Review Article

微生物群、免疫系统和自闭症谱系障碍疾病:一种面向新治疗方案的综合模式

卷 27, 期 31, 2020

页: [5119 - 5136] 页: 18

弟呕挨: 10.2174/0929867326666190328151539

价格: $65

conference banner
摘要

背景:自闭症谱系障碍(ASD)是一种与遗传倾向和家族聚集密切相关的疾病。在ASD患者中,可以检测到不同程度的症状严重程度,文献中也知道ASD前驱者的近亲中存在中度自闭症表型。近年来,环境因素在调节基因组风险与ASD的发生、严重程度之间的关系中发挥的作用越来越受到人们的关注。在这一框架下,越来越多的证据强调了肠道菌群和炎症在神经发育病理生理学中的可能作用。本文的目的是回顾有关微生物群失调、炎症和ASD之间联系的发现。 方法:在PUBMED和谷歌学者数据库中检索查找1990年至2018年的文章,关键词组合为:微生物群、免疫系统、炎症、ASD、自闭症、广泛自闭症表型、成人。 结果:最近的证据表明,微生物群的改变、免疫系统和神经发育可能是深深交织在一起的,在生命早期相互塑造。然而,动物模型和人类样本的结果仍然是异质性的,很少有研究集中在成人患者和ASD中间表型。 结论:更好的理解这些途径,在一个综合框架核心与外围系统之间,可能不仅对自闭症症状的神经基础,阐明大脑病理生理学,而且它可能也会对仍然缺乏可用的治疗方法从而允许开发治疗这些疾病的新策略。

关键词: 自闭症谱系障碍,肠道微生物群,免疫系统,炎症,肠-脑轴,神经发育

[1]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®), 5th ed;. , 2013.
[http://dx.doi.org/10.1176/appi.books.9780890425596]
[2]
Dell’Osso, L.; Dalle Luche, R.; Maj, M. Adult autism spectrum as a transnosographic dimension. CNS Spectr., 2016, 21(2), 131-133.
[http://dx.doi.org/10.1017/S1092852915000450] [PMID: 26349624]
[3]
Dell’Osso, L.; Gesi, C.; Massimetti, E.; Cremone, I.M.; Barbuti, M.; Maccariello, G.; Moroni, I.; Barlati, S.; Castellini, G.; Luciano, M.; Bossini, L.; Rocchetti, M.; Signorelli, M.; Aguglia, E.; Fagiolini, A.; Politi, P.; Ricca, V.; Vita, A.; Carmassi, C.; Maj, M. Adult autism subthreshold spectrum (AdAS Spectrum): validation of a questionnaire investigating subthreshold autism spectrum. Compr. Psychiatry, 2017, 73, 61-83.
[http://dx.doi.org/10.1016/j.comppsych.2016.11.001] [PMID: 27918948]
[4]
Sucksmith, E.; Roth, I.; Hoekstra, R.A. Autistic traits below the clinical threshold: re-examining the broader autism phenotype in the 21st century. Neuropsychol. Rev., 2011, 21(4), 360-389.
[http://dx.doi.org/10.1007/s11065-011-9183-9] [PMID: 21989834]
[5]
Billeci, L.; Calderoni, S.; Conti, E.; Gesi, C.; Carmassi, C.; Dell’Osso, L.; Cioni, G.; Muratori, F.; Guzzetta, A. The broad autism (endo)phenotype: neurostructural and neurofunctional correlates in parents of individuals with autism spectrum disorders. Front. Neurosci., 2016, 10, 346.
[http://dx.doi.org/10.3389/fnins.2016.00346] [PMID: 27499732]
[6]
Baron-Cohen, S.; Hammer, J. Parents of children with asperger syndrome: what is the cognitive phenotype? J. Cogn. Neurosci., 1997, 9(4), 548-554.
[http://dx.doi.org/10.1162/jocn.1997.9.4.548] [PMID: 23968217]
[7]
Bailey, A.; Palferman, S.; Heavey, L.; Le Couteur, A. Autism: the phenotype in relatives. J. Autism Dev. Disord., 1998, 28(5), 369-392.
[http://dx.doi.org/10.1023/A:1026048320785] [PMID: 9813774]
[8]
Losh, M.; Childress, D.; Lam, K.; Piven, J. Defining key features of the broad autism phenotype: a comparison across parents of multiple- and single-incidence autism families. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(4), 424-433.
[http://dx.doi.org/10.1002/ajmg.b.30612] [PMID: 17948871]
[9]
Dell’Osso, L.; Cremone, I.M.; Carpita, B.; Fagiolini, A.; Massimetti, G.; Bossini, L.; Vita, A.; Barlati, S.; Carmassi, C.; Gesi, C. Correlates of autistic traits among patients with borderline personality disorder. Compr. Psychiatry, 2018, 83, 7-11.
[http://dx.doi.org/10.1016/j.comppsych.2018.01.002] [PMID: 29500962]
[10]
Dell’Osso, L.; Carpita, B.; Gesi, C.; Cremone, I.M.; Corsi, M.; Massimetti, E.; Muti, D.; Calderani, E.; Castellini, G.; Luciano, M.; Ricca, V.; Carmassi, C.; Maj, M. Subthreshold autism spectrum disorder in patients with eating disorders. Compr. Psychiatry, 2018, 81, 66-72.
[http://dx.doi.org/10.1016/j.comppsych.2017.11.007] [PMID: 29268154]
[11]
Dell’Osso, L.; Conversano, C.; Corsi, M.; Bertelloni, C.A.; Cremone, I.M.; Carpita, B.; Carbone, M.G.; Gesi, C.; Carmassi, C. Polisubstance and behavioral addictions in a patient with bipolar disorder: role of lifetime subthreshold autism spectrum. Case Rep. Psychiatry, 2018, 20181547975
[http://dx.doi.org/ 10.1155/2018/1547975] [PMID: 29682383]
[12]
Brondino, N.; Fusar-Poli, L.; Rocchetti, M.; Bertoglio, F.; Bloise, N.; Visai, L.; Politi, P. BDNF levels are associated with autistic traits in the general population. Psychoneuroendocrinology, 2018, 89, 131-133.
[http://dx.doi.org/10.1016/j.psyneuen.2018.01.008] [PMID: 29414026]
[13]
Folstein, S.; Rutter, M. Infantile autism: a genetic study of 21 twin pairs. J. Child Psychol. Psychiatry, 1977, 18(4), 297-321.
[http://dx.doi.org/10.1111/j.1469-7610.1977.tb00443.x] [PMID: 562353]
[14]
Ronald, A.; Hoekstra, R.A. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2011, 156B(3), 255-274.
[http://dx.doi.org/10.1002/ajmg.b.31159] [PMID: 21438136]
[15]
Tick, B.; Bolton, P.; Happé, F.; Rutter, M.; Rijsdijk, F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J. Child Psychol. Psychiatry, 2016, 57(5), 585-595.
[http://dx.doi.org/10.1111/jcpp.12499] [PMID: 26709141]
[16]
Devlin, B.; Scherer, S.W. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev., 2012, 22(3), 229-237.
[http://dx.doi.org/10.1016/j.gde.2012.03.002] [PMID: 22463983]
[17]
Doenyas, C. Gut microbiota, inflammation and probiotics on neural development in autism spectrum disorder. Neuroscience, 2018, 374, 271-286.
[http://dx.doi.org/10.1016/j.neuroscience.2018.01.060] [PMID: 29427656]
[18]
Newschaffer, C.J.; Croen, L.A.; Daniels, J.; Giarelli, E.; Grether, J.K.; Levy, S.E.; Mandell, D.S.; Miller, L.A.; Pinto-Martin, J.; Reaven, J.; Reynolds, A.M.; Rice, C.E.; Schendel, D.; Windham, G.C. The epidemiology of autism spectrum disorders. Annu. Rev. Public Health, 2007, 28, 235-258.
[http://dx.doi.org/10.1146/annurev.publhealth.28.021406.144007] [PMID: 17367287]
[19]
Lehn, H.; Derks, E.M.; Hudziak, J.J.; Heutink, P.; van Beijsterveldt, T.C.E.M.; Boomsma, D.I. Attention problems and attention-deficit/hyperactivity disorder in discordant and concordant monozygotic twins: evidence of environmental mediators. J. Am. Acad. Child Adolesc. Psychiatry, 2007, 46(1), 83-91.
[http://dx.doi.org/10.1097/01.chi.0000242244.00174.d9] [PMID: 17195733]
[20]
Siniscalco, D.; Cirillo, A.; Bradstreet, J.J.; Antonucci, N. Epigenetic findings in autism: new perspectives for therapy. Int. J. Environ. Res. Public Health, 2013, 10(9), 4261-4273.
[http://dx.doi.org/10.3390/ijerph10094261] [PMID: 24030655]
[21]
Schain, R.J.; Freedman, D.X. Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J. Pediatr., 1961, 58, 315-320.
[http://dx.doi.org/10.1016/S0022-3476(61)80261-8] [PMID: 13747230]
[22]
Gabriele, S.; Sacco, R.; Persico, A.M. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur. Neuropsychopharmacol., 2014, 24(6), 919-929.
[http://dx.doi.org/10.1016/j.euroneuro.2014.02.004] [PMID: 24613076]
[23]
Siniscalco, D.; Schultz, S.; Brigida, A.L.; Antonucci, N. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals (Basel), 2018, 11(2), 56.
[http://dx.doi.org/10.3390/ph11020056] [PMID: 29867038]
[24]
Masi, A.; Quintana, D.S.; Glozier, N.; Lloyd, A.R.; Hickie, I.B.; Guastella, A.J. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol. Psychiatry, 2015, 20(4), 440-446.
[http://dx.doi.org/10.1038/mp.2014.59] [PMID: 24934179]
[25]
Onore, C.; Careaga, M.; Ashwood, P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav. Immun., 2012, 26(3), 383-392.
[http://dx.doi.org/10.1016/j.bbi.2011.08.007] [PMID: 21906670]
[26]
Masi, A.; Glozier, N.; Dale, R.; Guastella, A.J. The immune system, cytokines and biomarkers in autism spectrum disorder. Neurosci. Bull., 2017, 33(2), 194-204.
[http://dx.doi.org/10.1007/s12264-017-0103-8] [PMID: 28238116]
[27]
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[28]
Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med., 2014, 20(9), 509-518.
[http://dx.doi.org/10.1016/j.molmed.2014.05.002] [PMID: 24956966]
[29]
Borre, Y.E.; Moloney, R.D.; Clarke, G.; Dinan, T.G.; Cryan, J.F. The impact of microbiota on brain and behavior: mechanisms and therapeutic potential. Adv. Exp. Med. Biol., 2014, 817, 373-403.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_17] [PMID: 24997043]
[30]
Buie, T.; Fuchs, G.J., III; Furuta, G.T.; Kooros, K.; Levy, J.; Lewis, J.D.; Wershil, B.K.; Winter, H. Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDs. Pediatrics, 2010, 125(Suppl. 1), S19-S29.
[http://dx.doi.org/10.1542/peds.2009-1878D] [PMID: 20048084]
[31]
Kohane, I.S.; McMurry, A.; Weber, G.; MacFadden, D.; Rappaport, L.; Kunkel, L.; Bickel, J.; Wattanasin, N.; Spence, S.; Murphy, S.; Churchill, S. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS One, 2012, 7(4)e33224
[http://dx.doi.org/10.1371/journal.pone.0033224] [PMID: 22511918]
[32]
Cao, X.; Lin, P.; Jiang, P.; Li, C. Characteristics of the gastrointestinal microbiome in children with autism spectrum disorder: a systematic review. Shanghai Jingshen Yixue, 2013, 25(6), 342-353.
[http://dx.doi.org/ 10.3969/j.issn.1002-0829.2013.06.003] [PMID: 24991177]
[33]
Sanctuary, M.R.; Kain, J.N.; Angkustsiri, K.; German, J.B. Dietary considerations in autism spectrum disorders: the potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front. Nutr., 2018, 5, 40.
[http://dx.doi.org/10.3389/fnut.2018.00040] [PMID: 29868601]
[34]
Cristiano, C.; Lama, A.; Lembo, F.; Mollica, M.P.; Calignano, A.; Mattace Raso, G. Interplay between peripheral and central inflammation in autism spectrum disorders: possible nutritional and therapeutic strategies. Front. Physiol., 2018, 9, 184.
[http://dx.doi.org/10.3389/fphys.2018.00184] [PMID: 29563885]
[35]
Petra, A.I.; Panagiotidou, S.; Hatziagelaki, E.; Stewart, J.M.; Conti, P.; Theoharides, T.C. Gut-microbiota-brain axis and effect on neuropsychiatric disorders with suspected immune dysregulation. Clin. Ther., 2015, 37(5), 984-995.
[http://dx.doi.org/10.1016/j.clinthera.2015.04.002] [PMID: 26046241]
[36]
Kelly, J.R.; Minuto, C.; Cryan, J.F.; Clarke, G.; Dinan, T.G. Cross talk: the microbiota and neurodevelopmental disorders. Front. Neurosci., 2017, 11, 490.
[http://dx.doi.org/10.3389/fnins.2017.00490] [PMID: 28966571]
[37]
Rudzki, L.; Szulc, A. “Immune gate” of psychopathology-the role of gut derived immune activation in major psychiatric disorders. Front. Psychiatry, 2018, 9, 205.
[http://dx.doi.org/10.3389/fpsyt.2018.00205] [PMID: 29896124]
[38]
Rescigno, M. Intestinal microbiota and its effects on the immune system. Cell. Microbiol., 2014, 16(7), 1004-1013.
[http://dx.doi.org/10.1111/cmi.12301] [PMID: 24720613]
[39]
Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress. Anxiety, 2013, 30(4), 297-306.
[http://dx.doi.org/10.1002/da.22084] [PMID: 23468190]
[40]
Hodes, G.E.; Kana, V.; Menard, C.; Merad, M.; Russo, S.J. Neuroimmune mechanisms of depression. Nat. Neurosci., 2015, 18(10), 1386-1393.
[http://dx.doi.org/10.1038/nn.4113] [PMID: 26404713]
[41]
Rea, K.; Dinan, T.G.; Cryan, J.F. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol. Stress, 2016, 4, 23-33.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.001] [PMID: 27981187]
[42]
Reddy, B.L.; Saier, M.H. Autism and our intestinal microbiota. J. Mol. Microbiol. Biotechnol., 2015, 25(1), 51-55.
[http://dx.doi.org/10.1159/000375303] [PMID: 25792275]
[43]
Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 2009, 9(11), 799-809.
[http://dx.doi.org/10.1038/nri2653] [PMID: 19855405]
[44]
Ohland, C.L.; Macnaughton, W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(6), G807-G819.
[http://dx.doi.org/10.1152/ajpgi.00243.2009] [PMID: 20299599]
[45]
Donato, K.A.; Gareau, M.G.; Wang, Y.J.J.; Sherman, P.M. Lactobacillus rhamnosus GG attenuates interferon-gamma and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling. Microbiology, 2010, 156(Pt 11), 3288-3297.
[http://dx.doi.org/10.1099/mic.0.040139-0] [PMID: 20656777]
[46]
Hegazy, S.K.; El-Bedewy, M.M. Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J. Gastroenterol., 2010, 16(33), 4145-4151.
[http://dx.doi.org/10.3748/wjg.v16.i33.4145] [PMID: 20806430]
[47]
Lamprecht, M.; Bogner, S.; Schippinger, G.; Steinbauer, K.; Fankhauser, F.; Hallstroem, S.; Schuetz, B.; Greilberger, J.F. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J. Int. Soc. Sports Nutr., 2012, 9(1), 45.
[http://dx.doi.org/10.1186/1550-2783-9-45] [PMID: 22992437]
[48]
Takeda, K.; Akira, S. Toll-like receptors in innate immunity. Int. Immunol., 2005, 17(1), 1-14.
[http://dx.doi.org/10.1093/intimm/dxh186] [PMID: 15585605]
[49]
Rogier, R.; Koenders, M.I.; Abdollahi-Roodsaz, S. Toll-like receptor mediated modulation of T cell response by commensal intestinal microbiota as a trigger for autoimmune arthritis. J. Immunol. Res., 2015, 2015527696
[http://dx.doi.org/10.1155/2015/527696] [PMID: 25802876]
[50]
Marteau, P.; Shanahan, F. Basic aspects and pharmacology of probiotics: an overview of pharmacokinetics, mechanisms of action and side-effects. Best Pract. Res. Clin. Gastroenterol., 2003, 17(5), 725-740.
[http://dx.doi.org/10.1016/S1521-6918(03)00055-6] [PMID: 14507584]
[51]
Reichenberg, A.; Yirmiya, R.; Schuld, A.; Kraus, T.; Haack, M.; Morag, A.; Pollmächer, T. Cytokine-associated emotional and cognitive disturbances in humans. Arch. Gen. Psychiatry, 2001, 58(5), 445-452.
[http://dx.doi.org/10.1001/archpsyc.58.5.445] [PMID: 11343523]
[52]
Pålsson-McDermott, E.M.; O’Neill, L.A. Signal transduction by the lipopolysaccharide receptor, toll-like receptor-4. Immunology, 2004, 113(2), 153-162.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01976.x] [PMID: 15379975]
[53]
Wright, C.E.; Strike, P.C.; Brydon, L.; Steptoe, A. Acute inflammation and negative mood: mediation by cytokine activation. Brain Behav. Immun., 2005, 19(4), 345-350.
[http://dx.doi.org/10.1016/j.bbi.2004.10.003] [PMID: 15944074]
[54]
Grigoleit, J.S.; Kullmann, J.S.; Wolf, O.T.; Hammes, F.; Wegner, A.; Jablonowski, S.; Engler, H.; Gizewski, E.; Oberbeck, R.; Schedlowski, M. Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One, 2011, 6(12)e28330
[http://dx.doi.org/10.1371/journal.pone.0028330] [PMID: 22164271]
[55]
Maes, M.; Kubera, M.; Leunis, J.C.; Berk, M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J. Affect. Disord., 2012, 141(1), 55-62.
[http://dx.doi.org/10.1016/j.jad.2012.02.023] [PMID: 22410503]
[56]
Maes, M.; Mihaylova, I.; Leunis, J.C. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J. Affect. Disord., 2007, 99(1-3), 237-240.
[http://dx.doi.org/10.1016/j.jad.2006.08.021] [PMID: 17007934]
[57]
Giloteaux, L.; Goodrich, J.K.; Walters, W.A.; Levine, S.M.; Ley, R.E.; Hanson, M.R. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome, 2016, 4(1), 30.
[http://dx.doi.org/10.1186/s40168-016-0171-4] [PMID: 27338587]
[58]
Bilbo, S.D.; Smith, S.H.; Schwarz, J.M. A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J. Neuroimmune Pharmacol., 2012, 7(1), 24-41.
[http://dx.doi.org/10.1007/s11481-011-9299-y] [PMID: 21822589]
[59]
Freytag, V.; Carrillo-Roa, T.; Milnik, A.; Sämann, P.G.; Vukojevic, V.; Coynel, D.; Demougin, P.; Egli, T.; Gschwind, L.; Jessen, F.; Loos, E.; Maier, W.; Riedel-Heller, S.G.; Scherer, M.; Vogler, C.; Wagner, M.; Binder, E.B.; de Quervain, D.J.; Papassotiropoulos, A. A peripheral epigenetic signature of immune system genes is linked to neocortical thickness and memory. Nat. Commun., 2017, 8, 15193.
[http://dx.doi.org/10.1038/ncomms15193] [PMID: 28443631]
[60]
Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 3047-3052.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[61]
de Theije, C.G.; Wopereis, H.; Ramadan, M.; van Eijndthoven, T.; Lambert, J.; Knol, J.; Garssen, J.; Kraneveld, A.D.; Oozeer, R. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav. Immun., 2014, 37, 197-206.
[http://dx.doi.org/10.1016/j.bbi.2013.12.005] [PMID: 24333160]
[62]
Graeber, M.B.; Streit, W.J. Microglia: biology and pathology. Acta Neuropathol., 2010, 119(1), 89-105.
[http://dx.doi.org/10.1007/s00401-009-0622-0] [PMID: 20012873]
[63]
Wake, H.; Moorhouse, A.J.; Nabekura, J. Functions of microglia in the central nervous system-beyond the immune response. Neuron Glia Biol., 2011, 7(1), 47-53.
[http://dx.doi.org/10.1017/S1740925X12000063] [PMID: 22613055]
[64]
Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; Schwierzeck, V.; Utermöhlen, O.; Chun, E.; Garrett, W.S.; McCoy, K.D.; Diefenbach, A.; Staeheli, P.; Stecher, B.; Amit, I.; Prinz, M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci., 2015, 18(7), 965-977.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[65]
Fontainhas, A.M.; Wang, M.; Liang, K.J.; Chen, S.; Mettu, P.; Damani, M.; Fariss, R.N.; Li, W.; Wong, W.T. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One, 2011, 6(1)e15973
[http://dx.doi.org/10.1371/journal.pone.0015973] [PMID: 21283568]
[66]
Sugama, S.; Takenouchi, T.; Fujita, M.; Kitani, H.; Hashimoto, M. Cold stress induced morphological microglial activation and increased IL-1β expression in astroglial cells in rat brain. J. Neuroimmunol., 2011, 233(1-2), 29-36.
[http://dx.doi.org/10.1016/j.jneuroim.2010.11.002] [PMID: 21115202]
[67]
Bloomfield, P.S.; Selvaraj, S.; Veronese, M.; Rizzo, G.; Bertoldo, A.; Owen, D.R.; Bloomfield, M.A.; Bonoldi, I.; Kalk, N.; Turkheimer, F.; McGuire, P.; de Paola, V.; Howes, O.D. Microglial activity in people at ultra-high-risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am. J. Psychiatry, 2016, 173(1), 44-52.
[http://dx.doi.org/10.1176/appi.ajp.2015.14101358] [PMID: 26472628]
[68]
Bollinger, J.L.; Bergeon Burns, C.M.; Wellman, C.L. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav. Immun., 2016, 52, 88-97.
[http://dx.doi.org/10.1016/j.bbi.2015.10.003] [PMID: 26441134]
[69]
Tynan, R.J.; Naicker, S.; Hinwood, M.; Nalivaiko, E.; Buller, K.M.; Pow, D.V.; Day, T.A.; Walker, F.R. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav. Immun., 2010, 24(7), 1058-1068.
[http://dx.doi.org/10.1016/j.bbi.2010.02.001] [PMID: 20153418]
[70]
Giovanoli, S.; Engler, H.; Engler, A.; Richetto, J.; Voget, M.; Willi, R.; Winter, C.; Riva, M.A.; Mortensen, P.B.; Feldon, J.; Schedlowski, M.; Meyer, U. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science, 2013, 339(6123), 1095-1099.
[http://dx.doi.org/10.1126/science.1228261] [PMID: 23449593]
[71]
Giovanoli, S.; Notter, T.; Richetto, J.; Labouesse, M.A.; Vuillermot, S.; Riva, M.A.; Meyer, U. Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging. J. Neuroinflammation, 2015, 12, 221.
[http://dx.doi.org/10.1186/s12974-015-0437-y] [PMID: 26602365]
[72]
Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl.), 2016, 233(9), 1637-1650.
[http://dx.doi.org/10.1007/s00213-016-4218-9] [PMID: 26847047]
[73]
Schmitz, H.; Fromm, M.; Bentzel, C.J.; Scholz, P.; Detjen, K.; Mankertz, J.; Bode, H.; Epple, H.J.; Riecken, E.O.; Schulzke, J.D. Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J. Cell Sci., 1999, 112(Pt 1), 137-146.
[PMID: 9841910]
[74]
Al-Sadi, R.M.; Ma, T.Y. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J. Immunol., 2007, 178(7), 4641-4649.
[http://dx.doi.org/10.4049/jimmunol.178.7.4641] [PMID: 17372023]
[75]
Bailey, M.T.; Lubach, G.R.; Coe, C.L. Prenatal stress alters bacterial colonization of the gut in infant monkeys. J. Pediatr. Gastroenterol. Nutr., 2004, 38(4), 414-421.
[http://dx.doi.org/10.1097/00005176-200404000-00009] [PMID: 15085020]
[76]
Bailey, M.T.; Dowd, S.E.; Galley, J.D.; Hufnagle, A.R.; Allen, R.G.; Lyte, M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun., 2011, 25(3), 397-407.
[http://dx.doi.org/10.1016/j.bbi.2010.10.023] [PMID: 21040780]
[77]
Dinan, T.G.; Cryan, J.F. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 2012, 37(9), 1369-1378.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.007] [PMID: 22483040]
[78]
Dinan, T.G.; Cryan, J.F. Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol. Motil., 2013, 25(9), 713-719.
[http://dx.doi.org/10.1111/nmo.12198] [PMID: 23910373]
[79]
Andersson, H.; Tullberg, C.; Ahrné, S.; Hamberg, K.; Lazou Ahrén, I.; Molin, G.; Sonesson, M.; Håkansson, Å. Oral administration of Lactobacillus plantarum 299v reduces cortisol levels in human saliva during examination induced stress: a randomized, double-blind controlled trial. Int. J. Microbiol., 2016, 20168469018
[http://dx.doi.org/10.1155/2016/8469018] [PMID: 28101105]
[80]
O’Mahony, S.M.; Marchesi, J.R.; Scully, P.; Codling, C.; Ceolho, A.M.; Quigley, E.M.; Cryan, J.F.; Dinan, T.G. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry, 2009, 65(3), 263-267.
[http://dx.doi.org/10.1016/j.biopsych.2008.06.026] [PMID: 18723164]
[81]
Kane, L.; Kinzel, J. The effects of probiotics on mood and emotion. JAAPA, 2018, 31(5), 1-3.
[http://dx.doi.org/10.1097/01.JAA.0000532122.07789.f0] [PMID: 29698377]
[82]
Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; Patterson, P.H.; Mazmanian, S.K. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013, 155(7), 1451-1463.
[http://dx.doi.org/10.1016/j.cell.2013.11.024] [PMID: 24315484]
[83]
Needham, B.D.; Tang, W.; Wu, W.L. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder. Dev. Neurobiol., 2018, 78(5), 474-499.
[http://dx.doi.org/10.1002/dneu.22581] [PMID: 29411548]
[84]
Coretti, L.; Cristiano, C.; Florio, E.; Scala, G.; Lama, A.; Keller, S.; Cuomo, M.; Russo, R.; Pero, R.; Paciello, O.; Mattace Raso, G.; Meli, R.; Cocozza, S.; Calignano, A.; Chiariotti, L.; Lembo, F. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Sci. Rep., 2017, 7, 45356.
[http://dx.doi.org/10.1038/srep45356] [PMID: 28349974]
[85]
Kim, S.; Kim, H.; Yim, Y.S.; Ha, S.; Atarashi, K.; Tan, T.G.; Longman, R.S.; Honda, K.; Littman, D.R.; Choi, G.B.; Huh, J.R. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature, 2017, 549(7673), 528-532.
[http://dx.doi.org/10.1038/nature23910] [PMID: 28902840]
[86]
Desbonnet, L.; Clarke, G.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. Microbiota is essential for social development in the mouse. Mol. Psychiatry, 2014, 19(2), 146-148.
[http://dx.doi.org/10.1038/mp.2013.65] [PMID: 23689536]
[87]
Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol., 2011, 11, 22.
[http://dx.doi.org/10.1186/1471-230X-11-22] [PMID: 21410934]
[88]
Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; Labaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 2013, 8(7)e68322
[http://dx.doi.org/10.1371/journal.pone.0068322] [PMID: 23844187]
[89]
Son, J.S.; Zheng, L.J.; Rowehl, L.M.; Tian, X.; Zhang, Y.; Zhu, W.; Litcher-Kelly, L.; Gadow, K.D.; Gathungu, G.; Robertson, C.E.; Ir, D.; Frank, D.N.; Li, E. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection. PLoS One, 2015, 10(10)e0137725
[http://dx.doi.org/10.1371/journal.pone.0137725] [PMID: 26427004]
[90]
Parracho, H.M.; Bingham, M.O.; Gibson, G.R.; McCartney, A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol., 2005, 54(Pt 10), 987-991.
[http://dx.doi.org/10.1099/jmm.0.46101-0] [PMID: 16157555]
[91]
Williams, B.L.; Hornig, M.; Buie, T.; Bauman, M.L.; Cho Paik, M.; Wick, I.; Bennett, A.; Jabado, O.; Hirschberg, D.L.; Lipkin, W.I. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One, 2011, 6(9)e24585
[http://dx.doi.org/10.1371/journal.pone.0024585] [PMID: 21949732]
[92]
Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol., 2011, 77(18), 6718-6721.
[http://dx.doi.org/10.1128/AEM.05212-11] [PMID: 21784919]
[93]
Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh, D.; Dixon, D.; Liu, M.; Molitoris, D.R.; Green, J.A., III Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 2010, 16(4), 444-453.
[http://dx.doi.org/10.1016/j.anaerobe.2010.06.008] [PMID: 20603222]
[94]
De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.; Gobbetti, M.; Francavilla, R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One, 2013, 8(10)e76993
[http://dx.doi.org/10.1371/journal.pone.0076993] [PMID: 24130822]
[95]
Gondalia, S.V.; Palombo, E.A.; Knowles, S.R.; Cox, S.B.; Meyer, D.; Austin, D.W. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res., 2012, 5(6), 419-427.
[http://dx.doi.org/10.1002/aur.1253] [PMID: 22997101]
[96]
Horvath, K.; Papadimitriou, J.C.; Rabsztyn, A.; Drachenberg, C.; Tildon, J.T. Gastrointestinal abnormalities in children with autistic disorder. J. Pediatr., 1999, 135(5), 559-563.
[http://dx.doi.org/10.1016/S0022-3476(99)70052-1] [PMID: 10547242]
[97]
Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; De Filippo, C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 2017, 5(1), 24.
[http://dx.doi.org/10.1186/s40168-017-0242-1] [PMID: 28222761]
[98]
Finegold, S.M.; Molitoris, D.; Song, Y.; Liu, C.; Vaisanen, M.L.; Bolte, E.; McTeague, M.; Sandler, R.; Wexler, H.; Marlowe, E.M.; Collins, M.D.; Lawson, P.A.; Summanen, P.; Baysallar, M.; Tomzynski, T.J.; Read, E.; Johnson, E.; Rolfe, R.; Nasir, P.; Shah, H.; Haake, D.A.; Manning, P.; Kaul, A. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis., 2002, 35(Suppl. 1), S6-S16.
[http://dx.doi.org/10.1086/341914] [PMID: 12173102]
[99]
Song, Y.; Liu, C.; Finegold, S.M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol., 2004, 70(11), 6459-6465.
[http://dx.doi.org/10.1128/AEM.70.11.6459-6465.2004] [PMID: 15528506]
[100]
Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism, 2013, 4(1), 42.
[http://dx.doi.org/10.1186/2040-2392-4-42] [PMID: 24188502]
[101]
Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav., 2015, 138, 179-187.
[http://dx.doi.org/10.1016/j.physbeh.2014.10.033] [PMID: 25446201]
[102]
Görker, I.; Tüzün, U. Autistic-like findings associated with a urea cycle disorder in a 4-year-old girl. J. Psychiatry Neurosci., 2005, 30(2), 133-135.
[PMID: 15798789]
[103]
MacFabe, D.F.; Cain, N.E.; Boon, F.; Ossenkopp, K.P.; Cain, D.P. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav. Brain Res., 2011, 217(1), 47-54.
[http://dx.doi.org/10.1016/j.bbr.2010.10.005] [PMID: 20937326]
[104]
El-Ansary, A.; Al-Ayadhi, L. Relative abundance of short chain and polyunsaturated fatty acids in propionic acid-induced autistic features in rat pups as potential markers in autism. Lipids Health Dis., 2014, 13, 140.
[http://dx.doi.org/10.1186/1476-511X-13-140] [PMID: 25175350]
[105]
Stubbs, E.G.; Crawford, M.L. Depressed lymphocyte responsiveness in autistic children. J. Autism Child. Schizophr., 1977, 7(1), 49-55.
[http://dx.doi.org/10.1007/BF01531114] [PMID: 139400]
[106]
Zimmerman, A.W.; Connors, S.L.; Matteson, K.J.; Lee, L.C.; Singer, H.S.; Castaneda, J.A.; Pearce, D.A. Maternal antibrain antibodies in autism. Brain Behav. Immun., 2007, 21(3), 351-357.
[http://dx.doi.org/10.1016/j.bbi.2006.08.005] [PMID: 17029701]
[107]
Ruggeri, B.; Sarkans, U.; Schumann, G.; Persico, A.M. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl.), 2014, 231(6), 1201-1216.
[http://dx.doi.org/10.1007/s00213-013-3290-7] [PMID: 24096533]
[108]
Wang, T.T.; Du, L.; Shan, L.; Jia, F.Y. Research advances in immunological dysfunction in children with autism spectrum disorders. Zhongguo Dang Dai Er Ke Za Zhi, 2014, 16(12), 1289-1293.
[PMID: 25523585]
[109]
Kern, J.K.; Geier, D.A.; Sykes, L.K.; Geier, M.R. Relevance of neuroinflammation and encephalitis in autism. Front. Cell. Neurosci., 2016, 9, 519.
[http://dx.doi.org/10.3389/fncel.2015.00519] [PMID: 26834565]
[110]
Sakamoto, A.; Moriuchi, H.; Matsuzaki, J.; Motoyama, K.; Moriuchi, M. Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit. Brain Dev., 2015, 37(2), 200-205.
[http://dx.doi.org/10.1016/j.braindev.2014.03.016] [PMID: 24768169]
[111]
Li, Q.; Zhou, J.M. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience, 2016, 324, 131-139.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.013] [PMID: 26964681]
[112]
López-Cacho, J.M.; Gallardo, S.; Posada, M.; Aguerri, M.; Calzada, D.; Mayayo, T.; Lahoz, C.; Cárdaba, B. Characterization of immune cell phenotypes in adults with autism spectrum disorders. J. Investig. Med., 2016, 64(7), 1179-1185.
[http://dx.doi.org/10.1136/jim-2016-000070] [PMID: 27296457]
[113]
Bjorklund, G.; Saad, K.; Chirumbolo, S.; Kern, J.K.; Geier, D.A.; Geier, M.R.; Urbina, M.A. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol. Exp. (Warsz.), 2016, 76(4), 257-268.
[http://dx.doi.org/10.21307/ane-2017-025] [PMID: 28094817]
[114]
Vojdani, A.; Mumper, E.; Granpeesheh, D.; Mielke, L.; Traver, D.; Bock, K.; Hirani, K.; Neubrander, J.; Woeller, K.N.; O’Hara, N.; Usman, A.; Schneider, C.; Hebroni, F.; Berookhim, J.; McCandless, J. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J. Neuroimmunol., 2008, 205(1-2), 148-154.
[http://dx.doi.org/10.1016/j.jneuroim.2008.09.005] [PMID: 18929414]
[115]
Gupta, S.; Aggarwal, S.; Heads, C. Dysregulated immune system in children with autism: beneficial effects of intravenous immune globulin on autistic characteristics. J. Autism Dev. Disord., 1996, 26(4), 439-452.
[http://dx.doi.org/10.1007/BF02172828] [PMID: 8863094]
[116]
Croonenberghs, J.; Wauters, A.; Devreese, K.; Verkerk, R.; Scharpe, S.; Bosmans, E.; Egyed, B.; Deboutte, D.; Maes, M. Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol. Med., 2002, 32(8), 1457-1463.
[http://dx.doi.org/10.1017/S0033291702006037] [PMID: 12455944]
[117]
Heuer, L.; Ashwood, P.; Schauer, J.; Goines, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Croen, L.A.; Pessah, I.N.; Van de Water, J. Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Res., 2008, 1(5), 275-283.
[http://dx.doi.org/10.1002/aur.42] [PMID: 19343198]
[118]
Cabanlit, M.; Wills, S.; Goines, P.; Ashwood, P.; Van de Water, J. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann. N. Y. Acad. Sci., 2007, 1107, 92-103.
[http://dx.doi.org/10.1196/annals.1381.010] [PMID: 17804536]
[119]
Wills, S.; Cabanlit, M.; Bennett, J.; Ashwood, P.; Amaral, D.; Van de Water, J. Autoantibodies in autism spectrum disorders (ASD). Ann. N. Y. Acad. Sci., 2007, 1107, 79-91.
[http://dx.doi.org/10.1196/annals.1381.009] [PMID: 17804535]
[120]
Elamin, N.E.; Al-Ayadhi, L.Y. Brain autoantibodies in autism spectrum disorder. Biomarkers Med., 2014, 8(3), 345-352.
[http://dx.doi.org/10.2217/bmm.14.1] [PMID: 24712424]
[121]
Piras, I.S.; Haapanen, L.; Napolioni, V.; Sacco, R.; Van de Water, J.; Persico, A.M. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in Italian children with autism spectrum disorder. Brain Behav. Immun., 2014, 38, 91-99.
[http://dx.doi.org/10.1016/j.bbi.2013.12.020] [PMID: 24389156]
[122]
Mostafa, G.A.; Bjørklund, G.; Urbina, M.A.; Al-Ayadhi, L.Y. The levels of blood mercury and inflammatory-related neuropeptides in the serum are correlated in children with autism spectrum disorder. Metab. Brain Dis., 2016, 31(3), 593-599.
[http://dx.doi.org/10.1007/s11011-015-9784-8] [PMID: 26738726]
[123]
Harden, L.M.; du Plessis, I.; Poole, S.; Laburn, H.P. Interleukin (IL)-6 and IL-1 beta act synergistically within the brain to induce sickness behavior and fever in rats. Brain Behav. Immun., 2008, 22(6), 838-849.
[http://dx.doi.org/10.1016/j.bbi.2007.12.006] [PMID: 18255258]
[124]
Baier, P.C.; May, U.; Scheller, J.; Rose-John, S.; Schiffelholz, T. Impaired hippocampus-dependent and indepen-dent learning in IL-6 deficient mice. Behav. Brain Res., 2009, 200(1), 192-196.
[http://dx.doi.org/10.1016/j.bbr.2009.01.013] [PMID: 19378383]
[125]
Derecki, N.C.; Cardani, A.N.; Yang, C.H.; Quinnies, K.M.; Crihfield, A.; Lynch, K.R.; Kipnis, J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med., 2010, 207(5), 1067-1080.
[http://dx.doi.org/10.1084/jem.20091419] [PMID: 20439540]
[126]
Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.; Van de Water, J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun., 2011, 25(1), 40-45.
[http://dx.doi.org/10.1016/j.bbi.2010.08.003] [PMID: 20705131]
[127]
Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.N.; Van de Water, J. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J. Neuroimmunol., 2011, 232(1-2), 196-199.
[http://dx.doi.org/10.1016/j.jneuroim.2010.10.025] [PMID: 21095018]
[128]
Brocker, C.; Thompson, D.; Matsumoto, A.; Nebert, D.W.; Vasiliou, V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum. Genomics, 2010, 5(1), 30-55.
[http://dx.doi.org/10.1186/1479-7364-5-1-30] [PMID: 21106488]
[129]
Suzuki, K.; Matsuzaki, H.; Iwata, K.; Kameno, Y.; Shimmura, C.; Kawai, S.; Yoshihara, Y.; Wakuda, T.; Takebayashi, K.; Takagai, S.; Matsumoto, K.; Tsuchiya, K.J.; Iwata, Y.; Nakamura, K.; Tsujii, M.; Sugiyama, T.; Mori, N. Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One, 2011, 6(5)e20470
[http://dx.doi.org/10.1371/journal.pone.0020470] [PMID: 21647375]
[130]
Inga Jácome, M.C.; Morales Chacòn, L.M.; Vera Cuesta, H.; Maragoto Rizo, C.; Whilby Santiesteban, M.; Ramos Hernandez, L.; Noris García, E.; González Fraguela, M.E.; Fernandez Verdecia, C.I.; Vegas Hurtado, Y.; Siniscalco, D.; Gonçalves, C.A.; Robinson-Agramonte, M.L. Peripheral inflammatory markers contributing to comorbidities in autism. Behav. Sci. (Basel), 2016, 6(4), 29.
[http://dx.doi.org/10.3390/bs6040029] [PMID: 27983615]
[131]
Xie, J.; Huang, L.; Li, X.; Li, H.; Zhou, Y.; Zhu, H.; Pan, T.; Kendrick, K.M.; Xu, W. Immunological cytokine profiling identifies TNF-α as a key molecule dysregulated in autistic children. Oncotarget, 2017, 8(47), 82390-82398.
[http://dx.doi.org/10.18632/oncotarget.19326] [PMID: 29137272]
[132]
Guloksuz, S.A.; Abali, O.; Aktas Cetin, E.; Bilgic Gazioglu, S.; Deniz, G.; Yildirim, A.; Kawikova, I.; Guloksuz, S.; Leckman, J.F. Elevated plasma concentrations of S100 calcium-binding protein B and tumor necrosis factor alpha in children with autism spectrum disorders. Br. J. Psychiatry, 2017, 39(3), 195-200.
[http://dx.doi.org/10.1590/1516-4446-2015-1843] [PMID: 28099628]
[133]
Al-Ayadhi, L.Y. Pro-inflammatory cytokines in autistic children in central Saudi Arabia. Neurosciences (Riyadh), 2005, 10(2), 155-158.
[PMID: 22473229]
[134]
Molloy, C.A.; Morrow, A.L.; Meinzen-Derr, J.; Schleifer, K.; Dienger, K.; Manning-Courtney, P.; Altaye, M.; Wills-Karp, M. Elevated cytokine levels in children with autism spectrum disorder. J. Neuroimmunol., 2006, 172(1-2), 198-205.
[http://dx.doi.org/10.1016/j.jneuroim.2005.11.007] [PMID: 16360218]
[135]
Businaro, R.; Corsi, M.; Azzara, G.; Di Raimo, T.; Laviola, G.; Romano, E.; Ricci, L.; Maccarrone, M.; Aronica, E.; Fuso, A.; Ricci, S. Interleukin-18 modulation in autism spectrum disorders. J. Neuroinflammation, 2016, 13, 2.
[http://dx.doi.org/10.1186/s12974-015-0466-6] [PMID: 26728085]
[136]
Hu, C.C.; Xu, X.; Xiong, G.L.; Xu, Q.; Zhou, B.R.; Li, C.Y.; Qin, Q.; Liu, C.X.; Li, H.P.; Sun, Y.J.; Yu, X. Alterations in plasma cytokine levels in chinese children with autism spectrum disorder. Autism Res., 2018, 11(7), 989-999.
[http://dx.doi.org/10.1002/aur.1940] [PMID: 29522267]
[137]
Goines, P.E.; Ashwood, P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol. Teratol., 2013, 36, 67-81.
[http://dx.doi.org/10.1016/j.ntt.2012.07.006] [PMID: 22918031]
[138]
Singh, V.K. Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J. Neuroimmunol., 1996, 66(1-2), 143-145.
[http://dx.doi.org/10.1016/0165-5728(96)00014-8] [PMID: 8964908]
[139]
Eftekharian, M.M.; Ghafouri-Fard, S.; Noroozi, R.; Omrani, M.D.; Arsang-Jang, S.; Ganji, M.; Gharzi, V.; Noroozi, H.; Komaki, A.; Mazdeh, M.; Taheri, M. Cytokine profile in autistic patients. Cytokine, 2018, 108, 120-126.
[http://dx.doi.org/10.1016/j.cyto.2018.03.034] [PMID: 29602155]
[140]
Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol., 2005, 57(1), 67-81.
[http://dx.doi.org/10.1002/ana.20315] [PMID: 15546155]
[141]
Morgan, J.T.; Chana, G.; Pardo, C.A.; Achim, C.; Semendeferi, K.; Buckwalter, J.; Courchesne, E.; Everall, I.P. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry, 2010, 68(4), 368-376.
[http://dx.doi.org/10.1016/j.biopsych.2010.05.024] [PMID: 20674603]
[142]
Wei, H.; Mori, S.; Hua, K.; Li, X. Alteration of brain volume in IL-6 overexpressing mice related to autism. Int. J. Dev. Neurosci., 2012, 30(7), 554-559.
[http://dx.doi.org/10.1016/j.ijdevneu.2012.08.007] [PMID: 22940293]
[143]
Wei, H.; Alberts, I.; Li, X. Brain IL-6 and autism. Neuroscience, 2013, 252, 320-325.
[http://dx.doi.org/10.1016/j.neuroscience.2013.08.025] [PMID: 23994594]
[144]
El-Ansary, A.; Al-Ayadhi, L. Neuroinflammation in autism spectrum disorders. J. Neuroinflammation, 2012, 9, 265.
[http://dx.doi.org/10.1186/1742-2094-9-265] [PMID: 23231720]
[145]
Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J. Neuroinflammation, 2014, 11, 4.
[http://dx.doi.org/10.1186/1742-2094-11-4] [PMID: 24400970]
[146]
Napolioni, V.; Ober-Reynolds, B.; Szelinger, S.; Corneveaux, J.J.; Pawlowski, T.; Ober-Reynolds, S.; Kirwan, J.; Persico, A.M.; Melmed, R.D.; Craig, D.W.; Smith, C.J.; Huentelman, M.J. Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J. Neuroinflammation, 2013, 10, 38.
[http://dx.doi.org/10.1186/1742-2094-10-38] [PMID: 23497090]
[147]
Manzardo, A.M.; Henkhaus, R.; Dhillon, S.; Butler, M.G. Plasma cytokine levels in children with autistic disorder and unrelated siblings. Int. J. Dev. Neurosci., 2012, 30(2), 121-127.
[http://dx.doi.org/10.1016/j.ijdevneu.2011.12.003] [PMID: 22197967]
[148]
Krakowiak, P.; Goines, P.E.; Tancredi, D.J.; Ashwood, P.; Hansen, R.L.; Hertz-Picciotto, I.; Van de Water, J. Neonatal cytokine profiles associated with autism spectrum disorder. Biol. Psychiatry, 2017, 81(5), 442-451.
[http://dx.doi.org/10.1016/j.biopsych.2015.08.007] [PMID: 26392128]
[149]
Emanuele, E.; Orsi, P.; Boso, M.; Broglia, D.; Brondino, N.; Barale, F.; di Nemi, S.U.; Politi, P. Low-grade endotoxemia in patients with severe autism. Neurosci. Lett., 2010, 471(3), 162-165.
[http://dx.doi.org/10.1016/j.neulet.2010.01.033] [PMID: 20097267]
[150]
Okada, K.; Hashimoto, K.; Iwata, Y.; Nakamura, K.; Tsujii, M.; Tsuchiya, K.J.; Sekine, Y.; Suda, S.; Suzuki, K.; Sugihara, G.; Matsuzaki, H.; Sugiyama, T.; Kawai, M.; Minabe, Y.; Takei, N.; Mori, N. Decreased serum levels of transforming growth factor-beta1 in patients with autism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(1), 187-190.
[http://dx.doi.org/10.1016/j.pnpbp.2006.08.020] [PMID: 17030376]
[151]
Jones, K.L.; Croen, L.A.; Yoshida, C.K.; Heuer, L.; Hansen, R.; Zerbo, O.; DeLorenze, G.N.; Kharrazi, M.; Yolken, R.; Ashwood, P.; Van de Water, J. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol. Psychiatry, 2017, 22(2), 273-279.
[http://dx.doi.org/10.1038/mp.2016.77] [PMID: 27217154]
[152]
Lammert, C.R.; Frost, E.L.; Bolte, A.C.; Paysour, M.J.; Shaw, M.E.; Bellinger, C.E.; Weigel, T.K.; Zunder, E.R.; Lukens, J.R. Cutting edge: critical roles for microbiota-mediated regulation of the immune system in a prenatal immune activation model of autism. J. Immunol., 2018, 201(3), 845-850.
[http://dx.doi.org/10.4049/jimmunol.1701755] [PMID: 29967099]
[153]
Ursini, G.; Punzi, G.; Chen, Q.; Marenco, S.; Robinson, J.F.; Porcelli, A.; Hamilton, E.G.; Mitjans, M.; Maddalena, G.; Begemann, M.; Seidel, J.; Yanamori, H.; Jaffe, A.E.; Berman, K.F.; Egan, M.F.; Straub, R.E.; Colantuoni, C.; Blasi, G.; Hashimoto, R.; Rujescu, D.; Ehrenreich, H.; Bertolino, A.; Weinberger, D.R. Convergence of placenta biology and genetic risk for schizophrenia. Nat. Med., 2018, 24(6), 792-801.
[http://dx.doi.org/10.1038/s41591-018-0021-y] [PMID: 29808008]
[154]
Ansel, A.; Rosenzweig, J.P.; Zisman, P.D.; Melamed, M.; Gesundheit, B. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front. Neurosci., 2017, 10, 601-624.
[http://dx.doi.org/10.3389/fnins.2016.00601] [PMID: 28105001]
[155]
Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J.R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise Thomas, E.; Bell, J.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 2014, 5, 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[156]
Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; Gulyás, B.; Halldin, C.; Hultenby, K.; Nilsson, H.; Hebert, H.; Volpe, B.T.; Diamond, B.; Pettersson, S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med., 2014, 6(263)263ra158
[http://dx.doi.org/10.1126/scitranslmed.3009759] [PMID: 25411471]
[157]
Lombardo, M.V.; Moon, H.M.; Su, J.; Palmer, T.D.; Courchesne, E.; Pramparo, T. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol. Psychiatry, 2018, 23(4), 1001-1013.
[http://dx.doi.org/10.1038/mp.2017.15] [PMID: 28322282]
[158]
Carter, C.J.; Blizard, R.A. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem. Int., 2016, 101, 83-109.
[http://dx.doi.org/10.1016/j.neuint.2016.10.011] [PMID: 27984170]
[159]
Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res., 2009, 2, 45-60.
[http://dx.doi.org/10.4137/IJTR.S2129] [PMID: 20651948]
[160]
Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J. Amino Acids, 2016, 20168952520
[http://dx.doi.org/10.1155/2016/8952520] [PMID: 26881063]
[161]
Lim, C.K.; Essa, M.M.; de Paula Martins, R.; Lovejoy, D.B.; Bilgin, A.A.; Waly, M.I.; Al-Farsi, Y.M.; Al-Sharbati, M.; Al-Shaffae, M.A.; Guillemin, G.J. Altered kynurenine pathway metabolism in autism: implication for immune-induced glutamatergic activity. Autism Res., 2016, 9(6), 621-631.
[http://dx.doi.org/10.1002/aur.1565] [PMID: 26497015]
[162]
Wichers, M.C.; Maes, M. The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-α-induced depression. J. Psychiatry Neurosci., 2004, 29(1), 11-17.
[PMID: 14719046]
[163]
Critchfield, J.W.; van Hemert, S.; Ash, M.; Mulder, L.; Ashwood, P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol. Res. Pract., 2011, 2011161358
[http://dx.doi.org/10.1155/2011/161358] [PMID: 22114588]
[164]
Lin, H.C.; Hsu, C.H.; Chen, H.L.; Chung, M.Y.; Hsu, J.F.; Lien, R.I.; Tsao, L.Y.; Chen, C.H.; Su, B.H. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics, 2008, 122(4), 693-700.
[http://dx.doi.org/10.1542/peds.2007-3007] [PMID: 18829790]
[165]
Golnik, A.E.; Ireland, M. Complementary alternative medicine for children with autism: a physician survey. J. Autism Dev. Disord., 2009, 39(7), 996-1005.
[http://dx.doi.org/10.1007/s10803-009-0714-7] [PMID: 19280328]
[166]
Parracho, H.M.; Gibson, G.R.; Knott, F.; Bosscher, D.; Kleerebezem, M.; Mccartney, A.L. A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int. J. Probiotics Prebiotics, 2010, 5(2), 69-74.
[167]
West, R.; Roberts, E.; Sichel, L.; Sichel, J. Improvements in gastrointestinal symptoms among children with autism spectrum disorder receiving the Delpro® probiotic and immunomodulator formulation. J. Prob. Health, 2013, 1, 102.
[http://dx.doi.org/10.4172/2329-8901.1000102]
[168]
Shaaban, S.Y.; El Gendy, Y.G.; Mehanna, N.S.; El-Senousy, W.M.; El-Feki, H.S.A.; Saad, K.; El-Asheer, O.M. The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr. Neurosci., 2018, 21(9), 676-681.
[http://dx.doi.org/10.1080/1028415X.2017.1347746] [PMID: 28686541]
[169]
Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord., 2018, 228, 13-19.
[http://dx.doi.org/10.1016/j.jad.2017.11.063] [PMID: 29197739]
[170]
Misra, S.; Mohanty, D. Psychobiotics: a new approach for treating mental illness? Crit. Rev. Food Sci. Nutr., 2018, 1-7.
[http://dx.doi.org/ 10.1080/10408398.2017.1399860] [PMID: 29190117]
[171]
Khan, N.A.; Raine, L.B.; Drollette, E.S.; Scudder, M.R.; Kramer, A.F.; Hillman, C.H. Dietary fiber is positively associated with cognitive control among prepubertal children. J. Nutr., 2015, 145(1), 143-149.
[http://dx.doi.org/10.3945/jn.114.198457] [PMID: 25527669]
[172]
Saad, K.; Eltayeb, A.A.; Mohamad, I.L.; Al-Atram, A.A.; Elserogy, Y.; Bjørklund, G.; El-Houfey, A.A.; Nicholson, B. A randomized, placebo-controlled trial of digestive enzymes in children with autism spectrum disorders. Clin. Psychopharmacol. Neurosci., 2015, 13(2), 188-193.
[http://dx.doi.org/10.9758/cpn.2015.13.2.188] [PMID: 26243847]
[173]
Kang, D.W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; Pollard, E.L.; Roux, S.; Sadowsky, M.J.; Lipson, K.S.; Sullivan, M.B.; Caporaso, J.G.; Krajmalnik-Brown, R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 2017, 5(1), 10.
[http://dx.doi.org/10.1186/s40168-016-0225-7] [PMID: 28122648]
[174]
Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilić-Stojanović, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; Segal, J.; Aloi, M.; Masucci, L.; Molinaro, A.; Scaldaferri, F.; Gasbarrini, G.; Lopez-Sanroman, A.; Link, A.; de Groot, P.; de Vos, W.M.; Högenauer, C.; Malfertheiner, P.; Mattila, E.; Milosavljević, T.; Nieuwdorp, M.; Sanguinetti, M.; Simren, M.; Gasbarrini, A. European FMT Working Group. European consensus conference on faecal microbiota transplantation in clinical practice Gut, 2017, 66(4), 569-580.
[http://dx.doi.org/10.1136/gutjnl-2016-313017] [PMID: 28087657]
[175]
Sandler, R.H.; Finegold, S.M.; Bolte, E.R.; Buchanan, C.P.; Maxwell, A.P.; Väisänen, M.L.; Nelson, M.N.; Wexler, H.M. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol., 2000, 15(7), 429-435.
[http://dx.doi.org/10.1177/088307380001500701] [PMID: 10921511]
[176]
Marchezan, J.; Winkler Dos Santos, E.G.A.; Deckmann, I.; Riesgo, R.D.S. Immunological dysfunction in autism spectrum disorder: a potential target for therapy. Neuroimmunomodulation, 2018, 25(5-6), 300-319.
[http://dx.doi.org/10.1159/000492225] [PMID: 30184549]
[177]
Niederhofer, H.; Staffen, W.; Mair, A. Immunoglobulins as an alternative strategy of psychopharmacological treatment of children with autistic disorder. Neuropsychopharmacology, 2003, 28(5), 1014-1015.
[http://dx.doi.org/10.1038/sj.npp.1300130] [PMID: 12700706]
[178]
Nazimek, K.; Strobel, S.; Bryniarski, P.; Kozlowski, M.; Filipczak-Bryniarska, I.; Bryniarski, K. The role of macrophages in anti-inflammatory activity of antidepressant drugs. Immunobiology, 2017, 222(6), 823-830.
[http://dx.doi.org/10.1016/j.imbio.2016.07.001] [PMID: 27453459]
[179]
Mordekar, S.R.; Prendergast, M.; Chattopadhyay, A.K.; Baxter, P.S. Corticosteroid treatment of behaviour, language and motor regression in childhood disintegrative disorder. Eur. J. Paediatr. Neurol., 2009, 13(4), 367-369.
[http://dx.doi.org/10.1016/j.ejpn.2008.06.001] [PMID: 18625572]
[180]
Handen, B.L.; Melmed, R.D.; Hansen, R.L.; Aman, M.G.; Burnham, D.L.; Bruss, J.B.; McDougle, C.J. A double-blind, placebo-controlled trial of oral human immunoglobulin for gastrointestinal dysfunction in children with autistic disorder. J. Autism Dev. Disord., 2009, 39(5), 796-805.
[http://dx.doi.org/10.1007/s10803-008-0687-y] [PMID: 19148734]
[181]
Duffy, F.H.; Shankardass, A.; McAnulty, G.B.; Eksioglu, Y.Z.; Coulter, D.; Rotenberg, A.; Als, H. Corticosteroid therapy in regressive autism: a retrospective study of effects on the frequency modulated auditory evoked response (FMAER), language and behavior. BMC Neurol., 2014, 14, 70.
[http://dx.doi.org/10.1186/1471-2377-14-70] [PMID: 24885033]
[182]
Young, A.M.; Chakrabarti, B.; Roberts, D.; Lai, M.C.; Suckling, J.; Baron-Cohen, S. From molecules to neural morphology: understanding neuroinflammation in autism spectrum condition. Mol. Autism, 2016, 7, 9-17.
[http://dx.doi.org/10.1186/s13229-016-0068-x] [PMID: 26793298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy