Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Stimuli-responsive Drug Delivery Systems as an Emerging Platform for Treatment of Rheumatoid Arthritis

Author(s): Xiao-Ling Xu, Kong-Jun Lu, Xiao-Qin Yao, Xiao-Ying Ying and Yong-Zhong Du*

Volume 25, Issue 2, 2019

Page: [155 - 165] Pages: 11

DOI: 10.2174/1381612825666190321104424

Price: $65

Abstract

Rheumatoid Arthritis (RA) is a systemic autoimmune disease accompanied by chronic inflammation. Due to the long-term infiltration in inflammatory sites, joints get steadily deteriorated, eventually resulting in functional incapacitation and disability. Despite the considerable effect, RA sufferers treated with current drug therapeutic efficacy are exposed to severe side effects. Application of Drug Delivery Systems (DDS) has improved these situations while the problem of limited drug exposure remains untackled. Stimuli-responsive DDS that are responsive to a variety of endogenous and exogenous stimuli, such as pH, redox status, and temperature, have emerged as a promising therapeutic strategy to optimize the drug release. Herein, we discussed the therapeutic regimes and serious side effects of current RA therapy, as well as focused on some of the potential stimuliresponsive DDS utilized in RA therapy. Besides, the prospective room in designing DDS for RA treatment has also been discussed.

Keywords: Rheumatoid arthritis, therapeutic approaches, stimuli-responsive drug delivery systems, pH sensitive, redox sensitive, enzyme sensitive, temperature sensitive.

[1]
Arora S, Rafiq A, Jolly M. Management of rheumatoid arthritis: Review of current guidelines. J Arthrosc Jt Surg 2016; 3: 45-50.
[2]
Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 2013; 9(3): 141-53.
[3]
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet 2016; 388: 2023-38.
[4]
Ospelt C, Gay S. Epigenetic Epidemiology of Inflammation and Rheumatoid Arthritis. In: Michels K, Ed. Epigenetic Epidemiology. Springer: Dordrecht 2012; pp. 289-305.
[5]
Klareskog L, Padyukov L, Lorentzen J, Alfredsson L. Mechanisms of disease: Genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat Clin Pract Rheumatol 2006; 2(8): 425-33.
[6]
Klareskog L, Padyukov L, Rönnelid J, Alfredsson L. Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol 2006; 18(6): 650-5.
[7]
Negrei C, Bojinca V, Balanescu A, et al. Management of rheumatoid arthritis: Impact and risks of various therapeutic approaches. Exp Ther Med 2016; 11(4): 1177-83.
[8]
Hemminki K, Liu X, Ji J, Försti A. Origin of B-cell neoplasms in autoimmune disease. PLoS One 2016; 11(6)e0158360
[9]
Scott BB, Weisbrot LM, Greenwood JD, Bogoch ER, Paige CJ, Keystone EC. Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthritis Rheum 1997; 40(3): 490-8.
[10]
Iwahashi M, Yamamura M, Aita T, et al. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum 2004; 50(5): 1457-67.
[11]
Okroj M, Heinegård D, Holmdahl R, Blom AM. Rheumatoid arthritis and the complement system. Ann Med 2007; 39(7): 517-30.
[12]
Ballanti E, Perricone C, di Muzio G, et al. Role of the complement system in rheumatoid arthritis and psoriatic arthritis: relationship with anti-TNF inhibitors. Autoimmun Rev 2011; 10(10): 617-23.
[13]
Johansson L, Ärlestig L, Kokkonen H, Brink M, Rantapää-Dahlqvist S. An increased concentration of receptor activator of nuclear factor kappa-B ligand pre-dates the onset of rheumatoid arthritis. Rheumatology (Oxford) 2017; 56(12): 2190-6.
[14]
Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release 2017; 252: 108-24.
[15]
Vollenhoven RFV. Treatment of rheumatoid arthritis: state of the art 2009. Nat Rev Rheumatol 2009; 5(10): 531-41.
[16]
Grijalva CG, Chung CP, Arbogast PG, Stein CM, Mitchel EF Jr, Griffin MR. Assessment of adherence to and persistence on disease-modifying antirheumatic drugs (DMARDs) in patients with rheumatoid arthritis. Med Care 2007; 45(10)(Suppl. 2): S66-76.
[17]
Saevarsdottir S, Wallin H, Seddighzadeh M, et al. Predictors of response to methotrexate in early DMARD naive rheumatoid arthritis: results from the initial open-label phase of the SWEFOT trial. Ann Rheum Dis 2011; 70(3): 469-75.
[18]
Dale J, Alcorn N, Capell H, Madhok R. Combination therapy for rheumatoid arthritis: methotrexate and sulfasalazine together or with other DMARDs. Nat Clin Pract Rheumatol 2007; 3(8): 450-8.
[19]
Bijlsma JW, Jacobs JW, Buttgereit F. Glucocorticoids in the treatment of rheumatoid arthritis. Clin Exp Rheumatol 2015; 33(4)(Suppl. 92): S34-6.
[20]
Ruperto N, Pistorio A, Oliveira S, et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis: A randomised trial. Lancet 2016; 387(10019): 671-8.
[21]
Maslyansky AL, Ilivanova EP, Rokomanyuk VI, et al. Combination pulse therapy with methotrexate and dexamethasone in patients with early rheumatoid arthritis and poor prognostic factors: An open-label randomized trial. Rheumatol Sci Pract 2013; 51(2): 126-31.
[22]
Pincus T, Cutolo M. Clinical trials documenting the efficacy of low-dose glucocorticoids in rheumatoid arthritis. Neuroimmunomodulation 2015; 22(1-2): 46-50.
[23]
Santiago T, Jacobs JW, Saag KG, Buttgereit F, Pereira da Silva JA. Balancing the benefits and risks of low-dose glucocorticoid in rheumatoid arthritis. Acta Reumatol Port 2015; 40(1): 10-22.
[24]
Schirrmacher R, Shiue G, Shiue SJ, et al. The introduction of new non-steroidal anti-inflammatory drugs-Arthritis and Society-14. J Labelled Compd 2001; 44: S418-20.
[25]
Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 2015; 8: 105-18.
[26]
Lee EY, Hong SJ, Park YB, et al. Gastrointestinal risk factors and non-steroidal anti-inflammatory drugs use in rheumatoid arthritis and osteoarthritis patients in Korea. J Rheum Dis 2016; 23: 47-54.
[27]
Lanas A, Boers M, Nuevo J. Gastrointestinal events in at-risk patients starting non-steroidal anti-inflammatory drugs (NSAIDs) for rheumatic diseases: the evidence study of European routine practice. Ann Rheum Dis 2015; 74(4): 675-81.
[28]
Neovius M, Arkema EV, Olsson H, et al. Drug survival on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and infliximab. Ann Rheum Dis 2015; 74(2): 354-60.
[29]
Talotta R, Berzi A, Atzeni F, et al. Paradoxical expansion of th1 and th17 lymphocytes in rheumatoid arthritis following infliximab treatment: A possible explanation for a lack of clinical response. J Clin Immunol 2015; 35(6): 550-7.
[30]
Burmester GR, Rigby WF, van Vollenhoven RF, et al. Tocilizumab in early progressive rheumatoid arthritis: Function, a randomised controlled trial. Ann Rheum Dis 2016; 75(6): 1081-91.
[31]
Listing J, Kekow J, Manger B, et al. Mortality in rheumatoid arthritis: the impact of disease activity, treatment with glucocorticoids, TNFα inhibitors and rituximab. Ann Rheum Dis 2015; 74(2): 415-21.
[32]
Fleischmann R, Weinblatt ME, Schiff M, et al. Patient-reported outcomes from a 2-year head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis. Arthritis Care Res 2015; 73: 86-94.
[33]
Strand V, Lee EB, Fleischmann R, et al. Tofacitinib versus methotrexate in rheumatoid arthritis: patient-reported outcomes from the randomised phase III Oral Start trial. RMD Open 2016; 2(2): e000308
[34]
Winthrop KL, Park SH, Gul A, et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann Rheum Dis 2016; 75(6): 1133-8.
[35]
Campbell L, Chen C, Bhagat SS, Parker RA, Östör AJ. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: A systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford) 2011; 50(3): 552-62.
[36]
Du YZ, Weng Q, Yuan H, Hu FQ. Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano 2010; 4(11): 6894-902.
[37]
Situ JQ, Ye YQ, Zhu XL, et al. Specific targeting of A54 homing peptide-functionalized dextran-g-poly(lactic-co-glycolic acid) micelles to tumor cells. Int J Nanomedicine 2015; 10: 665-75.
[38]
Alam MM, Han HS, Sung S, et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release 2017; 252: 62-72.
[39]
Heo R, Park JS, Jang HJ, et al. Hyaluronan nanoparticles bearing γ-secretase inhibitor: in vivo therapeutic effects on rheumatoid arthritis. J Control Release 2014; 192: 295-300.
[40]
Wang Q, Jiang H, Li Y, et al. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomaterials 2017; 122: 10-22.
[41]
Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release 2016; 230: 64-72.
[42]
Abolmaali S, Tamaddon A, Kamali-Sarvestani E, Ashraf M, Dinarvand R. Stealth nanogels of histinylated poly ethyleneimine for sustained delivery of methotrexate in collagen-induced arthritis model. Pharm Res 2015; 32(10): 3309-23.
[43]
Thao Q, Byeon HJ, Lee C, et al. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm 2016; 497(1-2): 268-76.
[44]
Lee SM, Kim HJ, Ha YJ, et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 2013; 7(1): 50-7.
[45]
Yang M, Ding J, Zhang Y, et al. Activated macrophage-targeted dextran–methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. J Mater Chem B Mater Biol Med 2016; 4: 2102-13.
[46]
Lee H, Bhang SH, Lee JH, Kim H, Hahn SK. Tocilizumab-alendronate conjugate for treatment of rheumatoid arthritis. Bioconjug Chem 2017; 28(4): 1084-92.
[47]
Srinath P, Vyas SP, Diwan PV. Preparation and pharmacodynamic evaluation of liposomes of indomethacin. Drug Dev Ind Pharm 2000; 26(3): 313-21.
[48]
Williams AS, Topley N, Dojcinov S, Richards PJ, Williams BD. Amelioration of rat antigen-induced arthritis by liposomally conjugated methotrexate is accompanied by down-regulation of cytokine mRNA expression. Rheumatology (Oxford) 2001; 40(4): 375-83.
[49]
Highton J, Guévremont D, Thomson J, Carlisle B, Tucker I. A trial of clodronate-liposomes as anti-macrophage treatment in a sheep model of arthritis. Clin Exp Rheumatol 1999; 17(1): 43-8.
[50]
Dellinger AL, Cunin P, Lee D, et al. Inhibition of inflammatory arthritis using fullerene nanomaterials. PLoS One 2015; 10(4)e0126290
[51]
Khoury M, Escriou V, Courties G, et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum 2008; 58(8): 2356-67.
[52]
Khoury M, Louis-Plence P, Escriou V, et al. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum 2006; 54(6): 1867-77.
[53]
Srinath P, Chary MG, Vyas SP, Diwan PV. Long-circulating liposomes of indomethacin in arthritic rats--a biodisposition study. Pharm Acta Helv 2000; 74(4): 399-404.
[54]
Palakurthi S, Vyas SP, Diwan PV. Biodisposition of PEG-coated lipid microspheres of indomethacin in arthritic rats. Int J Pharm 2005; 290(1-2): 55-62.
[55]
Metselaar JM, Wauben MH, Wagenaar-Hilbers JP, Boerman OC, Storm G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum 2003; 48(7): 2059-66.
[56]
Corvo ML, Boerman OC, Oyen WJ, et al. Intravenous administration of superoxide dismutase entrapped in long circulating liposomes. II. In vivo fate in a rat model of adjuvant arthritis. Biochim Biophys Acta 1999; 1419(2): 325-34.
[57]
Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release 2016; 230: 64-72.
[58]
Crielaard BJ, Rijcken CJ, Quan L, et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew Chem 2012; 124: 7366-70.
[59]
Li C, Li H, Wang Q, et al. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Control Release 2017; 246: 133-41.
[60]
Koo OM, Rubinstein I, Onyüksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res 2011; 28(4): 776-87.
[61]
Fu J, Lv X, Qiu L. Thermo-responsive triblock copolymer micelles containing PEG6000 for either water-soluble or water-insoluble drug sustained release and treatment. RSC Advances 2015; 5: 37451-61.
[62]
Pua ML, Yoshitomi T, Chonpathompikunlert P, Hirayama A, Nagasaki Y. Redox-active injectable gel using thermo-responsive nanoscale polyion complex flower micelle for noninvasive treatment of local inflammation. J Control Release 2013; 172(3): 914-20.
[63]
Miao B, Song C, Ma G. Injectable thermosensitive hydrogels for intra‐articular delivery of methotrexate. Shengwu Yixue Gongcheng Yu Linchuang 2011; 122: 2139-45.
[64]
Wilson DR, Zhang N, Silvers AL, Forstner MB, Bader RA. Synthesis and evaluation of cyclosporine A-loaded polysialic acid-polycaprolactone micelles for rheumatoid arthritis. Eur J Pharm Sci 2014; 51: 146-56.
[65]
Kong JS, Yoo SA, Kang JH, et al. Suppression of neovascularization and experimental arthritis by D-form of anti-flt-1 peptide conjugated with mini-PEG. Angiogenesis 2011; 14(4): 431-42.
[66]
Liu XM, Quan LD, Tian J, Laquer FC, Ciborowski P, Wang D. Syntheses of click PEG-dexamethasone conjugates for the treatment of rheumatoid arthritis. Biomacromolecules 2010; 11(10): 2621-8.
[67]
Ito HO, So T, Ueda T, Imoto T, Koga T. Prevention of collagen-induced arthritis (CIA) by treatment with polyethylene glycol-conjugated type II collagen; distinct tolerogenic property of the conjugated collagen from the native one. Clin Exp Immunol 1997; 108(2): 213-9.
[68]
Seetharaman G, Kallar AR, Vijayan VM, Muthu J, Selvam S. Design, preparation and characterization of pH-responsive prodrug micelles with hydrolyzable anhydride linkages for controlled drug delivery. J Colloid Interface Sci 2017; 492: 61-72.
[69]
Fiehn C, Neumann E, Wunder A, Krienke S, Gay S, Müller-Ladner U. Methotrexate (MTX) and albumin coupled with MTX (MTX-HSA) suppress synovial fibroblast invasion and cartilage degradation in vivo. Ann Rheum Dis 2004; 63(7): 884-6.
[70]
Shin JM, Kim SH, Thambi T, et al. A hyaluronic acid-methotrexate conjugate for targeted therapy of rheumatoid arthritis. Chem Commun (Camb) 2014; 50(57): 7632-5.
[71]
Wang D, Miller SC, Liu XM, Anderson B, Wang XS, Goldring SR. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res Ther 2007; 9(1): R2.
[72]
Yang M, Chang F, Ding J, et al. Scavenger receptor-targeted dextran sulfate-methotrexate prodrug for treatment of collagen-induced arthritis. J Control Release 2017; 259e98
[73]
Thao Q, Byeon HJ, Lee C, et al. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm 2016; 497(1-2): 268-76.
[74]
Liu M, Huang Y, Hu L, et al. Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol 2012; 12: 68.
[75]
Hwang J, Rodgers K, Oliver JC, Schluep T. α-methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Int J Nanomedicine 2008; 3(3): 359-71.
[76]
Kim MJ, Park JS, Lee SJ, et al. Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. J Control Release 2015; 216: 140-8.
[77]
Thomas TP, Goonewardena SN, Majoros IJ, et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 2011; 63(9): 2671-80.
[78]
Ishihara T, Kubota T, Choi T, Higaki M. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate. J Pharmacol Exp Ther 2009; 329(2): 412-7.
[79]
Ishihara T, Takahashi M, Higaki M, Mizushima Y, Mizushima T. Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. Int J Pharm 2010; 385(1-2): 170-5.
[80]
Scheinman RI, Trivedi R, Vermillion S, Kompella UB. Functionalized STAT1 siRNA nanoparticles regress rheumatoid arthritis in a mouse model. Nanomedicine (Lond) 2011; 6(10): 1669-82.
[81]
Park JS, Yang HN, Jeon SY, Woo DG, Kim MS, Park KH. The use of anti-COX2 siRNA coated onto PLGA nanoparticles loading dexamethasone in the treatment of rheumatoid arthritis. Biomaterials 2012; 33(33): 8600-12.
[82]
Kim WU, Lee WK, Ryoo JW, et al. Suppression of collagen-induced arthritis by single administration of poly(lactic-co-glycolic acid) nanoparticles entrapping type II collagen: A novel treatment strategy for induction of oral tolerance. Arthritis Rheum 2002; 46(4): 1109-20.
[83]
Lee WK, Park JY, Jung S, et al. Preparation and characterization of biodegradable nanoparticles entrapping immunodominant peptide conjugated with PEG for oral tolerance induction. J Control Release 2005; 105(1-2): 77-88.
[84]
Boekhorst BCMT, Jensen LB, Colombo S, et al. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J Control Release 2012; 161(3): 772-80.
[85]
Heo R, Park JS, Jang HJ, et al. Hyaluronan nanoparticles bearing γ-secretase inhibitor: in vivo therapeutic effects on rheumatoid arthritis. J Control Release 2014; 192: 295-300.
[86]
Aldayel AM, Naguib YW, O’Mary HL, et al. Acid-sensitive sheddable pegylated plga nanoparticles increase the delivery of TNF-α siRNA in chronic inflammation sites. Mol Ther Nucleic Acids 2016; 5(7)e340
[87]
Goel N, Stephens S. Certolizumab pegol. MAbs 2010; 2(2): 137-47.
[88]
Kim YJ, Chae SY, Jin CH, et al. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials 2010; 31(34): 9057-64.
[89]
Zhao J, Zhao M, Yu C, et al. Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis. Int J Nanomedicine 2017; 12: 6735-46.
[90]
Lee H, Lee MY, Bhang SH, et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 2014; 8(5): 4790-8.
[91]
Alam MM, Han HS, Sung S, et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release 2017; 252: 62-72.
[92]
Ryu JH, Lee A, Chu JU, et al. Early diagnosis of arthritis in mice with collagen-induced arthritis, using a fluorogenic matrix metalloproteinase 3-specific polymeric probe. Arthritis Rheum 2011; 63(12): 3824-32.
[93]
Fernandes JC, Wang H, Jreyssaty C, et al. Bone-protective effects of nonviral gene therapy with folate-chitosan DNA nanoparticle containing interleukin-1 receptor antagonist gene in rats with adjuvant-induced arthritis. Mol Ther 2008; 16(7): 1243-51.
[94]
Dai F, Du M, Liu Y, Liu G, Liu Q, Zhang X. Folic acid-conjugated glucose and dextran coated iron oxide nanoparticles as MRI contrast agents for diagnosis and treatment response of rheumatoid arthritis. J Mater Chem B Mater Biol Med 2014; 2: 2240-7.
[95]
Lee SJ, Lee A, Hwang SR, et al. TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol Ther 2014; 22(2): 397-408.
[96]
Jain S, Tran TH, Amiji M. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 2015; 61: 162-77.
[97]
Babazada H, Yamashita F, Hashida M. Suppression of experimental arthritis with self-assembling glycol-split heparin nanoparticles via inhibition of TLR4-NF-κB signaling. J Control Release 2014; 194: 295-300.
[98]
Chopra M, Jain R, Mazumder S. Synthesis and characterization of polymeric curcumin nanoparticles. International Conference on Nanotechnology 2015.
[99]
Zhou HF, Hu G, Wickline SA, Lanza GM, Pham CT. Synergistic effect of antiangiogenic nanotherapy combined with methotrexate in the treatment of experimental inflammatory arthritis. Nanomedicine (Lond) 2010; 5(7): 1065-74.
[100]
Costa Lima SA, Reis S. Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: A multi-drug system for theranostic in rheumatoid arthritis. Colloids Surf B Biointerfaces 2015; 133: 378-87.
[101]
Duan J, Dong J, Zhang T, et al. Polyethyleneimine-functionalized iron oxide nanoparticles for systemic siRNA delivery in experimental arthritis. Nanomedicine (Lond) 2014; 9(6): 789-801.
[102]
Zhou HF, Yan H, Hu Y, et al. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano 2014; 8(7): 7305-17.
[103]
Yeh PH, Sun JS, Wu HC, Hwang LH, Wang TW. Stimuli-responsive HA-PEI nanoparticles encapsulating endostatin plasmid for stem cell gene therapy. RSC Advances 2013; 3: 12922-32.
[104]
Butoescu N, Seemayer CA, Foti M, Jordan O, Doelker E. Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials 2009; 30(9): 1772-80.
[105]
Arora R, Kuhad A, Kaur IP, Chopra K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur J Pain 2015; 19(7): 940-52.
[106]
Ye J, Wang Q, Zhou X, Zhang N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm 2008; 352(1-2): 273-9.
[107]
Xue M, Jiang ZZ, Wu T, et al. Anti-inflammatory effects and hepatotoxicity of Tripterygium-loaded solid lipid nanoparticles on adjuvant-induced arthritis in rats. Phytomedicine 2012; 19(11): 998-1006.
[108]
Schmitt F, Lagopoulos L, Käuper P, et al. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Release 2010; 144(2): 242-50.
[109]
Markides H, Kehoe O, Morris RH, El Haj AJ. Whole body tracking of superparamagnetic iron oxide nanoparticle-labelled cells--a rheumatoid arthritis mouse model. Stem Cell Res Ther 2013; 4(5): 126.
[110]
Nam EJ, Kang JH, Sung S, et al. A matrix metalloproteinase 1-cleavable composite peptide derived from transforming growth factor β-inducible gene h3 potently inhibits collagen-induced arthritis. Arthritis Rheum 2013; 65(7): 1753-63.
[111]
Zhou HF, Yan H, Pan H, et al. Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis. J Clin Invest 2014; 124(10): 4363-74.
[112]
Shinde CG, Kumar TMP, Venkatesh MP, et al. Intra-articular delivery of a methotrexate loaded nanostructured lipid carrier based smart gel for effective treatment of rheumatic diseases. RSC Advances 2016; 6: 12913-24.
[113]
Jung YS, Park W, Na K. Temperature-modulated noncovalent interaction controllable complex for the long-term delivery of etanercept to treat rheumatoid arthritis. J Control Release 2013; 171(2): 143-51.
[114]
Levick JR. Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J Rheumatol 1990; 17(5): 579-82.
[115]
Chang X, Wei C. Glycolysis and rheumatoid arthritis. Int J Rheum Dis 2011; 14(3): 217-22.
[116]
Yuan F, Quan LD, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev 2012; 64(12): 1205-19.
[117]
Guan J, Zhou ZQ, Chen MH, et al. Folate-conjugated and pH-responsive polymeric micelles for target-cell-specific anticancer drug delivery. Acta Biomater 2017; 60: 244-55.
[118]
Gao M, Jia X, Kuang G, Li Y, Liang D, Wei Y. Thermo- and ph-responsive dendronized copolymers of styrene and maleic anhydride pendant with poly(amidoamine) dendrons as side groups. Macromolecules 2013; 46: 1723-31.
[119]
Lee S, Yang SC, Heffernan MJ, Taylor WR, Murthy N. Polyketal microparticles: A new delivery vehicle for superoxide dismutase. Bioconjug Chem 2007; 18(1): 4-7.
[120]
Mapp PI, Grootveld MC, Blake DR. Hypoxia, oxidative stress and rheumatoid arthritis. Br Med Bull 1995; 51(2): 419-36.
[121]
Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS One 2016; 11(4)e0152925
[122]
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373-99.
[123]
Yoshihara Y, Yamada H. Matrix metalloproteinases and cartilage matrix degradation in rheumatoid arthritis. Clin Calcium 2007; 17(4): 500-8.
[124]
Li W, Huang L, Ying X, et al. Antitumor drug delivery modulated by a polymeric micelle with an upper critical solution temperature. Angew Chem Int Ed Engl 2015; 54(10): 3126-31.
[125]
Li WS, Wang XJ, Zhang S, et al. Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle. Biomaterials 2017; 131: 36-46.
[126]
Zhang Q, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 2018; 13(12): 1182-90.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy