, D.; Baumeister, W.; Fernandez-Busnadiego, R. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell, 2018, 172(4), 696-705.
[16]
Jackson, M.P.; Hewitt, E.W. Cellular proteostasis: degradation of misfolded proteins by lysosomes. In Proteostasis, VanOostenHawle,
P.; Ed. 2016, 60, pp. 173-180.
[17]
McLaurin, J.; Chakrabartty, A. Membrane disruption by Alzheimer beta-amyloid peptides mediated through specific finding to either phospholipids or gangliosides - Implications for neurotoxicity. J. Biol. Chem., 1996, 271(43), 26482-26489.
[18]
Goodchild, S.C.; Sheynis, T.; Thompson, R.; Tipping, K.W.; Xue, W.F.; Ranson, N.A.; Beales, P.A.; Hewitt, E.W.; Radford, S.E. Beta(2)-microglobulin amyloid fibril-induced membrane disruption is enhanced by endosomal lipids and acidic pH. PLoS One, 2014, 9(8)e104492
[19]
Salminen, A.; Kaarniranta, K.; Kauppinen, A.; Ojala, J.; Haapasalo, A.; Soininen, H.; Hiltunen, M. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog. Neurobiol., 2013, 106, 33-54.
[20]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[21]
Winklhofer, K.F.; Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta, 2010, 1802(1), 29-44.
[22]
Geula, C.; Wu, C.K.; Saroff, D.; Lorenzo, A.; Yuan, M.L.; Yankner, B.A. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat. Med., 1998, 4(7), 827-831.
[23]
Li, J.; Uversky, V.N.; Fink, A.L. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry, 2001, 40(38), 11604-11613.
[24]
Krone, M.G.; Baumketner, A.; Bernstein, S.L.; Wyttenbach, T.; Lazo, N.D.; Teplow, D.B.; Bowers, M.T.; Shea, J.E. Effects of familial Alzheimer’s disease mutations on the folding nucleation of the amyloid beta-protein. J. Mol. Biol., 2008, 381(1), 221-228.
[25]
Mangione, P.P.; Esposito, G.; Relini, A.; Raimondi, S.; Porcari, R.; Giorgetti, S.; Corazza, A.; Fogolari, F.; Penco, A.; Goto, Y.; Lee, Y.H.; Yagi, H.; Cecconi, C.; Naqvi, M.M.; Gillmore, J.D.; Hawkins, P.N.; Chiti, F.; Rolandi, R.; Taylor, G.W.; Pepys, M.B.; Stoppini, M.; Bellotti, V. Structure, folding dynamics, and amyloidogenesis of D76N beta(2)-microglobulin roles of shear flow, hydrophobic surfaces, and alpha-crystallin. J. Biol. Chem., 2013, 288(43), 30917-30930.
[26]
Pilla, E.; Schneider, K.; Bertolotti, A. Coping with protein quality control failure. In Annu. Rev. Cell Dev. Biol., Schekman, R.; Ed.
2017, 33, pp. 439-465.
[27]
Fan, H.C.; Ho, L.I.; Chi, C.S.; Chen, S.J.; Peng, G.S.; Chan, T.M.; Lin, S.Z.; Harn, H.J. Polyglutamine (PolyQ) diseases: Genetics to treatments. Cell Transplant., 2014, 23(4-5), 441-458.
[28]
Scheuermann, T.; Schulz, B.; Blume, A.; Wahle, E.; Rudolph, R.; Schwarz, E. Trinucleotide expansions leading to an extended poly-L-alanine segment in the poly (A) binding protein PABPN1 cause fibril formation. Protein Sci., 2003, 12(12), 2685-2692.
[29]
Brais, B. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet., 1998, 19(4), 404-404.
[30]
Lott, I.T.; Head, E. Alzheimer disease and Down syndrome: Factors in pathogenesis. Neurobiol. Aging, 2005, 26(3), 383-389.
[31]
Scarpioni, R.; Ricardi, M.; Albertazzi, V.; De Amicis, S.; Rastelli, F.; Zerbini, L. Dialysis-related amyloidosis: Challenges and solutions. Int. J. Nephrol. Renovasc. Dis., 2016, 9, 319-328.
[32]
Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; Del Tredici, K.; Duyckaerts, C.; Frosch, M.P.; Haroutunian, V.; Hof, P.R.; Hulette, C.M.; Hyman, B.T.; Iwatsubo, T.; Jellinger, K.A.; Jicha, G.A.; Kovari, E.; Kukull, W.A.; Leverenz, J.B.; Love, S.; Mackenzie, I.R.; Mann, D.M.; Masliah, E.; McKee, A.C.; Montine, T.J.; Morris, J.C.; Schneider, J.A.; Sonnen, J.A.; Thal, D.R.; Trojanowski, J.Q.; Troncoso, J.C.; Wisniewski, T.; Woltjer, R.L.; Beach, T.G. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J. Neuropathol. Exp. Neurol., 2012, 71(5), 362-381.
[33]
Serra-Batiste, M.; Ninot-Pedrosa, M.; Bayoumi, M.; Gairi, M.; Maglia, G.; Carulla, N. A beta 42 assembles into specific beta-barrel pore-forming oligomers in membrane-mimicking environments. Proc. Natl. Acad. Sci. USA, 2016, 113(39), 10866-10871.
[34]
Pfefferkorn, C.M.; Jiang, Z.P.; Lee, J.C. Biophysics of alpha-synuclein membrane interactions. Biochim. Biophys. Acta, 2012, 1818(2), 162-171.
[35]
Breydo, L.; Uversky, V.N. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett., 2015, 589(19), 2640-2648.
[36]
Walsh, D.M.; Lomakin, A.; Benedek, G.B.; Condron, M.M.; Teplow, D.B. Amyloid beta-protein fibrillogenesis - Detection of a protofibrillar intermediate. J. Biol. Chem., 1997, 272(35), 22364-22372.
[37]
Glabe, C.G.; Kayed, R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology, 2006, 66, S74-S78.
[38]
Simoneau, S.; Rezaei, H.; Sales, N.; Kaiser-Schulz, G.; Lefebvre-Roque, M.; Vidal, C.; Fournier, J.G.; Comte, J.; Wopfner, F.; Grosclaude, J.; Schatzl, H.; Lasmezas, C.I. In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS Pathogens., 2007, 3(8), 1175-1186.
[39]
Winner, B.; Jappelli, R.; Maji, S.K.; Desplats, P.A.; Boyer, L.; Aigner, S.; Hetzer, C.; Loher, T.; Vilar, M.; Campioni, S.; Tzitzilonis, C.; Soragni, A.; Jessberger, S.; Mira, H.; Consiglio, A.; Pham, E.; Masliah, E.; Gage, F.H.; Riek, R. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA, 2011, 108(10), 4194-4199.
[40]
Young, L.M.; Cao, P.; Raleigh, D.P.; Ashcroft, A.E.; Radford, S.E. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J. Am. Chem. Soc., 2014, 136(2), 660-670.
[41]
Colon, W.; Kelly, J.W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry, 1992, 31(36), 8654-8660.
[42]
Booth, D.R.; Sunde, M.; Bellotti, V.; Robinson, C.V.; Hutchinson, W.L.; Fraser, P.E.; Hawkins, P.N.; Dobson, C.M.; Radford, S.E.; Blake, C.C.F.; Pepys, M.B. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature, 1997, 385(6619), 787-793.
[43]
Fandrich, M.; Fletcher, M.A.; Dobson, C.M. Amyloid fibrils from muscle myoglobin - Even an ordinary globular protein can assume a rogue guise if conditions are right. Nature, 2001, 410(6825), 165-166.
[44]
Guijarro, J.I.; Sunde, M.; Jones, J.A.; Campbell, I.D.; Dobson, C.M. Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4224-4228.
[45]
Ikenoue, T.; Lee, Y.H.; Kardos, J.; Saiki, M.; Yagi, H.; Kawata, Y.; Goto, Y. Cold denaturation of alpha-synuclein amyloid fibrils. Angewandte. Chemie. Int. Ed., 2014, 53(30), 7799-7804.
[46]
Buell, A.K.; Dobson, C.M.; Knowles, T.P.J. The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. . In Amyloids in Health and Disease,
Perrett, S.; Ed. 2014, 56, pp. 11-39.
[47]
Pham, C.L.L.; Kwan, A.H.; Sunde, M. Functional amyloid: Widespread
in Nature, diverse in purpose. In Amyloids in Health and
Disease, Perrett, S.; Ed. 2014, 56, pp. 207-219.
[48]
Maji, S.K.; Perrin, M.H.; Sawaya, M.R.; Jessberger, S.; Vadodaria, K.; Rissman, R.A.; Singru, P.S.; Nilsson, K.P.R.; Simon, R.; Schubert, D.; Eisenberg, D.; Rivier, J.; Sawchenko, P.; Vale, W.; Riek, R. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science, 2009, 325(5938), 328-332.
[49]
Fowler, D.M.; Koulov, A.V.; Alory-Jost, C.; Marks, M.S.; Balch, W.E.; Kelly, J.W. Functional amyloid formation within mammalian tissue. PLoS Biol., 2006, 4(1), 100-107.
[50]
Si, K.; Lindquist, S.; Kandel, E.R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell, 2003, 115(7), 879-891.
[51]
Astbury, W.T.; Dickinson, S.; Bailey, K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J., 1935, 29(10), 2351-2360.
[52]
Pauling, L.; Corey, R.B. Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets. PNAS, 1951, 37(11), 729-740.
[53]
Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 384-396.
[54]
Eisenberg, D.S.; Sawaya, M.R. Structural studies of amyloid proteins at the molecular level. . In Annu. Rev. Biochem., Kornberg,
R.D.; Ed. 2017, 86, pp. 69-95.
[55]
Wasmer, C.; Lange, A.; Van Melckebeke, H.; Siemer, A.B.; Riek, R.; Meier, B.H. Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science, 2008, 319(5869), 1523-1526.
[56]
Dearborn, A.D.; Wall, J.S.; Cheng, N.Q.; Heymann, J.B.; Kajava, A.V.; Varkey, J.; Langen, R.; Steven, A.C. Alpha-synuclein amyloid fibrils with two entwined, asymmetrically associated protofibrils. J. Biol. Chem., 2016, 291(5), 2310-2318.
[57]
Jimenez, J.L.; Nettleton, E.J.; Bouchard, M.; Robinson, C.V.; Dobson, C.M.; Saibil, H.R. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9196-9201.
[58]
Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature, 2017, 547(7662), 185-190.
[59]
Gremer, L.; Scholzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R.B.G.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; Willbold, D.; Schroder, G.F. Fibril structure of amyloid-beta(1-42) by cryo-electron microscopy. Science, 2017, 358(6359), 116-119.
[60]
Chou, K.C.; Pottle, M.; Nemethy, G.; Ueda, Y.; Scheraga, H.A. Structure of beta-sheets - origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. J. Mol. Biol., 1982, 162(1), 89-112.
[61]
Perczel, A.; Hudaky, P.; Palfi, V.K. Dead-end street of protein folding: Thermodynamic rationale of amyloid fibril formation. J. Am. Chem. Soc., 2007, 129(48), 14959-14965.
[62]
Nelson, R.; Sawaya, M.R.; Balbirnie, M.; Madsen, A.O.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005, 435(7043), 773-778.
[63]
Marshall, K.E.; Hicks, M.R.; Williams, T.L.; Hoffmann, S.V.; Rodger, A.; Dafforn, T.R.; Serpell, L.C. Characterizing the assembly of the Sup35 yeast prion fragment, GNNQQNY: Structural changes accompany a fiber-to-crystal switch. Biophys. J., 2010, 98(2), 330-338.
[64]
Rodriguez, J.A.; Ivanova, M.I.; Sawaya, M.R.; Cascio, D.; Reyes, F.E.; Shi, D.; Sangwan, S.; Guenther, E.L.; Johnson, L.M.; Zhang, M.; Jiang, L.; Arbing, M.A.; Nannenga, B.L.; Hattne, J.; Whitelegge, J.; Brewster, A.S.; Messerschmidt, M.; Boutet, B.; Sauter, N.K.; Gonen, T.; Eisenberg, D.S. Structure of the toxic core of alpha-synuclein from invisible crystals. Nature, 2015, 525(7570), 486-490.
[65]
Wiltzius, J.J.W.; Sievers, S.A.; Sawaya, M.R.; Cascio, D.; Popov, D.; Riekel, C.; Eisenberg, D. Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci., 2008, 17(9), 1467-1474.
[66]
Soriaga, A.B.; Sangwan, S.; Macdonald, R.; Sawaya, M.R.; Eisenberg, D. Crystal structures of IAPP amyloidogenic segments reveal a novel packing motif of out-of-register beta sheets. J. Phys. Chem. B, 2016, 120(26), 5810-5816.
[67]
Saelices, L.; Sievers, S.A.; Sawaya, M.R.; Eisenberg, D.S. Crystal structures of amyloidogenic segments of human transthyretin. Protein Sci., 2018, 27(7), 1295-1303.
[68]
Meier, B.H.; Riek, R.; Bockmann, A. Emerging structural understanding of amyloid fibrils by solid-state NMR. Trends Biochem. Sci., 2017, 42(10), 777-787.
[69]
Kuhlbrandt, W. The resolution revolution. Science, 2014, 343(6178), 1443-1444.
[70]
Antzutkin, O.N.; Leapman, R.D.; Balbach, J.J.; Tycko, R. Supramolecular structural constraints on Alzheimer’s beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry, 2002, 41(51), 15436-15450.
[71]
Chan, J.C.C.; Oyler, N.A.; Yau, W.M.; Tycko, R. Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. Biochemistry, 2005, 44(31), 10669-10680.
[72]
Colvin, M.T.; Silvers, R.; Frohm, B.; Su, Y.C.; Linse, S.; Griffin, R.G. High resolution structural characterization of a beta(42) amyloid fibrils by magic angle spinning NMR. J. Am. Chem. Soc., 2015, 137(23), 7509-7518.
[73]
Qiang, W.; Yau, W.M.; Lu, J.X.; Collinge, J.; Tycko, R. Structural variation in amyloid-beta fibrils from Alzheimer’s disease clinical subtypes. Nature, 2017, 541(7636), 217-221.
[74]
Walti, M.A.; Ravotti, F.; Arai, H.; Glabe, C.G.; Wall, J.S.; Bockmann, A.; Guntert, P.; Meier, B.H.; Riek, R. Atomic-resolution structure of a disease-relevant A beta(1-42) amyloid fibril. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4976-E4984.
[75]
Luo, F.; Gui, X.R.; Zhou, H.; Gu, J.G.; Li, Y.C.; Liu, X.Y.; Zhao, M.L.; Li, D.; Li, X.M.; Liu, C. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat. Struct. Mol. Biol., 2018, 25, 341-346.
[76]
Jimenez, J.L.; Guijarro, J.L.; Orlova, E.; Zurdo, J.; Dobson, C.M.; Sunde, M.; Saibil, H.R. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J., 1999, 18(4), 815-821.
[77]
Fandrich, M.; Meinhardt, J.; Grigorieff, N. Structural polymorphism of Alzheimer A beta and other amyloid fibrils. Prion, 2009, 3(2), 89-93.
[78]
Sachse, C.; Fandrich, M.; Grigorieff, N. Paired beta-sheet structure of an A beta(1-40) amyloid fibril revealed by electron microscopy. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7462-7466.
[79]
Soriaga, A.B.; Sangwan, S.; Macdonald, R.; Sawaya, M.R.; Eisenberg, D. Crystal structures of IAPP amyloidogenic segments reveal a novel packing motif of out-of-register beta sheets. J. Phys. Chem. B, 2016, 120(26), 5810-5816.
[80]
Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction for CD. Proc. Natl. Acad. Sci. USA, 2015, 112(24), E3095-E3103.
[81]
Zandomeneghi, G.; Krebs, M.R.H.; McCammon, M.G.; Fandrich, M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci., 2004, 13(12), 3314-3321.
[82]
Varkey, J.; Langen, R. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR. J. Magn. Reson., 2017, 280, 127-139.
[83]
Balbirnie, M.; Grothe, R.; Eisenberg, D.S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2375-2380.
[84]
Fandrich, M.; Dobson, C.M. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J., 2002, 21(21), 5682-5690.
[85]
Lawrence, M.C.; Colman, P.M. Shape complementarity at protein-protein interfaces. J. Mol. Biol., 1993, 234(4), 946-950.
[86]
Krotee, P.; Griner, S.L.; Sawaya, M.R.; Cascio, D.; Rodriguez, J.A.; Shi, D.; Philipp, S.; Murray, K.; Saelices, L.; Lee, J.; Seidler, P.; Glabe, C.G.; Jiang, L.; Gonen, T.; Eisenberg, D.S. Common fibrillar spines of amyloid-beta and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. J. Biol. Chem., 2018, 293(8), 2888-2902.
[87]
Klement, K.; Wieligmann, K.; Meinhardt, J.; Hortschansky, P.; Richter, W.; Fandrich, M. Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s A beta(1-40) amyloid fibrils. J. Mol. Biol., 2007, 373(5), 1321-1333.
[88]
Guenther, E.L.; Ge, P.; Trinh, H.; Sawaya, M.R.; Cascio, D.; Boyer, D.R.; Gonen, T.; Zhou, Z.H.; Eisenberg, D.S. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat. Struct. Mol. Biol., 2018, 25(4), 311-319.
[89]
Salinas, N.; Colletier, J.P.; Moshe, A.; Landau, M. Extreme amyloid polymorphism in Staphylococcus aureus virulent PSM alpha peptides. Nat. Commun., 2018, 9, 3512.
[90]
Annamalai, K.; Guehrs, K.H.; Koehler, R.; Schmidt, M.; Michel, H.; Loos, C.; Gaffney, P.M.; Sigurdson, C.J.; Hegenbart, U.; Schoenland, S.; Fandrich, M. Polymorphism of amyloid fibrils in vivo. Angewandte. Chemie. Int. Ed., 2016, 55(15), 4822-4825.
[91]
Fitzpatrick, A.W.P.; Debelouchina, G.T.; Bayro, M.J.; Clare, D.K.; Caporini, M.A.; Bajaj, V.S.; Jaroniec, C.P.; Wang, L.C.; Ladizhansky, V.; Muller, S.A.; MacPhee, C.E.; Waudby, C.A.; Mott, H.R.; De Simone, A.; Knowles, T.P.J.; Saibil, H.R.; Vendruscolo, M.; Orlova, E.V.; Griffin, R.G.; Dobson, C.M. Atomic structure and hierarchical assembly of a cross-beta amyloid fibril. Proc. Natl. Acad. Sci. USA, 2013, 110(14), 5468-5473.
[92]
Close, W.; Neumann, M.; Schmidt, A.; Hora, M.; Annamalai, K.; Schmidt, M.; Reif, B.; Schmidt, V.; Grigorieff, N.; Fandrich, M. Physical basis of amyloid fibril polymorphism. Nat. Commun., 2018, 9(1), 699.
[93]
Qiang, W.; Kelley, K.; Tycko, R. Polymorph-specific kinetics and thermodynamics of beta-amyloid fibril growth. J. Am. Chem. Soc., 2013, 135(18), 6860-6871.
[94]
Lee, Y.J.; Savtchenko, R.; Ostapchenko, V.G.; Makarava, N.; Baskakov, I.V. Molecular structure of amyloid fibrils controls the relationship between fibrillar size and toxicity. PLoS One, 2011, 6(5)e20244
[95]
Gharibyan, A.L.; Zamotin, V.; Yanamandra, K.; Moskaleva, O.S.; Margulis, B.A.; Kostanyan, I.A.; Morozova-Roche, L.A. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J. Mol. Biol., 2007, 365(5), 1337-1349.
[96]
Wiltzius, J.J.W.; Landau, M.; Nelson, R.; Sawaya, M.R.; Apostol, M.I.; Goldschmidt, L.; Soriaga, A.B.; Cascio, D.; Rajashankar, K.; Eisenberg, D. Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol., 2009, 16(9), 973-998.
[97]
Sawaya, M.R.; Sambashivan, S.; Nelson, R.; Ivanova, M.I.; Sievers, S.A.; Apostol, M.I.; Thompson, M.J.; Balbirnie, M.; Wiltzius, J.J.W.; McFarlane, H.T.; Madsen, A.O.; Riekel, C.; Eisenberg, D. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature, 2007, 447(7143), 453-457.
[98]
Colletier, J.P.; Laganowsky, A.; Landau, M.; Zhao, M.L.; Soriaga, A.B.; Goldschmidt, L.; Flot, D.; Cascio, D.; Sawaya, M.R.; Eisenberg, D. Molecular basis for amyloid-beta polymorphism. Proc. Natl. Acad. Sci. USA, 2011, 108(41), 16938-16943.
[99]
Liang, C.; Ni, R.; Smith, J.E.; Childers, W.S.; Mehta, A.K.; Lynn, D.G. Kinetic intermediates in amyloid assembly. J. Am. Chem. Soc., 2014, 136(43), 15146-15149.
[100]
Petkova, A.T.; Leapman, R.D.; Guo, Z.H.; Yau, W.M.; Mattson, M.P.; Tycko, R. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science, 2005, 307(5707), 262-265.
[101]
Vadukul, D.M.; Gbajumo, O.; Marshall, K.E.; Serpell, L.C. Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid-beta 1-42. FEBS Lett., 2017, 591(5), 822-830.
[102]
de la Paz, M.L.; Goldie, K.; Zurdo, J.; Lacroix, E.; Dobson, C.M.; Hoenger, A.; Serrano, L. De novo designed peptide-based amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16052-16057.
[103]
Emily, M.; Talvas, A.; Delamarche, C. MetAmyl: A METa-predictor for amyloid proteins. PLoS One, 2013, 8(11)e79722
[104]
Pawar, A.P.; DuBay, K.F.; Zurdo, J.; Chiti, F.; Vendruscolo, M.; Dobson, C.M. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol., 2005, 350(2), 379-392.
[105]
Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol., 2004, 22(10), 1302-1306.
[106]
Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; de la Paz, M.L.; Martins, I.C.; Reumers, J.; Morris, K.L.; Copland, A.; Serpell, L.; Serrano, L.; Schymkowitz, J.W.H.; Rousseau, F. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods, 2010, 7(3), 237-U109.
[107]
Trovato, A.; Chiti, F.; Maritan, A.; Seno, F. Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput. Biol., 2006, 2(12), 1608-1618.
[108]
Thompson, M.J.; Sievers, S.A.; Karanicolas, J.; Ivanova, M.I.; Baker, D.; Eisenberg, D. The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4074-4078.
[109]
Roland, B.P.; Kodali, R.; Mishra, R.; Wetzel, R. A serendipitous survey of prediction algorithms for amyloidogenicity. Biopolymers, 2013, 100(6), 780-789.
[110]
Groveman, B.R.; Kraus, A.; Raymond, L.D.; Dolan, M.A.; Anson, K.J.; Dorward, D.W.; Caughey, B. Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrPSc-like folding of recombinant PrP amyloids. J. Biol. Chem., 2015, 290(2), 1119-1128.
[112]
Ivanova, M.I.; Sievers, S.A.; Sawaya, M.R.; Wall, J.S.; Eisenberg, D. Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci. USA, 2009, 106(45), 18990-18995.
[113]
Chiti, F.; Dobson, C.M. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol., 2009, 5(1), 15-22.
[114]
Reches, M.; Porat, Y.; Gazit, E. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem., 2002, 277(38), 35475-35480.
[115]
Papp, D.; Rovo, P.; Jakli, I.; Csaszar, A.G.; Perczel, A. Four faces of the interaction between ions and aromatic rings. J. Comput. Chem., 2017, 38(20), 1762-1773.
[116]
Goux, W.J.; Kopplin, L.; Nguyen, A.D.; Leak, K.; Rutkofsky, M.; Shanmuganandam, V.D.; Sharma, D.; Inouye, H.; Kirschner, D.A. The formation of straight and twisted filaments from short tau peptides. J. Biol. Chem., 2004, 279(26), 26868-26875.
[117]
Aguilera, P.; Marcoleta, A.; Lobus-Ruiz, P.; Arranz, R.; Valpuesta, J.M.; Monasterio, O.; Lagos, R. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation. Front. Microbiol., 2016, 7, 35.
[118]
Kannan, R.; Raju, M.; Sharma, K.K. The critical role of the central hydrophobic core (residues 71-77) of amyloid-forming alpha A66-80 peptide in alpha-crystallin aggregation: A systematic proline replacement study. Amyloid, 2014, 21(2), 103-109.
[119]
Gath, J.; Bousset, L.; Habenstein, B.; Melki, R.; Bockmann, A.; Meier, B.H. Unlike twins: An NMR comparison of two alpha-synuclein polymorphs featuring different toxicity. PLoS One, 2014, 9(3)e90659
[120]
Qiang, W.; Kelley, K.; Tycko, R. Polymorph-specific kinetics and thermodynamics of beta-amyloid fibril growth. J. Am. Chem. Soc., 2013, 135(18), 6860-6871.
[121]
Wruck, F.; Katranidis, A.; Nierhaus, K.H.; Buldt, G.; Hegner, M. Translation and folding of single proteins in real time. Proc. Natl. Acad. Sci. USA, 2017, 114(22), E4399-E4407.
[122]
Richardson, J.S.; Richardson, D.C. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2754-2759.
[123]
Maresova, P.; Klimova, B.; Novotny, M.; Kuca, K. Alzheimer’s and Parkinson’s diseases: Expected economic impact on europe-a call for a uniform European strategy. J. Alzheimers Dis., 2016, 54(3), 1123-1133.
[124]
Bulawa, C.E.; Connelly, S.; Devit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; Wilson, I.A.; Kelly, J.W.; Labaudiniere, R. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9629-9634.
[125]
Seidler, P.M.; Boyer, D.R.; Rodriguez, J.A.; Sawaya, M.R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D.S. Structure-based inhibitors of tau aggregation. Nat. Chem., 2018, 10(2), 170-176.
[126]
Sievers, S.A.; Karanicolas, J.; Chang, H.W.; Zhao, A.; Jiang, L.; Zirafi, O.; Stevens, J.T.; Munch, J.; Baker, D.; Eisenberg, D. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 2011, 475(7354), 96-U117.
[127]
Frenkel-Pinter, M.; Richman, M.; Belostozky, A.; Abu-Mokh, A.; Gazit, E.; Rahimipour, S.; Segal, D. Selective inhibition of aggregation and toxicity of a tau-derived peptide using its glycosylated analogues. Chemistry, 2016, 22(17), 5945-5952.
[128]
KrishnaKumar. V.G.; Paul, A.; Gazit, E.; Segal, D. Mechanistic insights into remodeled tau-derived PHF6 peptide fibrils by naphthoquinone-tryptophan hybrids. Sci. Rep., 2018, 8, 71.