[1]
Alessio, E. Thirty years of the drug candidate NAMI-A and the myths in the field of ruthenium anticancer compounds: A personal perspective. Eur. J. Inorg. Chem., 2017, 2017(12), 1549-1560.
[2]
Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Berger, W.; Keppler, B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci., 2014, 5(8), 2925-2932.
[4]
McConnell, A.J.; Lim, M.H.; Olmon, E.D.; Song, H.; Dervan, E.; Barton, J.K. Luminescent properties of ruthenium(II) complexes with sterically expansive ligands bound to DNA defects. Inorg. Chem., 2012, 51(22), 12511-12520.
[5]
Zhou, Q.X.; Lei, W.H.; Chen, J.R.; Li, C.; Hou, Y.J.; Wang, X.S.; Zhang, B.W. A new heteroleptic ruthenium(II) polypyridyl complex with long-wavelength absorption and high singlet-oxygen quantum yield. Chem. Eur. J., 2010, 16(10), 3157-3165.
[6]
Gill, M.R.; Derrat, H.; Smythe, C.G.W.; Battaglia, G.; Thomas, J.A. Ruthenium(II) metallo-intercalators: DNA imaging and cytotoxicity. ChemBioChem, 2011, 12(6), 877-880.
[7]
Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev., 2015, 284, 329-350.
[8]
Cardoso, C.R.; Lima, M.V.S.; Cheleski, J.; Peterson, E.J.; Venancio, T.; Farrell, N.P.; Carlos, R.M. Luminescent ruthenium complexes for theranostic applications. J. Med. Chem., 2014, 57(11), 4906-4915.
[9]
Chen, Y.; Qin, M.Y.; Wang, L.; Chao, H.; Ji, L.N.; Xu, A.L. A ruthenium(II) β-carboline complex induced p53-mediated apoptosis in cancer cells. Biochimie, 2013, 95(11), 2050-2059.
[10]
Li, M.J.; Wong, K.M.C.; Yi, C.; Yam, V.W.W. New ruthenium(II) complexes functionalized with coumarin derivatives: synthesis, energy-transfer-based sensing of esterase, cytotoxicity, and imaging studies. Chem.Eur. J., 2012, 18, 8727-8730.
[11]
Yu, H.J.; Chen, Y.; Yu, L.; Hao, Z.F.; Zhou, L.H. Synthesis, visible light photocleavage, antiproliferative and cellular uptake properties of ruthenium complex [Ru(phen)2(mitatp)]2+. Eur. J. Med. Chem., 2012, 55, 146-154.
[12]
Wang, C.; Yu, Q.; Yang, L.; Liu, Y.; Sun, D.; Huang, Y.; Zhou, Y.; Zhang, Q.; Liu, J. Ruthenium (II) polypyridyl complexes stabilize the bcl-2 promoter quadruplex and induce apoptosis of Hela tumor cells. Biometals, 2013, 26(3), 387-402.
[13]
Guo, Q.F.; Liu, S.H.; Liu, Q.H.; Xu, H.H.; Zhao, J.H.; Wu, H.F.; Li, X.Y.; Wang, J.W. Cytotoxicity, apoptosis, cellular uptake, cell cycle distribution, and DNA-binding investigation of ruthenium complexes. DNA Cell Biol., 2012, 31(7), 1205-1213.
[14]
Lo, K.K.W.; Lee, T.K.M.; Lau, J.S.Y.; Poon, W.L.; Cheng, S.H. Luminescent biological probes derived from ruthenium(II) estradiol polypyridine complexes. Inorg. Chem., 2008, 47, 200-208.
[15]
Srishailam, A.; Kumar, Y.R.; Gabra, N.M.D.; Reddy, P.V.; Deepika, N.; Veerababu, N.; Satyanarayanna, S. Synthesis, DNA-binding, cytotoxicity, photo cleavage, antimicrobal and docking studies of Ru(II) polypyridyl complexes. J. Fluoresc., 2013, 23(5), 897-908.
[16]
Zhang, J.X.; Zhou, J.W.; Chan, C.F.; Kwong, D.W.J.; Tam, H.L.; Mak, N.K.; Wong, K.L.; Wong, W.K. Comparative studies of the cellular uptake, subcellular localization, and cytotoxic and phototoxic antitumor properties of ruthenium(II)−porphyrin conjugates with different linkers. BioConjugate Chem., 2012, 23, 1623-1638.
[17]
Xie, Y.Y.; Huang, H.L.; Yao, J.H.; Lin, G.J.; Jiang, G.B.; Liu, Y.J. DNA-binding, photocleavage, cytotoxicity in vitro, apoptosis and cell cycle arrest studies of symmetric ruthenium(II) complexes. Eur. J. Med. Chem., 2013, 63, 603-610.
[18]
Dobrucki, J.W. Interaction of oxygen-sensitive luminescent probes [Ru(phen)3]2+ and [Ru(bipy)3]2+ with animal and plant cells in vitro - Mechanism of phototoxicity and conditions for non-invasive oxygen measurements. J. Photochem. Photobiol. B-Biol, 2001, 65(2-3), 136-144.
[19]
Komatsu, H.; Yoshihara, K.; Yamada, H.; Kimura, Y.; Son, A.; Nishimoto, S.; Tanabe, K. Ruthenium complexes with hydrophobic ligands that are key factors for the optical imaging of physiological hypoxia. Chem. Eur. J., 2013, 19(6), 1971-1977.
[20]
Mazuryk, O.; Maciuszek, M.; Stochel, G.; Suzenet, F.; Brindell, M. 2-Nitroimidazole-ruthenium polypyridyl complex as a new conjugate for cancer treatment and visualization. J. Inorg. Biochem., 2014, 134, 83-91.
[21]
Mazuryk, O.; Magiera, K.; Rys, B.; Suzenet, F.; Kieda, C.; Brindell, M. Multifaceted interplay between lipophilicity, protein interaction and luminescence parameters of non-intercalative ruthenium(II) polypyridyl complexes controlling cellular imaging and cytotoxic properties. J. Biol. Inorg. Chem., 2014, 19(8), 1305-1316.
[22]
Liu, X.W.; Chen, Z.G.; Li, L.; Chen, Y.D.; Lu, J.L.; Zhang, D.S. DNA-binding, photocleavage studies of ruthenium(II) complexes with 2-(2-quinolinyl) imidazo 4,5-f 1,10 phenanthroline. Spectroc. Acta Pt. A-Mol. Biomol. Spectr., 2013, 102, 142-149.
[23]
Liu, X.W.; Zhang, S.B.; Li, L.; Chen, Y.D.; Lu, J.L. Ruthenium (II) complexes containing a new asymmetric ligand: DNA interaction, photocleavage and topoisomerase I inhibition. J. Organomet. Chem., 2013, 729, 1-8.
[25]
Poynton, F.E.; Bright, S.A.; Blasco, S.; Williams, D.C.; Kelly, J.M.; Gunnlaugsson, T. The development of ruthenium(II) polypyridyl complexes and conjugates for: In vitro cellular and in vivo applications. Chem. Soc. Rev., 2017, 46(24), 7706-7756.
[26]
Mazuryk, O.; Suzenet, F.; Kieda, C.; Brindell, M. The biological effect of the nitroimidazole derivative of a polypyridyl ruthenium complex on cancer and endothelial cells. Metallomics, 2015, 7(3), 553-566.
[27]
Łomzik, M.; Mazuryk, O.; Rutkowska-Zbik, D.; Stochel, G.; Gros, P.C.; Brindell, M. New ruthenium compounds bearing semicarbazone 2-formylopyridine moiety: Playing with auxiliary ligands for tuning the mechanism of biological activity. J. Inorg. Biochem., 2017, 175, 80-91.
[28]
Gao, F.; Chao, H.; Zhou, F.; Yuan, Y.X.; Peng, B.; Ji, L.N. DNA interactions of a functionalized ruthenium(II) mixed-polypyridyl complex [Ru(bpy)2ppd]2+. J. Inorg. Biochem., 2006, 100(9), 1487-1494.
[29]
Puckett, C.A.; Barton, J.K. Targeting a ruthenium complex to the nucleus with short peptides. Bioorg. Med. Chem., 2010, 18, 3564-3569.
[30]
Puckett, C.A.; Barton, J.K. Fluorescein redirects a ruthenium-octaarginine conjugate to the nucleus. J. Am. Chem. Soc., 2009, 131(25), 8738-8739.
[31]
Blackmore, L.; Moriarty, R.; Dolan, C.; Adamson, K.; Forster, R.J.; Devocelle, M.; Keyes, T.E. Peptide directed transmembrane transport and nuclear localization of Ru(II) polypyridyl complexes in mammalian cells. Chem. Commun., 2013, 49, 2658-2660.
[32]
Kumar, D.; Banerjee, D. Methods of albumin estimation in clinical biochemistry: Past, present, and future. Clin. Chim. Acta, 2017, 469, 150-160.
[33]
Kuscuoglu, D.; Janciauskiene, S.; Hamesch, K.; Haybaeck, J.; Trautwein, C.; Strnad, P. Liver – master and servant of serum proteome. J. Hepatol., 2018, 69(2), 512-524.
[34]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[35]
Soriani, M.; Pietraforte, D.; Minetti, M. Antioxidant potential of anaerobic human plasma: Role of serum albumin and thiols as scavengers of carbon radicals. Arch. Biochem. Biophys., 1994, 312(1), 180-188.
[36]
Petitpas, I.; Bhattacharya, A.A.; Twine, S.; East, M.; Curry, S. Crystal structure analysis of warfarin binding to human serum albumin. Anatomy of drug site I. J. Biol. Chem., 2001, 276(25), 22804-22809.
[37]
Nurdiansyah, R. Rifa’I, M.; Widodo. A comparative analysis of serum albumin from different species to determine a natural source of albumin that might be useful for human therapy. J. Taibah. Univ. Sci., 2016, 11(3), 243-249.
[38]
Bailey, S.; Evans, R.W.; Garratt, R.C.; Gorinskv, B.; Mydin, A.; Horsburg, C.; Jhoti, H.; Lindley, P.F.; Hasnain, S.; Sarra, R.; Watson, J.L. Molecular structure of serum transferrin at 3: 3-A resolution. Biochemistry, 1988, 27(15), 5804-5812.
[39]
Weinberg, E.D. The hazards of iron loading. Metallomics, 2010, 2(11), 732-740.
[40]
Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med., 2012, 33(3), 209-290.
[41]
Elsadek, B.; Kratz, F. Impact of albumin on drug delivery - New applications on the horizon. J. Control. Release, 2012, 157(1), 4-28.
[42]
Kratz, F.; Elsadek, B. Clinical impact of serum proteins on drug delivery. J. Control. Release, 2012, 161(2), 429-445.
[43]
Kratz, F. A clinical update of using albumin as a drug vehicle - A commentary. J. Control. Release, 2014, 190, 331-336.
[44]
Szwed, M.; Matusiak, A.; Laroche-Clary, A.; Robert, J.; Marszalek, I.; Jozwiak, Z. Transferrin as a drug carrier: Cytotoxicity, cellular uptake and transport kinetics of doxorubicin transferrin conjugate in the human leukemia cells. Toxicol. In vitro, 2014, 28(2), 187-197.
[45]
Kratz, F. Drug conjugates with albumin and transferrin. Expert Opin. Ther. Pat., 2002, 12(3), 433-439.
[46]
Daniels, T.R.; Bernabeu, E.; Rodríguez, J.A.; Patel, S.; Kozman, M.; Chiappetta, D.A.; Holler, E.; Ljubimova, J.Y.; Helguera, G.; Penichet, M.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(3), 291-317.
[47]
Verrijk, R.; Smolders, I.J.H.; McVie, J.G.; Begg, A.C. Polymer-coated albumin microspheres as carriers for intravascular tumour targeting of cisplatin. Cancer Chemother. Pharmacol., 1991, 29(2), 117-121.
[48]
Chen, H.K.; Zhang, S.M.; Chang, J.L.; Chen, H.C.; Lin, Y.C.; Shih, C.P.; Sytwu, H.K.; Fang, M.C.; Lin, Y.Y.; Kuo, C.Y.; Liao, A.H.; Chu, Y.H.; Wang, C.H. Insonation of systemically delivered cisplatin-loaded microbubbles significantly attenuates nephrotoxicity of chemotherapy in experimental models of head and neck cancer. Cancers, 2018, 10(9)E311
[49]
Bergamo, A.; Messori, L.; Piccioli, F.; Cocchietto, M.; Sava, G. Biological role of adduct formation of the ruthenium(III) complex NAMI-A with serum albumin and serum transferrin. Invest. New Drugs, 2003, 21, 401-411.
[50]
Novohradský, V.; Bergamo, A.; Cocchietto, M.; Zajac, J.; Brabec, V.; Mestroni, G.; Sava, G. Influence of the binding of reduced NAMI-A to human serum albumin on the pharmacokinetics and biological activity. Dalton Trans., 2015, 44(4), 1905-1913.
[51]
Frausin, F.; Cocchietto, M.; Bergamo, A.; Scarcia, V.; Furlani, A.; Sava, G. Tumour cell uptake of the metastasis inhibitor ruthenium complex NAMI-A and its in vitro effects on KB cells. Cancer Chemother. Pharmacol., 2002, 50(5), 405-411.
[52]
Mazuryk, O.; Kurpiewska, K.; Lewinski, K.; Stochel, G.; Brindell, M. Interaction of apo-transferrin with anticancer ruthenium complexes NAMI-A and its reduced form. J. Inorg. Biochem., 2012, 116, 11-18.
[53]
Śpiewak, K.; Brindell, M. Impact of low- and high-molecular-mass components of human serum on NAMI-A binding to transferrin. J. Biol. Inorg. Chem., 2015, 20(4), 695-703.
[54]
Liu, Y.; Yu, Q.; Wang, C.; Sun, D.; Huang, Y.; Zhou, Y.; Liu, J. Ruthenium (II) complexes binding to human serum albumin and inducing apoptosis of tumor cells. Inorg. Chem. Comm., 2012, 24, 104-109.
[55]
Lai, S.H.; Li, W.; Wang, X.Z.; Zhang, C.; Zeng, C.C.; Tang, B.; Wan, D.; Liu, Y.J. Apoptosis, autophagy, cell cycle arrest, cell invasion and BSA-binding studies: In vitro of ruthenium(II) polypyridyl complexes. RSC Adv, 2016, 6(68), 63143-63155.
[56]
Beckford, F.A.; Thessing, J.; Shaloski, M. Jr; Mbarushimana, P.C.; Brock, A.; Didion, J.; Woods, J.; Gonzalez-Sarrías, A.; Seeram, N.P. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents. J. Mol. Struct., 2011, 992(1-3), 39-47.
[57]
Morais, T.S.; Santos, F.C.; Jorge, T.F.; Côrte-Real, L.; Madeira, P.J.A.; Marques, F.; Robalo, M.P.; Matos, A.; Santos, I.; Garcia, M.H. New water-soluble ruthenium(II) cytotoxic complex: Biological activity and cellular distribution. J. Inorg. Biochem., 2014, 130(1), 1-14.
[58]
Dias, J.S.M.; Silva, H.V.R.; Ferreira-Silva, G.Á.; Ionta, M.; Corrêa, C.C.; Almeida, F.; Colina-Vegas, L.; Barbosa, M.I.F.; Doriguetto, A.C. Pro-apoptotic activity of ruthenium 1-methylimidazole complex on non-small cell lung cancer. J. Inorg. Biochem., 2018, 187, 1-13.
[59]
de Melo, A.C.C.; Santana, J.M.S.V.P.; da Costa Nunes, K.J.R.; de Amorim Marques, M.; de Oliveira, G.A.P.; Moraes, A.H.; Pereira-Maia, E.C. Interactions of ruthenium(II) compounds with sulfasalazine and N,N′-heterocyclic ligands with proteins. Inorg. Chim. Acta, 2017, 467, 385-390.
[62]
Mehrotra, R.; Shukla, S.N.; Gaur, P. Promising trend for amendment of drug molecule against resist pathogens: Synthesis, characterization, and application. Med. Chem. Res., 2012, 21(12), 4455-4462.
[63]
Kaspler, P.; Lazic, S.; Forward, S.; Arenas, Y.; Mandel, A.; Lilge, L. A ruthenium(II) based photosensitizer and transferrin complexes enhance photo-physical properties, cell uptake, and photodynamic therapy safety and efficacy. Photochem. Photobiol. Sci., 2016, 15(4), 481-495.
[64]
Giménez, R.E.; Vargová, V.; Rey, V.; Turbay, M.B.E.; Abatedaga, I.; Morán Vieyra, F.E.; Paz Zanini, V.I.; Mecchia Ortiz, J.H.; Katz, N.E.; Ostatná, V.; Borsarelli, C.D. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization. Free Radic. Biol. Med., 2016, 94, 99-109.
[65]
Rajendiran, V.; Palaniandavar, M.; Periasamy, V.S. Akbarsha, M.A. New [Ru(5,6-dmp/3,4,7,8-tmp)2(diimine)]2+ complexes: Non-covalent DNA and protein binding, anticancer activity and fluorescent probes for nuclear and protein components. J. Inorg. Biochem., 2012, 116, 151-162.
[66]
Castellano, F.N.; Dattelbaum, J.D.; Lakowicz, J.R. Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups. Anal. Biochem., 1998, 255(2), 165-170.
[67]
Lasey, R.C.; Banerji, S.S.; Ogawa, M.Y. Synthesis and characterization of a sequence-specific DNA-binding protein that contains ruthenium polypyridyl centers. Inorg. Chim. Acta, 2000, 300-302, 822-828.
[68]
Wragg, A.; Gill, M.R.; McKenzie, L.; Glover, C.; Mowll, R.; Weinstein, J.A.; Su, X.; Smythe, C.; Thomas, J.A. Serum albumin binding inhibits nuclear uptake of luminescent metal-complex-based DNA imaging probes. Chem. Eur. J., 2015, 21(33), 11865-11871.
[69]
Belej, D.; Jurasekova, Z.; Nemergut, M.; Wagnieres, G.; Jancura, D.; Huntosova, V. Negligible interaction of [Ru(Phen)3]2+ with human serum albumin makes it promising for a reliable in vivo assessment of the tissue oxygenation. J. Inorg. Biochem., 2017, 174, 37-44.
[70]
Li, X.; Zhang, Y.; Chen, H.; Sun, J.; Feng, F. Protein nanocages for delivery and release of luminescent ruthenium(II) polypyridyl complexes. ACS Appl. Mater. Interfaces, 2016, 8(35), 22756-22761.
[71]
Li, F.F.; Feterl, M.; Warner, J.M.; Day, A.I.; Keene, F.R.; Collins, J.G. Protein binding by dinuclear polypyridyl ruthenium(II) complexes and the effect of cucurbit[10]uril encapsulation. Dalton Trans., 2013, 42(24), 8868-8877.
[72]
Neugebauer, U.; Cosgrave, L.; Pellegrin, Y.; Devocelle, M.; Forster, R.J.; Keyes, T.E. In Membrane permeable luminescent metal complexes for cellular imaging, SPIE Photonics Europe; SPIE, 2012, p. 13.