[1]
Arora S, Rafiq A, Jolly M. Management of rheumatoid arthritis: Review of current guidelines. J Arthrosc Jt Surg 2016; 3: 45-50.
[2]
Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 2013; 9(3): 141-53.
[3]
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet 2016; 388: 2023-38.
[4]
Ospelt C, Gay S. Epigenetic Epidemiology of Inflammation and Rheumatoid Arthritis. In: Michels K, Ed. Epigenetic Epidemiology. Springer: Dordrecht 2012; pp. 289-305.
[5]
Klareskog L, Padyukov L, Lorentzen J, Alfredsson L. Mechanisms of disease: Genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat Clin Pract Rheumatol 2006; 2(8): 425-33.
[6]
Klareskog L, Padyukov L, Rönnelid J, Alfredsson L. Genes, environment and immunity in the development of rheumatoid arthritis. Curr Opin Immunol 2006; 18(6): 650-5.
[7]
Negrei C, Bojinca V, Balanescu A, et al. Management of rheumatoid arthritis: Impact and risks of various therapeutic approaches. Exp Ther Med 2016; 11(4): 1177-83.
[8]
Hemminki K, Liu X, Ji J, Försti A. Origin of B-cell neoplasms in autoimmune disease. PLoS One 2016; 11(6)e0158360
[9]
Scott BB, Weisbrot LM, Greenwood JD, Bogoch ER, Paige CJ, Keystone EC. Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthritis Rheum 1997; 40(3): 490-8.
[10]
Iwahashi M, Yamamura M, Aita T, et al. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum 2004; 50(5): 1457-67.
[11]
Okroj M, Heinegård D, Holmdahl R, Blom AM. Rheumatoid arthritis and the complement system. Ann Med 2007; 39(7): 517-30.
[12]
Ballanti E, Perricone C, di Muzio G, et al. Role of the complement system in rheumatoid arthritis and psoriatic arthritis: relationship with anti-TNF inhibitors. Autoimmun Rev 2011; 10(10): 617-23.
[13]
Johansson L, Ärlestig L, Kokkonen H, Brink M, Rantapää-Dahlqvist S. An increased concentration of receptor activator of nuclear factor kappa-B ligand pre-dates the onset of rheumatoid arthritis. Rheumatology (Oxford) 2017; 56(12): 2190-6.
[14]
Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release 2017; 252: 108-24.
[15]
Vollenhoven RFV. Treatment of rheumatoid arthritis: state of the art 2009. Nat Rev Rheumatol 2009; 5(10): 531-41.
[16]
Grijalva CG, Chung CP, Arbogast PG, Stein CM, Mitchel EF Jr, Griffin MR. Assessment of adherence to and persistence on disease-modifying antirheumatic drugs (DMARDs) in patients with rheumatoid arthritis. Med Care 2007; 45(10)(Suppl. 2): S66-76.
[17]
Saevarsdottir S, Wallin H, Seddighzadeh M, et al. Predictors of response to methotrexate in early DMARD naive rheumatoid arthritis: results from the initial open-label phase of the SWEFOT trial. Ann Rheum Dis 2011; 70(3): 469-75.
[18]
Dale J, Alcorn N, Capell H, Madhok R. Combination therapy for rheumatoid arthritis: methotrexate and sulfasalazine together or with other DMARDs. Nat Clin Pract Rheumatol 2007; 3(8): 450-8.
[19]
Bijlsma JW, Jacobs JW, Buttgereit F. Glucocorticoids in the treatment of rheumatoid arthritis. Clin Exp Rheumatol 2015; 33(4)(Suppl. 92): S34-6.
[20]
Ruperto N, Pistorio A, Oliveira S, et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis: A randomised trial. Lancet 2016; 387(10019): 671-8.
[21]
Maslyansky AL, Ilivanova EP, Rokomanyuk VI, et al. Combination pulse therapy with methotrexate and dexamethasone in patients with early rheumatoid arthritis and poor prognostic factors: An open-label randomized trial. Rheumatol Sci Pract 2013; 51(2): 126-31.
[22]
Pincus T, Cutolo M. Clinical trials documenting the efficacy of low-dose glucocorticoids in rheumatoid arthritis. Neuroimmunomodulation 2015; 22(1-2): 46-50.
[23]
Santiago T, Jacobs JW, Saag KG, Buttgereit F, Pereira da Silva JA. Balancing the benefits and risks of low-dose glucocorticoid in rheumatoid arthritis. Acta Reumatol Port 2015; 40(1): 10-22.
[24]
Schirrmacher R, Shiue G, Shiue SJ, et al. The introduction of new non-steroidal anti-inflammatory drugs-Arthritis and Society-14. J Labelled Compd 2001; 44: S418-20.
[25]
Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 2015; 8: 105-18.
[26]
Lee EY, Hong SJ, Park YB, et al. Gastrointestinal risk factors and non-steroidal anti-inflammatory drugs use in rheumatoid arthritis and osteoarthritis patients in Korea. J Rheum Dis 2016; 23: 47-54.
[27]
Lanas A, Boers M, Nuevo J. Gastrointestinal events in at-risk patients starting non-steroidal anti-inflammatory drugs (NSAIDs) for rheumatic diseases: the evidence study of European routine practice. Ann Rheum Dis 2015; 74(4): 675-81.
[28]
Neovius M, Arkema EV, Olsson H, et al. Drug survival on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and infliximab. Ann Rheum Dis 2015; 74(2): 354-60.
[29]
Talotta R, Berzi A, Atzeni F, et al. Paradoxical expansion of th1 and th17 lymphocytes in rheumatoid arthritis following infliximab treatment: A possible explanation for a lack of clinical response. J Clin Immunol 2015; 35(6): 550-7.
[30]
Burmester GR, Rigby WF, van Vollenhoven RF, et al. Tocilizumab in early progressive rheumatoid arthritis: Function, a randomised controlled trial. Ann Rheum Dis 2016; 75(6): 1081-91.
[31]
Listing J, Kekow J, Manger B, et al. Mortality in rheumatoid arthritis: the impact of disease activity, treatment with glucocorticoids, TNFα inhibitors and rituximab. Ann Rheum Dis 2015; 74(2): 415-21.
[32]
Fleischmann R, Weinblatt ME, Schiff M, et al. Patient-reported outcomes from a 2-year head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis. Arthritis Care Res 2015; 73: 86-94.
[33]
Strand V, Lee EB, Fleischmann R, et al. Tofacitinib versus methotrexate in rheumatoid arthritis: patient-reported outcomes from the randomised phase III Oral Start trial. RMD Open 2016; 2(2): e000308
[34]
Winthrop KL, Park SH, Gul A, et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann Rheum Dis 2016; 75(6): 1133-8.
[35]
Campbell L, Chen C, Bhagat SS, Parker RA, Östör AJ. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: A systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford) 2011; 50(3): 552-62.
[36]
Du YZ, Weng Q, Yuan H, Hu FQ. Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano 2010; 4(11): 6894-902.
[37]
Situ JQ, Ye YQ, Zhu XL, et al. Specific targeting of A54 homing peptide-functionalized dextran-g-poly(lactic-co-glycolic acid) micelles to tumor cells. Int J Nanomedicine 2015; 10: 665-75.
[38]
Alam MM, Han HS, Sung S, et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release 2017; 252: 62-72.
[39]
Heo R, Park JS, Jang HJ, et al. Hyaluronan nanoparticles bearing γ-secretase inhibitor: in vivo therapeutic effects on rheumatoid arthritis. J Control Release 2014; 192: 295-300.
[40]
Wang Q, Jiang H, Li Y, et al. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomaterials 2017; 122: 10-22.
[41]
Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release 2016; 230: 64-72.
[42]
Abolmaali S, Tamaddon A, Kamali-Sarvestani E, Ashraf M, Dinarvand R. Stealth nanogels of histinylated poly ethyleneimine for sustained delivery of methotrexate in collagen-induced arthritis model. Pharm Res 2015; 32(10): 3309-23.
[43]
Thao Q, Byeon HJ, Lee C, et al. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm 2016; 497(1-2): 268-76.
[44]
Lee SM, Kim HJ, Ha YJ, et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 2013; 7(1): 50-7.
[45]
Yang M, Ding J, Zhang Y, et al. Activated macrophage-targeted dextran–methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. J Mater Chem B Mater Biol Med 2016; 4: 2102-13.
[46]
Lee H, Bhang SH, Lee JH, Kim H, Hahn SK. Tocilizumab-alendronate conjugate for treatment of rheumatoid arthritis. Bioconjug Chem 2017; 28(4): 1084-92.
[47]
Srinath P, Vyas SP, Diwan PV. Preparation and pharmacodynamic evaluation of liposomes of indomethacin. Drug Dev Ind Pharm 2000; 26(3): 313-21.
[48]
Williams AS, Topley N, Dojcinov S, Richards PJ, Williams BD. Amelioration of rat antigen-induced arthritis by liposomally conjugated methotrexate is accompanied by down-regulation of cytokine mRNA expression. Rheumatology (Oxford) 2001; 40(4): 375-83.
[49]
Highton J, Guévremont D, Thomson J, Carlisle B, Tucker I. A trial of clodronate-liposomes as anti-macrophage treatment in a sheep model of arthritis. Clin Exp Rheumatol 1999; 17(1): 43-8.
[50]
Dellinger AL, Cunin P, Lee D, et al. Inhibition of inflammatory arthritis using fullerene nanomaterials. PLoS One 2015; 10(4)e0126290
[51]
Khoury M, Escriou V, Courties G, et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum 2008; 58(8): 2356-67.
[52]
Khoury M, Louis-Plence P, Escriou V, et al. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum 2006; 54(6): 1867-77.
[53]
Srinath P, Chary MG, Vyas SP, Diwan PV. Long-circulating liposomes of indomethacin in arthritic rats--a biodisposition study. Pharm Acta Helv 2000; 74(4): 399-404.
[54]
Palakurthi S, Vyas SP, Diwan PV. Biodisposition of PEG-coated lipid microspheres of indomethacin in arthritic rats. Int J Pharm 2005; 290(1-2): 55-62.
[55]
Metselaar JM, Wauben MH, Wagenaar-Hilbers JP, Boerman OC, Storm G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum 2003; 48(7): 2059-66.
[56]
Corvo ML, Boerman OC, Oyen WJ, et al. Intravenous administration of superoxide dismutase entrapped in long circulating liposomes. II. In vivo fate in a rat model of adjuvant arthritis. Biochim Biophys Acta 1999; 1419(2): 325-34.
[57]
Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release 2016; 230: 64-72.
[58]
Crielaard BJ, Rijcken CJ, Quan L, et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew Chem 2012; 124: 7366-70.
[59]
Li C, Li H, Wang Q, et al. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Control Release 2017; 246: 133-41.
[60]
Koo OM, Rubinstein I, Onyüksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res 2011; 28(4): 776-87.
[61]
Fu J, Lv X, Qiu L. Thermo-responsive triblock copolymer micelles containing PEG6000 for either water-soluble or water-insoluble drug sustained release and treatment. RSC Advances 2015; 5: 37451-61.
[62]
Pua ML, Yoshitomi T, Chonpathompikunlert P, Hirayama A, Nagasaki Y. Redox-active injectable gel using thermo-responsive nanoscale polyion complex flower micelle for noninvasive treatment of local inflammation. J Control Release 2013; 172(3): 914-20.
[63]
Miao B, Song C, Ma G. Injectable thermosensitive hydrogels for intra‐articular delivery of methotrexate. Shengwu Yixue Gongcheng Yu Linchuang 2011; 122: 2139-45.
[64]
Wilson DR, Zhang N, Silvers AL, Forstner MB, Bader RA. Synthesis and evaluation of cyclosporine A-loaded polysialic acid-polycaprolactone micelles for rheumatoid arthritis. Eur J Pharm Sci 2014; 51: 146-56.
[65]
Kong JS, Yoo SA, Kang JH, et al. Suppression of neovascularization and experimental arthritis by D-form of anti-flt-1 peptide conjugated with mini-PEG. Angiogenesis 2011; 14(4): 431-42.
[66]
Liu XM, Quan LD, Tian J, Laquer FC, Ciborowski P, Wang D. Syntheses of click PEG-dexamethasone conjugates for the treatment of rheumatoid arthritis. Biomacromolecules 2010; 11(10): 2621-8.
[67]
Ito HO, So T, Ueda T, Imoto T, Koga T. Prevention of collagen-induced arthritis (CIA) by treatment with polyethylene glycol-conjugated type II collagen; distinct tolerogenic property of the conjugated collagen from the native one. Clin Exp Immunol 1997; 108(2): 213-9.
[68]
Seetharaman G, Kallar AR, Vijayan VM, Muthu J, Selvam S. Design, preparation and characterization of pH-responsive prodrug micelles with hydrolyzable anhydride linkages for controlled drug delivery. J Colloid Interface Sci 2017; 492: 61-72.
[69]
Fiehn C, Neumann E, Wunder A, Krienke S, Gay S, Müller-Ladner U. Methotrexate (MTX) and albumin coupled with MTX (MTX-HSA) suppress synovial fibroblast invasion and cartilage degradation in vivo. Ann Rheum Dis 2004; 63(7): 884-6.
[70]
Shin JM, Kim SH, Thambi T, et al. A hyaluronic acid-methotrexate conjugate for targeted therapy of rheumatoid arthritis. Chem Commun (Camb) 2014; 50(57): 7632-5.
[71]
Wang D, Miller SC, Liu XM, Anderson B, Wang XS, Goldring SR. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res Ther 2007; 9(1): R2.
[72]
Yang M, Chang F, Ding J, et al. Scavenger receptor-targeted dextran sulfate-methotrexate prodrug for treatment of collagen-induced arthritis. J Control Release 2017; 259e98
[73]
Thao Q, Byeon HJ, Lee C, et al. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm 2016; 497(1-2): 268-76.
[74]
Liu M, Huang Y, Hu L, et al. Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol 2012; 12: 68.
[75]
Hwang J, Rodgers K, Oliver JC, Schluep T. α-methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Int J Nanomedicine 2008; 3(3): 359-71.
[76]
Kim MJ, Park JS, Lee SJ, et al. Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. J Control Release 2015; 216: 140-8.
[77]
Thomas TP, Goonewardena SN, Majoros IJ, et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 2011; 63(9): 2671-80.
[78]
Ishihara T, Kubota T, Choi T, Higaki M. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate. J Pharmacol Exp Ther 2009; 329(2): 412-7.
[79]
Ishihara T, Takahashi M, Higaki M, Mizushima Y, Mizushima T. Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. Int J Pharm 2010; 385(1-2): 170-5.
[80]
Scheinman RI, Trivedi R, Vermillion S, Kompella UB. Functionalized STAT1 siRNA nanoparticles regress rheumatoid arthritis in a mouse model. Nanomedicine (Lond) 2011; 6(10): 1669-82.
[81]
Park JS, Yang HN, Jeon SY, Woo DG, Kim MS, Park KH. The use of anti-COX2 siRNA coated onto PLGA nanoparticles loading dexamethasone in the treatment of rheumatoid arthritis. Biomaterials 2012; 33(33): 8600-12.
[82]
Kim WU, Lee WK, Ryoo JW, et al. Suppression of collagen-induced arthritis by single administration of poly(lactic-co-glycolic acid) nanoparticles entrapping type II collagen: A novel treatment strategy for induction of oral tolerance. Arthritis Rheum 2002; 46(4): 1109-20.
[83]
Lee WK, Park JY, Jung S, et al. Preparation and characterization of biodegradable nanoparticles entrapping immunodominant peptide conjugated with PEG for oral tolerance induction. J Control Release 2005; 105(1-2): 77-88.
[84]
Boekhorst BCMT, Jensen LB, Colombo S, et al. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J Control Release 2012; 161(3): 772-80.
[85]
Heo R, Park JS, Jang HJ, et al. Hyaluronan nanoparticles bearing γ-secretase inhibitor: in vivo therapeutic effects on rheumatoid arthritis. J Control Release 2014; 192: 295-300.
[86]
Aldayel AM, Naguib YW, O’Mary HL, et al. Acid-sensitive sheddable pegylated plga nanoparticles increase the delivery of TNF-α siRNA in chronic inflammation sites. Mol Ther Nucleic Acids 2016; 5(7)e340
[87]
Goel N, Stephens S. Certolizumab pegol. MAbs 2010; 2(2): 137-47.
[88]
Kim YJ, Chae SY, Jin CH, et al. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials 2010; 31(34): 9057-64.
[89]
Zhao J, Zhao M, Yu C, et al. Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis. Int J Nanomedicine 2017; 12: 6735-46.
[90]
Lee H, Lee MY, Bhang SH, et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 2014; 8(5): 4790-8.
[91]
Alam MM, Han HS, Sung S, et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release 2017; 252: 62-72.
[92]
Ryu JH, Lee A, Chu JU, et al. Early diagnosis of arthritis in mice with collagen-induced arthritis, using a fluorogenic matrix metalloproteinase 3-specific polymeric probe. Arthritis Rheum 2011; 63(12): 3824-32.
[93]
Fernandes JC, Wang H, Jreyssaty C, et al. Bone-protective effects of nonviral gene therapy with folate-chitosan DNA nanoparticle containing interleukin-1 receptor antagonist gene in rats with adjuvant-induced arthritis. Mol Ther 2008; 16(7): 1243-51.
[94]
Dai F, Du M, Liu Y, Liu G, Liu Q, Zhang X. Folic acid-conjugated glucose and dextran coated iron oxide nanoparticles as MRI contrast agents for diagnosis and treatment response of rheumatoid arthritis. J Mater Chem B Mater Biol Med 2014; 2: 2240-7.
[95]
Lee SJ, Lee A, Hwang SR, et al. TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol Ther 2014; 22(2): 397-408.
[96]
Jain S, Tran TH, Amiji M. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 2015; 61: 162-77.
[97]
Babazada H, Yamashita F, Hashida M. Suppression of experimental arthritis with self-assembling glycol-split heparin nanoparticles via inhibition of TLR4-NF-κB signaling. J Control Release 2014; 194: 295-300.
[98]
Chopra M, Jain R, Mazumder S. Synthesis and characterization of polymeric curcumin nanoparticles. International Conference on Nanotechnology 2015.
[99]
Zhou HF, Hu G, Wickline SA, Lanza GM, Pham CT. Synergistic effect of antiangiogenic nanotherapy combined with methotrexate in the treatment of experimental inflammatory arthritis. Nanomedicine (Lond) 2010; 5(7): 1065-74.
[100]
Costa Lima SA, Reis S. Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: A multi-drug system for theranostic in rheumatoid arthritis. Colloids Surf B Biointerfaces 2015; 133: 378-87.
[101]
Duan J, Dong J, Zhang T, et al. Polyethyleneimine-functionalized iron oxide nanoparticles for systemic siRNA delivery in experimental arthritis. Nanomedicine (Lond) 2014; 9(6): 789-801.
[102]
Zhou HF, Yan H, Hu Y, et al. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano 2014; 8(7): 7305-17.
[103]
Yeh PH, Sun JS, Wu HC, Hwang LH, Wang TW. Stimuli-responsive HA-PEI nanoparticles encapsulating endostatin plasmid for stem cell gene therapy. RSC Advances 2013; 3: 12922-32.
[104]
Butoescu N, Seemayer CA, Foti M, Jordan O, Doelker E. Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials 2009; 30(9): 1772-80.
[105]
Arora R, Kuhad A, Kaur IP, Chopra K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur J Pain 2015; 19(7): 940-52.
[106]
Ye J, Wang Q, Zhou X, Zhang N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm 2008; 352(1-2): 273-9.
[107]
Xue M, Jiang ZZ, Wu T, et al. Anti-inflammatory effects and hepatotoxicity of Tripterygium-loaded solid lipid nanoparticles on adjuvant-induced arthritis in rats. Phytomedicine 2012; 19(11): 998-1006.
[108]
Schmitt F, Lagopoulos L, Käuper P, et al. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Release 2010; 144(2): 242-50.
[109]
Markides H, Kehoe O, Morris RH, El Haj AJ. Whole body tracking of superparamagnetic iron oxide nanoparticle-labelled cells--a rheumatoid arthritis mouse model. Stem Cell Res Ther 2013; 4(5): 126.
[110]
Nam EJ, Kang JH, Sung S, et al. A matrix metalloproteinase 1-cleavable composite peptide derived from transforming growth factor β-inducible gene h3 potently inhibits collagen-induced arthritis. Arthritis Rheum 2013; 65(7): 1753-63.
[111]
Zhou HF, Yan H, Pan H, et al. Peptide-siRNA nanocomplexes targeting NF-κB subunit p65 suppress nascent experimental arthritis. J Clin Invest 2014; 124(10): 4363-74.
[112]
Shinde CG, Kumar TMP, Venkatesh MP, et al. Intra-articular delivery of a methotrexate loaded nanostructured lipid carrier based smart gel for effective treatment of rheumatic diseases. RSC Advances 2016; 6: 12913-24.
[113]
Jung YS, Park W, Na K. Temperature-modulated noncovalent interaction controllable complex for the long-term delivery of etanercept to treat rheumatoid arthritis. J Control Release 2013; 171(2): 143-51.
[114]
Levick JR. Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J Rheumatol 1990; 17(5): 579-82.
[115]
Chang X, Wei C. Glycolysis and rheumatoid arthritis. Int J Rheum Dis 2011; 14(3): 217-22.
[116]
Yuan F, Quan LD, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev 2012; 64(12): 1205-19.
[117]
Guan J, Zhou ZQ, Chen MH, et al. Folate-conjugated and pH-responsive polymeric micelles for target-cell-specific anticancer drug delivery. Acta Biomater 2017; 60: 244-55.
[118]
Gao M, Jia X, Kuang G, Li Y, Liang D, Wei Y. Thermo- and ph-responsive dendronized copolymers of styrene and maleic anhydride pendant with poly(amidoamine) dendrons as side groups. Macromolecules 2013; 46: 1723-31.
[119]
Lee S, Yang SC, Heffernan MJ, Taylor WR, Murthy N. Polyketal microparticles: A new delivery vehicle for superoxide dismutase. Bioconjug Chem 2007; 18(1): 4-7.
[120]
Mapp PI, Grootveld MC, Blake DR. Hypoxia, oxidative stress and rheumatoid arthritis. Br Med Bull 1995; 51(2): 419-36.
[121]
Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS One 2016; 11(4)e0152925
[122]
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373-99.
[123]
Yoshihara Y, Yamada H. Matrix metalloproteinases and cartilage matrix degradation in rheumatoid arthritis. Clin Calcium 2007; 17(4): 500-8.
[124]
Li W, Huang L, Ying X, et al. Antitumor drug delivery modulated by a polymeric micelle with an upper critical solution temperature. Angew Chem Int Ed Engl 2015; 54(10): 3126-31.
[125]
Li WS, Wang XJ, Zhang S, et al. Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle. Biomaterials 2017; 131: 36-46.
[126]
Zhang Q, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 2018; 13(12): 1182-90.