Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Overview of Cellular Mechanisms and Signaling Pathways of Piceatannol

Author(s): Yang Cao, Wanli Smith , Liang Yan* and Lingbo Kong *

Volume 15, Issue 1, 2020

Page: [4 - 10] Pages: 7

DOI: 10.2174/1574888X14666190402100054

Price: $65

Abstract

Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene. However, differences in the nature and position of substituents have made it possible to produce many derivatives. Piceatannol [PT], a hydroxylated derivative from resveratrol, exerts various biological activities ranging from cancer prevention, cardio- protection, neuro-protection, anti-diabetic, depigmentation and so on. Although positive results were obtained in most cell culture and animal studies, the relevant cellular and molecular mechanisms of cytokines and signaling pathway about their biological effects still unclear. Thus, in the current review, we focus on the latest findings of PT on cellular biology in order to better understand the underlying therapeutic mechanisms of PT among various diseases.

Keywords: Piceatannol, cellular and molecular mechanism, signaling pathway, cytokines, cell cycle, cell apoptosis.

[1]
Viñas P, Martínez-Castillo N, Campillo N, Hernández-Córdoba M. Directly suspended droplet microextraction with in injection-port derivatization coupled to gas chromatography-mass spectrometry for the analysis of polyphenols in herbal infusions, fruits and functional foods. J Chromatogr A 2011; 1218(5): 639-46.
[http://dx.doi.org/10.1016/j.chroma.2010.12.026] [PMID: 21185565]
[2]
Matsui Y, Sugiyama K, Kamei M, et al. Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. J Agric Food Chem 2010; 58(20): 11112-8.
[http://dx.doi.org/10.1021/jf102650d] [PMID: 20822151]
[3]
Potter GA, Patterson LH, Wanogho E, et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer 2002; 86(5): 774-8.
[http://dx.doi.org/10.1038/sj.bjc.6600197] [PMID: 11875742]
[4]
Schmeel FC, Schmeel LC, Kim Y, Schmidt-Wolf IG. Piceatannol exhibits selective toxicity to multiple myeloma cells and influences the Wnt/ beta-catenin pathway. Hematol Oncol 2014; 32(4): 197-204.
[http://dx.doi.org/10.1002/hon.2122] [PMID: 24470348]
[5]
Wolter F, Clausnitzer A, Akoglu B, Stein J. Piceatannol, a natural analog of resveratrol, inhibits progression through the S phase of the cell cycle in colorectal cancer cell lines. J Nutr 2002; 132(2): 298-302.
[http://dx.doi.org/10.1093/jn/132.2.298] [PMID: 11823594]
[6]
Farrand L, Byun S, Kim JY, et al. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission. J Biol Chem 2013; 288(33): 23740-50.
[http://dx.doi.org/10.1074/jbc.M113.487686] [PMID: 23833193]
[7]
Shen P, Yue Y, Sun Q, Kasireddy N, Kim KH, Park Y. Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. Biofactors 2017; 43(3): 379-87.
[http://dx.doi.org/10.1002/biof.1346] [PMID: 28128482]
[8]
Tang Q, Feng Z, Tong M, et al. Piceatannol inhibits the IL-1β-induced inflammatory response in human osteoarthritic chondrocytes and ameliorates osteoarthritis in mice by activating Nrf2. Food Funct 2017; 8(11): 3926-37.
[http://dx.doi.org/10.1039/C7FO00822H] [PMID: 28933476]
[9]
Kawada N, Seki S, Inoue M, Kuroki T. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology 1998; 27(5): 1265-74.
[http://dx.doi.org/10.1002/hep.510270512] [PMID: 9581680]
[10]
Hsieh TC, Juan G, Darzynkiewicz Z, Wu JM. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21(WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res 1999; 59(11): 2596-601.
[PMID: 10363980]
[11]
Zou J, Huang Y, Chen Q, et al. Suppression of mitogenesis and regulation of cell cycle traverse by resveratrol in cultured smooth muscle cells. Int J Oncol 1999; 15(4): 647-51.
[http://dx.doi.org/10.3892/ijo.15.4.647] [PMID: 10493944]
[12]
Park JW, Choi YJ, Jang MA, et al. Chemopreventive agent resveratrol, a natural product derived from grapes, reversibly inhibits progression through S and G2 phases of the cell cycle in U937 cells. Cancer Lett 2001; 163(1): 43-9.
[http://dx.doi.org/10.1016/S0304-3835(00)00658-3] [PMID: 11163107]
[13]
Schneider Y, Vincent F, Duranton B, et al. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett 2000; 158(1): 85-91.
[http://dx.doi.org/10.1016/S0304-3835(00)00511-5] [PMID: 10940513]
[14]
Dulić V, Lees E, Reed SI. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 1992; 257(5078): 1958-61.
[http://dx.doi.org/10.1126/science.1329201] [PMID: 1329201]
[15]
Ahmad N, Cheng P, Mukhtar H. Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem Biophys Res Commun 2000; 275(2): 328-34.
[http://dx.doi.org/10.1006/bbrc.2000.3297] [PMID: 10964666]
[16]
Ali AY, Abedini MR, Tsang BK. The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation. Oncogene 2012; 31(17): 2175-86.
[http://dx.doi.org/10.1038/onc.2011.399] [PMID: 21927021]
[17]
Kwon JY, Seo SG, Heo YS, et al. Piceatannol, natural polyphenolic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in early phase of differentiation. J Biol Chem 2012; 287(14): 11566-78.
[http://dx.doi.org/10.1074/jbc.M111.259721] [PMID: 22298784]
[18]
Larsen TJ, Jespersen NZ, Scheele C. Adipogenesis in primary cell culture. Handb Exp Pharmacol 2019; 257: 73-84.
[http://dx.doi.org/10.1007/164_2018_142] [PMID: 29980911]
[19]
Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3): 469-80.
[http://dx.doi.org/10.1016/j.cell.2006.10.018] [PMID: 17081971]
[20]
Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: Diseases and therapies. Nat Rev Genet 2004; 5(9): 691-701.
[http://dx.doi.org/10.1038/nrg1427] [PMID: 15372092]
[21]
Yang Y. Wnt signaling in development and disease. Cell Biosci 2012; 2(1): 14.
[http://dx.doi.org/10.1186/2045-3701-2-14] [PMID: 22520685]
[22]
Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99(22): 14374-9.
[http://dx.doi.org/10.1073/pnas.202445099] [PMID: 12391322]
[23]
Frost P, Moatamed F, Hoang B, et al. In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 2004; 104(13): 4181-7.
[http://dx.doi.org/10.1182/blood-2004-03-1153] [PMID: 15304393]
[24]
Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12(2): 131-44.
[http://dx.doi.org/10.1016/j.ccr.2007.07.003] [PMID: 17692805]
[25]
Jayasooriya RG, Lee YG, Kang CH, et al. Piceatannol inhibits MMP-9-dependent invasion of tumor necrosis factor-α-stimulated DU145 cells by suppressing the Akt-mediated nuclear factor-κB pathway. Oncol Lett 2013; 5(1): 341-7.
[http://dx.doi.org/10.3892/ol.2012.968] [PMID: 23255946]
[26]
Sukhdeo K, Mani M, Zhang Y, et al. Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 2007; 104(18): 7516-21.
[http://dx.doi.org/10.1073/pnas.0610299104] [PMID: 17452641]
[27]
Sasaki H, Sheng Y, Kotsuji F, Tsang BK. Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 2000; 60(20): 5659-66.
[PMID: 11059757]
[28]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[29]
Zhong N. Translational medicine: Application of research to clinical practice. Beijing Da Xue Xue Bao 2009; 41(4): 381-2.
[PMID: 19845065]
[30]
Salinas-Vera YM, Marchat LA, Gallardo-Rincon D, et al. AngiomiRs: MicroRNAs driving angiogenesis in cancer. Int J Mol Med 2018. [Review].
[31]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[32]
Du M, Zhang Z, Gao T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells. Biol Res 2017; 50(1): 36.
[http://dx.doi.org/10.1186/s40659-017-0141-8] [PMID: 29041990]
[33]
Zhang H, Jia R, Wang C, Hu T, Wang F. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines. Biochem Biophys Res Commun 2014; 452(3): 775-81.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.150] [PMID: 25218158]
[34]
Bose P, Rahmani M, Grant S. Coordinate PI3K pathway and Bcl-2 family disruption in AML. Oncotarget 2012; 3(12): 1499-500.
[http://dx.doi.org/10.18632/oncotarget.809] [PMID: 23439314]
[35]
Fu Z, Yang J, Wei Y, Li J. Effects of piceatannol and pterostilbene against β-amyloid-induced apoptosis on the PI3K/Akt/Bad signaling pathway in PC12 cells. Food Funct 2016; 7(2): 1014-23.
[http://dx.doi.org/10.1039/C5FO01124H] [PMID: 26757883]
[36]
Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014; 21(3): 396-413.
[http://dx.doi.org/10.1089/ars.2014.5851] [PMID: 24702237]
[37]
Kim KM, Pae HO, Zheng M, Park R, Kim YM, Chung HT. Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress. Circ Res 2007; 101(9): 919-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.154781] [PMID: 17823375]
[38]
Kim HP, Pae HO, Back SH, et al. Heme oxygenase-1 comes back to endoplasmic reticulum. Biochem Biophys Res Commun 2011; 404(1): 1-5.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.067] [PMID: 21094129]
[39]
Kim Y, Li E, Park S. Insulin-like growth factor-1 inhibits 6-hydroxydopamine-mediated endoplasmic reticulum stress-induced apoptosis via regulation of heme oxygenase-1 and Nrf2 expression in PC12 cells. Int J Neurosci 2012; 122(11): 641-9.
[http://dx.doi.org/10.3109/00207454.2012.702821] [PMID: 22703470]
[40]
Kil JS, Jeong SO, Chung HT, Pae HO. Piceatannol attenuates homocysteine-induced endoplasmic reticulum stress and endothelial cell damage via heme oxygenase-1 expression. Amino Acids 2017; 49(4): 735-45.
[http://dx.doi.org/10.1007/s00726-016-2375-0] [PMID: 27995330]
[41]
Yung HW, Korolchuk S, Tolkovsky AM, Charnock-Jones DS, Burton GJ. Endoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of Akt protein synthesis in human choriocarcinoma cells. FASEB J 2007; 21(3): 872-84.
[http://dx.doi.org/10.1096/fj.06-6054com] [PMID: 17167073]
[42]
Chang YC, Hsieh MC, Wu HJ, Wu WC, Kao YH. Methylglyoxal, a reactive glucose metabolite, enhances autophagy flux and suppresses proliferation of human retinal pigment epithelial ARPE-19 cells. Toxicol In Vitro 2015; 29(7): 1358-68.
[http://dx.doi.org/10.1016/j.tiv.2015.05.014] [PMID: 26021238]
[43]
Suh KS, Chon S, Choi EM. Protective effects of piceatannol on methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Free Radic Res 2018; 52(6): 712-23.
[http://dx.doi.org/10.1080/10715762.2018.1467010] [PMID: 29792365]
[44]
Hsu WH, Lee BH, Huang YC, Hsu YW, Pan TM. Ankaflavin, a novel Nrf-2 activator for attenuating allergic airway inflammation. Free Radic Biol Med 2012; 53(9): 1643-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.587] [PMID: 22982045]
[45]
Ko YJ, Kim HH, Kim EJ, et al. Piceatannol inhibits mast cell-mediated allergic inflammation. Int J Mol Med 2013; 31(4): 951-8.
[http://dx.doi.org/10.3892/ijmm.2013.1283] [PMID: 23426871]
[46]
Larsen PL. Direct and indirect transcriptional targets of DAF-16. Sci SAGE KE 2003; 2003(17): PE9.
[http://dx.doi.org/10.1126/sageke.2003.17.pe9] [PMID: 12844535]
[47]
Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L. C. Elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006; 125(6): 1165-77.
[http://dx.doi.org/10.1016/j.cell.2006.04.036] [PMID: 16777605]
[48]
Viswanathan M, Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011; 477(7365): E1-2.
[http://dx.doi.org/10.1038/nature10440] [PMID: 21938026]
[49]
Heldin CH, Ostman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1998; 1378(1): F79-F113.
[PMID: 9739761]
[50]
Matsumoto T, Yokote K, Tamura K, et al. Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. J Biol Chem 1999; 274(20): 13954-60.
[http://dx.doi.org/10.1074/jbc.274.20.13954] [PMID: 10318806]
[51]
Cospedal R, Abedi H, Zachary I. Platelet-derived growth factor-BB (PDGF-BB) regulation of migration and focal adhesion kinase phosphorylation in rabbit aortic vascular smooth muscle cells: Roles of phosphatidylinositol 3-kinase and mitogen-activated protein kinases. Cardiovasc Res 1999; 41(3): 708-21.
[http://dx.doi.org/10.1016/S0008-6363(98)00232-6] [PMID: 10435043]
[52]
Choi KH, Kim JE, Song NR, et al. Phosphoinositide 3-kinase is a novel target of piceatannol for inhibiting PDGF-BB-induced proliferation and migration in human aortic smooth muscle cells. Cardiovasc Res 2010; 85(4): 836-44.
[http://dx.doi.org/10.1093/cvr/cvp359] [PMID: 19887493]
[53]
Lee CK, Lee HM, Kim HJ, et al. Syk contributes to PDGF-BB-mediated migration of rat aortic smooth muscle cells via MAPK pathways. Cardiovasc Res 2007; 74(1): 159-68.
[http://dx.doi.org/10.1016/j.cardiores.2007.01.012] [PMID: 17303097]
[54]
Ma N, Luo Y, Wang Y, Liao C, Ye WC, Jiang S. Selective histone deacetylase inhibitors with anticancer activity. Curr Top Med Chem 2016; 16(4): 415-26.
[http://dx.doi.org/10.2174/1568026615666150813145629] [PMID: 26268343]
[55]
Choi SY, Piao ZH, Jin L, et al. Piceatannol attenuates renal fibrosis induced by unilateral ureteral obstruction via downregulation of histone deacetylase 4/5 or p38-MAPK signaling. PLoS One 2016; 11(11)e0167340
[http://dx.doi.org/10.1371/journal.pone.0167340] [PMID: 27902771]
[56]
Guarente L, Picard F. Calorie restriction--the SIR2 connection. Cell 2005; 120(4): 473-82.
[http://dx.doi.org/10.1016/j.cell.2005.01.029] [PMID: 15734680]
[57]
Kawakami S, Kinoshita Y, Maruki-Uchida H, Yanae K, Sai M, Ito T. Piceatannol and its metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line. Nutrients 2014; 6(11): 4794-804.
[http://dx.doi.org/10.3390/nu6114794] [PMID: 25360511]
[58]
Hsieh TC, Lin CY, Lin HY, Wu JM. AKT/mTOR as novel targets of polyphenol piceatannol possibly contributing to inhibition of proliferation of cultured prostate cancer cells. ISRN Urol 2012; 2012272697
[http://dx.doi.org/10.5402/2012/272697] [PMID: 22567414]
[59]
Graff JR, Konicek BW, McNulty AM, et al. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 2000; 275(32): 24500-5.
[http://dx.doi.org/10.1074/jbc.M003145200] [PMID: 10827191]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy