[1]
Bartneck, M. Immunomodulatory nanomedicine. Macromol. Biosci., 2017, 17(10), 13.
[2]
Medzhitov, R.; Janeway, C.A. An ancient system of host defense. Curr. Opin. Immunol., 1998, 10(1), 12-15.
[3]
Krieg, A.M.; Yi, A.K.; Matson, S.; Waldschmidt, T.J.; Bishop, G.A.; Teasdale, R.; Koretzky, G.A.; Klinman, D.M. CPG motifs in bacterial-DNA trigger direct B-cell activation. Nature, 1995, 374(6522), 546-549.
[4]
Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol., 2001, 1(2), 135-145.
[5]
Kumagai, Y.; Takeuchi, O.; Akira, S. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev., 2008, 60(7), 795-804.
[6]
Hornung, V.; Rothenfusser, S.; Britsch, S.; Krug, A.; Jahrsdorfer, B.; Giese, T.; Endres, S.; Hartmann, G. Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol., 2002, 168(9), 4531-4537.
[7]
Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; Akira, S. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813), 740-745.
[8]
Klinman, D.M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol., 2004, 4(4), 248-257.
[9]
Chan, M.P.; Onji, M.; Fukui, R.; Kawane, K.; Shibata, T.; Saitoh, S.; Ohto, U.; Shimizu, T.; Barber, G.N.; Miyake, K. DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat. Commun., 2015, 6, 10.
[10]
Hara, T.; Tanegashima, K.; Takahashi, R.; Nuriya, H.; Naruse, N.; Tsuji, K.; Shigenaga, A.; Otaka, A. A novel function of a CXC-type chemokine CXCL14 as a specific carrier of CpG DNA into dendritic cells for activating toll-like receptor 9-mediated adaptive immunity. Blood, 2016, 128(22), 5.
[11]
Tanegashima, K.; Takahashi, R.; Nuriya, H.; Iwase, R.; Naruse, N.; Tsuji, K.; Shigenaga, A.; Otaka, A.; Hara, T. CXCL14 acts as a specific carrier of CpG DNA into dendritic cells and activates toll-like receptor 9-mediated adaptive immunity. EBioMed., 2017, 24, 247-256.
[12]
Montomoli, E.; Piccirella, S.; Khadang, B.; Mennitto, E.; Camerini, R.; De Rosa, A. Current adjuvants and new perspectives in vaccine formulation. Expert Rev. Vaccines, 2011, 10(7), 1053-1061.
[13]
Shirota, H.; Tross, D.; Klinman, D.M. CpG oligonucleotides as cancer vaccine adjuvants. Vaccines, 2015, 3(2), 390-407.
[14]
Scheiermann, J.; Klinman, D.M. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine, 2014, 32(48), 6377-6389.
[15]
Pohar, J.; Krajnik, A.K.; Jerala, R.; Bencina, M. Minimal sequence requirements for oligodeoxyribonucleotides activating human TLR9. J. Immunol., 2015, 194(8), 3901-3908.
[16]
Heeg, K.; Dalpke, A.; Peter, M.; Zimmermann, S. Structural requirements for uptake and recognition of CpG oligonucleotides. Int. J. Med. Microbiol., 2008, 298(1-2), 33-38.
[17]
Klinman, D.M. Use of CpG oligodeoxynucleotides as immunoprotective agents. Expert Opin. Biol. Ther., 2004, 4(6), 937-946.
[18]
Krug, A.; Rothenfusser, S.; Hornung, V.; Jahrsdorfer, B.; Blackwell, S.; Ballas, Z.K.; Endres, S.; Krieg, A.M.; Hartmann, G. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur. J. Immunol., 2001, 31(7), 2154-2163.
[19]
Hartmann, G.; Krieg, A.M. Mechanism and function of a newly identified CpG DNA moth in human primary B cells. J. Immunol., 2000, 164(2), 944-952.
[20]
Vollmer, J.; Jurk, M.; Samulowitz, U.; Lipford, G.; Forsbach, A.; Wullner, M.; Tluk, S.; Hartmann, H.; Kritzler, A.; Muller, C.; Schetter, C.; Krieg, A.M. CpG oligodeoxynucleotides stimulate IFN-gamma-inducible protein-10 production in human B cells. J. Endotoxin Res., 2004, 10(6), 431-438.
[21]
Guiducci, C.; Ott, G.; Chan, J.H.; Damon, E.; Calacsan, C.; Matray, T.; Lee, K.D.; Man, R.L.C.; Barrat, F.J. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J. Exp. Med., 2006, 203(8), 1999-2008.
[22]
Verthelyi, D.; Ishii, K.J.; Gursel, M.; Takeshita, F.; Klinman, D.M. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol., 2001, 166(4), 2372-2377.
[23]
Gursel, M.; Verthelyi, D.; Gursel, I.; Ishii, K.J.; Klinman, D.M. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J. Leukoc. Biol., 2002, 71(5), 813-820.
[24]
Pohar, J.; Lainscek, D.; Kunsek, A.; Cajnko, M.M.; Jerala, R.; Bencina, M. Phosphodiester backbone of the CpG motif within immunostimulatory oligodeoxynucleotides augments activation of Toll-like receptor 9. Sci. Rep., 2017, 7, 11.
[25]
Klinman, D.M.; Yi, A.K.; Beaucage, S.L.; Conover, J.; Krieg, A.M. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2879-2883.
[26]
Vollmer, J.; Weeratna, R.; Payette, P.; Jurk, M.; Schetter, C.; Laucht, M.; Wader, T.; Tluk, S.; Liu, M.; Davis, H.L.; Krieg, A.M. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur. J. Immunol., 2004, 34(1), 251-262.
[27]
Abel, K.; Wang, Y.C.; Fritts, L.; Sanchez, E.; Chung, E.; Fitzgerald-Bocarsly, P.; Krieg, A.M.; Miller, C.J. Deoxycytidyl-deoxyguanosine oligonucleotide classes A, B, and C induce distinct ctokine gene expression patterns in rhesus monkey peripheral blood mononuclear cells and distinct alpha interferon responses in TLR9-expressing rhesus monkey plasmacytoid dendritic cells. Clin. Diagn. Lab. Immunol., 2005, 12(5), 606-621.
[28]
Marshall, J.D.; Fearon, K.L.; Higgins, D.; Hessel, E.M.; Kanzler, H.; Abbate, C.; Yee, P.; Gregorio, J.; Dela Cruz, T.; Lizcano, J.O.; Zolotorev, A.; McClure, H.M.; Brasky, K.M.; Murthy, K.K.; Coffman, R.L.; Van Nest, G. Superior activity of the type C class of ISS in vitro and in vivo across multiple species. DNA Cell Biol., 2005, 24(2), 63-72.
[29]
Samulowitz, U.; Weber, M.; Weeratna, R.; Uhlmann, E.; Noll, B.; Krieg, A.M.; Vollmer, J. A novel class of immune-stimulatory CpG oligodeoxynucleotides unifies high potency in type I interferon induction with preferred structural properties. Oligonucleotides, 2010, 20(2), 93-101.
[30]
Pohar, J.; Lainscek, D.; Fukui, R.; Yamamoto, C.; Miyake, K.; Jerala, R.; Bencina, M. Species-specific minimal sequence motif for oligodeoxyribonucleotides activating mouse TLR9. J. Immunol., 2015, 195(9), 4396-4405.
[31]
Pohar, J.; Lainscek, D.; Ivicak-Kocjan, K.; Cajnko, M.M.; Jerala, R.; Bencina, M. Short single-stranded DNA degradation products augment the activation of toll-like receptor 9. Nat. Commun., 2017, 8, 13.
[32]
Ohto, U.; Ishida, H.; Shibata, T.; Sato, R.; Miyake, K.; Shimizu, T. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity, 2018, 48(4), 649-658.e4.
[33]
Martinez, J.M.; Elmroth, S.K.C.; Kloo, L. Influence of sodium ions on the dynamics and structure of single-stranded DNA oligomers: A molecular dynamics study. J. Am. Chem. Soc., 2001, 123(49), 12279-12289.
[34]
Zhang, Y.; Zhou, H.J.; Ou-Yang, Z.C. Stretching single-stranded DNA: Interplay of electrostatic, base-pairing, and base-pair stacking interactions. Biophys. J., 2001, 81(2), 1133-1143.
[35]
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13), 3406-3415.
[36]
Kerkmann, M.; Costa, L.T.; Richter, C.; Rothenfusser, S.; Battiany, J.; Hornung, V.; Johnson, J.; Englert, S.; Ketterer, T.; Heckl, W.; Thalhammer, S.; Endres, S.; Hartmann, G. Spontaneous formation of nucleic acid-based nanoparticles is responsible for high interferon-alpha induction by CpG-A in plasmacytoid dendritic cells. J. Biol. Chem., 2005, 280(9), 8086-8093.
[37]
Narayanan, S.; Dalpke, A.H.; Siegmund, K.; Heeg, K.; Richert, C. CpG Oligonucleotides with modified termini and nicked dumbbell structure show enhanced immunostimulatory activity. J. Med. Chem., 2003, 46(23), 5031-5044.
[38]
He, G.Y.; Patra, A.; Siegmund, K.; Peter, M.; Heeg, K.; Dalpke, A.; Richert, C. Immunostimulatory CpG oligonucleotides form defined three-dimensional structures: Results from an NMR study. ChemMedChem, 2007, 2(4), 549-560.
[39]
Hartmann, G.; Battiany, J.; Poeck, H.; Wagner, M.; Kerkmann, M.; Lubenow, N.; Rothenfusser, S.; Endres, S. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur. J. Immunol., 2003, 33(6), 1633-1641.
[40]
Marshall, J.D.; Fearon, K.; Abbate, C.; Subramanian, S.; Yee, P.; Gregorio, J.; Coffman, R.L.; Van Nest, G. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc. Biol., 2003, 73(6), 781-792.
[41]
Ohto, U.; Shibata, T.; Tanji, H.; Ishida, H.; Krayukhina, E.; Uchiyama, S.; Miyake, K.; Shimizu, T. Structural basis of CpG and inhibitory DNA recognition by toll-like receptor 9. Nature, 2015, 520(7549), 702-U303.
[42]
Ishida, H.; Ohto, U.; Shibata, T.; Miyake, K.; Shimizu, T. Structural basis for species-specific activation of mouse toll-like receptor 9. FEBS Lett., 2018, 592(15), 2636-2646.
[43]
Collins, B.; Wilson, I.A. Crystal structure of the C-terminal domain of mouse TLR9. Proteins, 2014, 82(10), 2874-2878.
[44]
Pohar, J.; Yamamoto, C.; Fukui, R.; Cajnko, M.M.; Miyake, K.; Jerala, R.; Bencina, M. Selectivity of human TLR9 for double CpG motifs and implications for the recognition of genomic DNA. J. Immunol., 2017, 198(5), 2093-2104.
[45]
Stacey, K.J.; Young, G.R.; Clark, F.; Sester, D.P.; Roberts, T.L.; Naik, S.; Sweet, M.J.; Hume, D.A. The molecular basis for the lack of immunostimulatory activity of vertebrate DNA. J. Immunol., 2003, 170(7), 3614-3620.
[46]
Barton, G.M.; Kagan, J.C. A cell biological view of Toll-like receptor function: Regulation through compartmentalization. Nat. Rev. Immunol., 2009, 9(8), 535-542.
[47]
Feher, K. Atomistic simulations of immune stimulatory single stranded bacterial DNA. In ISQBP Presindet's Meeting 2018, Barcelona, Spain 2018.