[1]
Bousquet, J.; Clark, T.J.; Hurd, S.; Khaltaev, N.; Lenfant, C.; O’Byrne, P.; Sheffer, A. GINA guidelines on asthma and beyond. Allergy, 2007, 62(2), 102-112.
[2]
Braman, S.S. The global burden of asthma. Chest, 2006, 130(1)(Suppl.), 4S-12S.
[3]
Busse, W.W.; Lemanske, R.F., Jr Asthma. N. Engl. J. Med., 2001, 344(5), 350-362.
[4]
Bloemen, K.; Verstraelen, S.; Van Den Heuvel, R.; Witters, H.; Nelissen, I.; Schoeters, G. The allergic cascade: review of the most important molecules in the asthmatic lung. Immunol. Lett., 2007, 113(1), 6-18.
[5]
Kon, O.M.; Kay, A.B. T cells and chronic asthma. Int. Arch. Allergy Immunol., 1999, 118(2-4), 133-135.
[6]
Russo, M.; Nahori, M.A.; Lefort, J.; Gomes, E.; de Castro Keller, A.; Rodriguez, D.; Ribeiro, O.G.; Adriouch, S.; Gallois, V.; de Faria, A.M.; Vargaftig, B.B. Suppression of asthma-like responses in different mouse strains by oral tolerance. Am. J. Respir. Cell Mol. Biol., 2001, 24(5), 518-526.
[7]
Strid, J.; Thomson, M.; Hourihane, J.; Kimber, I.; Strobel, S. A novel model of sensitization and oral tolerance to peanut protein. Immunology, 2004, 113(3), 293-303.
[8]
Bradding, P.; Roberts, J.A.; Britten, K.M.; Montefort, S.; Djukanovic, R.; Mueller, R.; Heusser, C.H.; Howarth, P.H.; Holgate, S.T. Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am. J. Respir. Cell Mol. Biol., 1994, 10(5), 471-480.
[9]
Galli, S.J.; Grimbaldeston, M.; Tsai, M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat. Rev. Immunol., 2008, 8(6), 478-486.
[10]
Ma, Y.; Ge, A.; Zhu, W.; Liu, Y.N.; Ji, N.F.; Zha, W.J.; Zhang, J.X.; Zeng, X.N.; Huang, M. Morin attenuates ovalbumin-induced airway inflammation by modulating oxidative stress-responsive MAPK signaling. Oxid. Med. Cell. Longev., 2016, 2016, 5843672.
[11]
Sahiner, U.M.; Birben, E.; Erzurum, S.; Sackesen, C.; Kalayci, O. Oxidative stress in asthma. World Allergy Organ. J., 2011, 4(10), 151-158.
[12]
Hogan, S.P.; Rosenberg, H.F.; Moqbel, R.; Phipps, S.; Foster, P.S.; Lacy, P.; Kay, A.B.; Rothenberg, M.E. Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy, 2008, 38(5), 709-750.
[13]
Fang, C.; Li, X.; Liang, H.; Xue, L.; Liu, L.; Yang, C.; Gao, G.; Jiang, X. Downregulation of SUMF2 gene in ovalbumin-induced rat model of allergic inflammation. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12053-12063.
[14]
Yamashita, N.; Tashimo, H.; Ishida, H.; Matsuo, Y.; Tamauchi, H.; Terashima, M.; Yoshiwara, I.; Habu, S.; Ohta, K. Involvement of GATA-3-dependent Th2 lymphocyte activation in airway hyperresponsiveness. Am. J. Physiol. Lung Cell. Mol. Physiol., 2006, 290(6), L1045-L1051.
[15]
Corren, J. Role of interleukin-13 in asthma. Curr. Allergy Asthma Rep., 2013, 13(5), 415-420.
[16]
Liang, H.; Li, Z.; Xue, L.; Jiang, X.; Liu, F. SUMF2 interacts with interleukin-13 and inhibits interleukin-13 secretion in bronchial smooth muscle cells. J. Cell. Biochem., 2009, 108(5), 1076-1083.
[17]
Longui, C.A. Glucocorticoid therapy: minimizing side effects. J. Pediatr., 2007, 83(5)(Suppl.), S163-S177.
[18]
Sato, M.N.; Oliveira, C.R.; Futata, E.A.; Victor, J.R.; Maciel, M.; Fusaro, A.E.; Carvalho, A.F.; Duarte, A.J. Oral tolerance induction to Dermatophagoides pteronyssinus and Blomia tropicalis in sensitized mice: Occurrence of natural autoantibodies to immunoglobulin E. Clin. Exp. Allergy, 2002, 32(11), 1667-1674.
[19]
Wiedermann, U.; Jahn-Schmid, B.; Bohle, B.; Repa, A.; Renz, H.; Kraft, D.; Ebner, C. Suppression of antigen-specific T- and B-cell responses by intranasal or oral administration of recombinant bet v 1, the major birch pollen allergen, in a murine model of type I allergy. J. Allergy Clin. Immunol., 1999, 103(6), 1202-1210.
[20]
Mukherjee, A.A.; Kandhare, A.D.; Rojatkar, S.R.; Bodhankar, S.L. Ameliorative effects of Artemisia pallens in a murine model of ovalbumin-induced allergic asthma via modulation of biochemical perturbations. Biomed. Pharmacother., 2017, 94, 880-889.
[21]
Kandhare, A.D.; Raygude, K.S.; Ghosh, P.; Gosavi, T.P.; Bodhankar, S.L. Patentability of animal models: India and the globe. Int. J. Pharm. Biol. Arch., 2011, 2(4), 1024-1032.
[22]
Ernst, E. Complementary therapies for asthma: what patients use. J. Asthma, 1998, 35(8), 667-671.
[23]
Urata, Y.; Yoshida, S.; Irie, Y.; Tanigawa, T.; Amayasu, H.; Nakabayashi, M.; Akahori, K. Treatment of asthma patients with herbal medicine TJ-96: a randomized controlled trial. Respir. Med., 2002, 96(6), 469-474.
[24]
Gupta, S.C.; Phromnoi, K.; Aggarwal, B.B. Morin inhibits STAT3 tyrosine 705 phosphorylation in tumor cells through activation of protein tyrosine phosphatase SHP1. Biochem. Pharmacol., 2013, 85(7), 898-912.
[25]
Wei, Z.; He, X.; Kou, J.; Wang, J.; Chen, L.; Yao, M.; Zhou, E.; Fu, Y.; Guo, C.; Yang, Z. Renoprotective mechanisms of morin in cisplatin-induced kidney injury. Int. Immunopharmacol., 2015, 28(1), 500-506.
[26]
Kim, J.W.; Lee, J.H.; Hwang, B.Y.; Mun, S.H.; Ko, N.Y.; Kim, D.K.; Kim, B.; Kim, H.S.; Kim, Y.M.; Choi, W.S. Morin inhibits Fyn kinase in mast cells and IgE-mediated type I hypersensitivity response in vivo. Biochem. Pharmacol., 2009, 77(9), 1506-1512.
[27]
Prahalathan, P.; Kumar, S.; Raja, B. Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: a biochemical and histopathological evaluation. Metabolism, 2012, 61(8), 1087-1099.
[28]
Franova, S.; Kazimierova, I.; Pappova, L.; Joskova, M.; Plank, L.; Sutovska, M. Bronchodilatory, antitussive and anti-inflammatory effect of morin in the setting of experimentally induced allergic asthma. J. Pharm. Pharmacol., 2016, 68(8), 1064-1072.
[29]
Kandhare, A.D.; Bodhankar, S.L.; Singh, V.; Mohan, V.; Thakurdesai, P.A. Anti-asthmatic effects of type-A procyanidine polyphenols from cinnamon bark in ovalbumin-induced airway hyperresponsiveness in laboratory animals. Biomed. Aging Pathol., 2013, 3(1), 23-30.
[30]
Conrad, M.L.; Yildirim, A.O.; Sonar, S.S.; Kilic, A.; Sudowe, S.; Lunow, M.; Teich, R.; Renz, H.; Garn, H. Comparison of adjuvant and adjuvant-free murine experimental asthma models. Clin. Exp. Allergy, 2009, 39(8), 1246-1254.
[31]
Shin, I.S.; Jeon, W.Y.; Shin, H.K.; Lee, M.Y. Effects of montelukast on subepithelial/peribronchial fibrosis in a murine model of ovalbumin induced chronic asthma. Int. Immunopharmacol., 2013, 17(3), 867-873.
[32]
Subash, S.; Subramanian, P. Morin a flavonoid exerts antioxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. Mol. Cell. Biochem., 2009, 327(1-2), 153-161.
[33]
Bhilare, N.V.; Dhaneshwar, S.S.; Sinha, A.J.; Kandhare, A.D.; Bodhankar, S.L. Novel thioester prodrug of N-acetylcysteine for odor masking and bioavailability enhancement. Curr. Drug Deliv., 2016, 13(4), 611-620.
[34]
Kandhare, A.D.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P.A. Effect of glycosides based standardized fenugreek seed extract in bleomycin-induced pulmonary fibrosis in rats: Decisive role of Bax, Nrf2, NF-κB, Muc5ac, TNF-α and IL-1β. Chem. Biol. Interact., 2015, 237, 151-165.
[35]
Visnagri, A.; Kandhare, A.D.; Ghosh, P.; Bodhankar, S.L. Endothelin receptor blocker bosentan inhibits hypertensive cardiac fibrosis in pressure overload-induced cardiac hypertrophy in rats. Cardiovasc. Endocrinol., 2013, 2(4), 85-97.
[36]
Badole, S.L.; Chaudhari, S.M.; Jangam, G.B.; Kandhare, A.D.; Bodhankar, S.L. Cardioprotective activity of pongamia pinnata in streptozotocin-nicotinamide induced diabetic rats. BioMed Res. Int., 2015, 2015, 403291.
[37]
Kandhare, A.D.; Raygude, K.S.; Kumar, V.S.; Rajmane, A.R.; Visnagri, A.; Ghule, A.E.; Ghosh, P.; Badole, S.L.; Bodhankar, S.L. Ameliorative effects quercetin against impaired motor nerve function, inflammatory mediators and apoptosis in neonatal streptozotocin-induced diabetic neuropathy in rats. Biomed. Aging Pathol., 2012, 2(4), 173-186.
[38]
Visnagri, A.; Adil, M.; Kandhare, A.D.; Bodhankar, S.L. Effect of naringin on hemodynamic changes and left ventricular function in renal artery occluded renovascular hypertension in rats. J. Pharm. Bioallied Sci., 2015, 7(2), 121-127.
[39]
Raygude, K.S.; Kandhare, A.D.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Evaluation of ameliorative effect of quercetin in experimental model of alcoholic neuropathy in rats. Inflammopharmacol., 2012, 20(6), 331-341.
[40]
Kandhare, A.D.; Shivakumar, V.; Rajmane, A.; Ghosh, P.; Bodhankar, S.L. Evaluation of the neuroprotective effect of chrysin via modulation of endogenous biomarkers in a rat model of spinal cord injury. J. Nat. Med., 2014, 68(3), 586-603.
[41]
Adil, M.; Kandhare, A.D.; Ghosh, P.; Venkata, S.; Raygude, K.S.; Bodhankar, S.L. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1. Ren. Fail., 2016, 38(6), 1007-1020.
[42]
Visnagri, A.; Kandhare, A.D.; Chakravarty, S.; Ghosh, P.; Bodhankar, S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol., 2014, 52(7), 814-828.
[43]
Brattstrom, A.; Schapowal, A.; Kamal, M.A.; Maillet, I.; Ryffel, B.; Moser, R. The plant extract Isatis tinctoria L. extract (ITE) inhibits allergen-induced airway inflammation and hyperreactivity in mice. Phytomedicine, 2010, 17(8-9), 551-556.
[44]
King, T.E., Jr; Tooze, J.A.; Schwarz, M.I.; Brown, K.R.; Cherniack, R.M. Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model. Am. J. Respir. Crit. Care Med., 2001, 164(7), 1171-1181.
[45]
Ngoc, P.L.; Gold, D.R.; Tzianabos, A.O.; Weiss, S.T.; Celedon, J.C. Cytokines, allergy, and asthma. Curr. Opin. Allergy Clin. Immunol., 2005, 5(2), 161-166.
[46]
Ferguson, S.; Teodorescu, M.C.; Gangnon, R.E.; Peterson, A.G.; Consens, F.B.; Chervin, R.D.; Teodorescu, M. Factors associated with systemic hypertension in asthma. Lung., 2014, 192(5), 675-683.
[47]
van der Hooft, C.S.; Heeringa, J.; Brusselle, G.G.; Hofman, A.; Witteman, J.C.; Kingma, J.H.; Sturkenboom, M.C.; Stricker, B.H. Corticosteroids and the risk of atrial fibrillation. Arch. Intern. Med., 2006, 166(9), 1016-1020.
[48]
Halwani, R.; Vazquez-Tello, A.; Sumi, Y.; Pureza, M.A.; Bahammam, A.; Al-Jahdali, H.; Soussi-Gounni, A.; Mahboub, B.; Al-Muhsen, S.; Hamid, Q. Eosinophils induce airway smooth muscle cell proliferation. J. Clin. Immunol., 2013, 33(3), 595-604.
[49]
Monteseirin, J. Neutrophils and asthma. J. Investig. Allergol. Clin. Immunol., 2009, 19(5), 340-354.
[50]
Hendeles, L.; Sorkness, C.A. Anti-immunoglobulin E therapy with omalizumab for asthma. Ann. Pharmacother., 2007, 41(9), 1397-1410.
[51]
Emson, C.L.; Bell, S.E.; Jones, A.; Wisden, W.; McKenzie, A.N. Interleukin (IL)-4-independent induction of immunoglobulin (Ig)E, and perturbation of T cell development in transgenic mice expressing IL-13. J. Exp. Med., 1998, 188(2), 399-404.
[52]
Keatings, V.M.; O’Connor, B.J.; Wright, L.G.; Huston, D.P.; Corrigan, C.J.; Barnes, P.J. Late response to allergen is associated with increased concentrations of tumor necrosis factor-alpha and IL-5 in induced sputum. J. Allergy Clin. Immunol., 1997, 99(5), 693-698.
[53]
Choy, E.H.; Panayi, G.S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med., 2001, 344(12), 907-916.
[54]
Brightling, C.E.; Symon, F.A.; Birring, S.S.; Bradding, P.; Pavord, I.D.; Wardlaw, A.J. TH2 cytokine expression in bronchoalveolar lavage fluid T lymphocytes and bronchial submucosa is a feature of asthma and eosinophilic bronchitis. J. Allergy Clin. Immunol., 2002, 110(6), 899-905.
[55]
Montuschi, P.; Barnes, P.J. Exhaled leukotrienes and prostaglandins in asthma. J. Allergy Clin. Immunol., 2002, 109(4), 615-620.
[56]
Cho, K.J.; Seo, J.M.; Shin, Y.; Yoo, M.H.; Park, C.S.; Lee, S.H.; Chang, Y.S.; Cho, S.H.; Kim, J.H. Blockade of airway inflammation and hyperresponsiveness by inhibition of BLT2, a low-affinity leukotriene B4 receptor. Am. J. Respir. Cell Mol. Biol., 2010, 42(3), 294-303.
[57]
Gaudreault, E.; Thompson, C.; Stankova, J.; Rola-Pleszczynski, M. Involvement of BLT1 endocytosis and Yes kinase activation in leukotriene B4-induced neutrophil degranulation. J. Immunol., 2005, 174(6), 3617-3625.
[58]
Higham, A.; Cadden, P.; Southworth, T.; Rossall, M.; Kolsum, U.; Lea, S.; Knowles, R.; Singh, D. Leukotriene B4 levels in sputum from asthma patients. ERJ Open Res., 2016, 2(4), 00088-02015.
[59]
Siebenlist, U.; Brown, K.; Claudio, E. Control of lymphocyte development by nuclear factor-kappaB. Nat. Rev. Immunol., 2005, 5(6), 435-445.
[60]
Galvez, J.; Coelho, G.; Crespo, M.E.; Cruz, T.; Rodriguez-Cabezas, M.E.; Concha, A.; Gonzalez, M.; Zarzuelo, A. Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment. Pharmacol. Ther., 2001, 15(12), 2027-2039.
[61]
Zhang, W.Y.; Liang, H.Y.; Yang, C.; Xue, L.; Jiang, X.F. Sos recruitment system for the analysis of the interaction between sulfatase-modifying factor 2 subtypes and interleukin-13. Genet. Mol. Res., 2013, 12(4), 5664-5672.
[62]
Ordonez, C.L.; Khashayar, R.; Wong, H.H.; Ferrando, R.; Wu, R.; Hyde, D.M.; Hotchkiss, J.A.; Zhang, Y.; Novikov, A.; Dolganov, G.; Fahy, J.V. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am. J. Respir. Crit. Care Med., 2001, 163(2), 517-523.
[63]
Henderson, W.R., Jr; Tang, L.O.; Chu, S.J.; Tsao, S.M.; Chiang, G.K.; Jones, F.; Jonas, M.; Pae, C.; Wang, H.; Chi, E.Y. A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am. J. Respir. Crit. Care Med., 2002, 165(1), 108-116.
[64]
Yoshisue, H.; Kirkham-Brown, J.; Healy, E.; Holgate, S.T.; Sampson, A.P.; Davies, D.E. Cysteinyl leukotrienes synergize with growth factors to induce proliferation of human bronchial fibroblasts. J. Allergy Clin. Immunol., 2007, 119(1), 132-140.
[65]
Medford, A.R.L. Effects of leukotriene receptor antagonists on vascular endothelial growth factor levels in asthma. CHEST J., 2005, 127(4), 1460.
[66]
Takeda, K.; Shiraishi, Y.; Matsubara, S.; Miyahara, N.; Matsuda, H.; Okamoto, M.; Joetham, A.; Gelfand, E.W. Effects of combination therapy with montelukast and carbocysteine in allergen-induced airway hyperresponsiveness and airway inflammation. Br. J. Pharmacol., 2010, 160(6), 1399-1407.
[67]
Zubairi, A.B.; Salahuddin, N.; Khawaja, A.; Awan, S.; Shah, A.A.; Haque, A.S.; Husain, S.J.; Rao, N.; Khan, J.A. A randomized, double-blind, placebo-controlled trial of oral montelukast in acute asthma exacerbation. BMC Pulm. Med., 2013, 13, 20.
[68]
Knorr, B.; Franchi, L.M.; Bisgaard, H.; Vermeulen, J.H.; LeSouef, P.; Santanello, N.; Michele, T.M.; Reiss, T.F.; Nguyen, H.H.; Bratton, D.L. Montelukast, a leukotriene receptor antagonist, for the treatment of persistent asthma in children aged 2 to 5 years. Pediatrics, 2001, 108(3), E48.
[69]
van Adelsberg, J.; Moy, J.; Wei, L.X.; Tozzi, C.A.; Knorr, B.; Reiss, T.F. Safety, tolerability, and exploratory efficacy of montelukast in 6- to 24-month-old patients with asthma. Curr. Med. Res. Opin., 2005, 21(6), 971-979.
[70]
Currie, G.P.; McLaughlin, K. The expanding role of leukotriene receptor antagonists in chronic asthma. Ann. Allergy Asthma Immunol.,2006, 97(6), 731-741, quiz 741-732, 793.