[1]
Blando, F.; Albano, C.; Liu, Y.; Nicoletti, I.; Corradini, D.; Tommasi, N.; Gerardi, C.; Mita, G.; Kitts, D.D. Polyphenolic composition and antioxidant activity of under-utilised Prunus mahaleb L. fruit. J. Sci. Food Agric., 2016, 96(8), 2641-2649.
[2]
Chuang, C.C.; Mclntosh, M.K. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu. Rev. Nutr., 2011, 31, 155-176.
[3]
Leouifoudi, I.; Harnafi, H.; Zyad, A. Olive Mill Waste extracts: polyphenols content, antioxidant and antimicrobial activities. Adv. Pharmacol. Sci., 2015, 2015, 1-11.
[4]
Mezni, F.; Shili, S.; Ali, N.B.; Khouja, M.L. Khaldi, Maaroufi, A. Evaluation of Pistacia lentiscus seed oil and phenolic compounds for in vitro antiproliferative effects against bhk21 cells. Pharm. Biol., 2016, 54(5), 747-751.
[5]
Saini, R.; Dangwall, K.; Singh, H.; Garg, V. Antioxidant and antiproliferative activities of phenolics isolated from fruits of Himalayan yellow raspberry (Rubus ellipticus). J. Food Sci. Technol., 2014, 51(11), 3369-3375.
[6]
Gallage, N.J.; Hansen, E.H.; Kannangara, R.; Olsen, C.E.; Motawia, M.S.; Jørgensen, K.; Inger, H.; Hebelstrup, K.; Grisoni, M.; Møller, B.L. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat. Commun., 2014, 5, 4037.
[7]
Yang, W.; Tang, H.; Ni, J.; Wu, Q.; Hua, D.; Tao, F.; Xu, P. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. PLoS One, 2013, 8(6)e67339
[8]
Liang, J.A.; Wu, S.L.; You, H.Y.; School, C.Y.; Ho, T.Y. Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-κB signaling pathway in human hepatocellular carcinoma cells. Mol. Pharmacol., 2009, 75, 151-157.
[9]
Lirdprapamongkol, K.; Sakurai, H.; Suzuki, S.; Koizumi, K.; Prangsaengtong, O.; Viriyaroj, A.; Ruchirawat, S.; Svasti, J.; Saiki, I. Albany Adult School I. Vanillin enhances TRAIL-induced apoptosis in cancer cells through stage of NF-κB activation. In Vivo, 2010, 24(4), 501-506.
[10]
Dhanalakshmi, C.; Manivasagam, T.; Nataraj, J.; Justin Thenmozhi, A.; This, M. Neurosupportive role of vanillin, the natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-11.
[11]
Murakami, Y.; Hirata, A.; Ito, S.; Shoji, M.; Tanaka, S.; Yasui, T.; Machino, M.; Fujisawa, S. Re-evaluation of cyclooxygenase-2-inhibiting activity of vanillin and guaiacol in macrophages stimulated with lipopolysaccharide. Anticancer Res., 2007, 27(2), 801-807.
[12]
Tai, A.; Sawano, T.; Yazama, F.; Ito, H. Evaluation of the antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta, 2011, 1810(2), 170-177.
[13]
Bezerra, D.P.; Soares, A.K.; de Sousa, D.P. Overview of the role of vanillin on redox status and cancer development. Oxid. Med. Cell. Longev., 2016, 20169734816
[14]
Kumar, V.; Abbas, A.; Aster, J.C. Robbins & Cotran Pathologic Patologia-Bases of Diseases, 9th ed; Elsevier: Rio de Janeiro, Brazil, 2013, pp. 29-32.
[15]
Fischer, R.; Maier, O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid. Med. Cell. Longev., 2015, 2015610813
[16]
Smallwood, M.J.; Nissim, A.; Knight, A.R.; Whiteman, M.; Haigh, R.; Winyard, P.G. Oxidative stress in autoimmune rheumatic diseases. Free Radic. Biol. Med., 2018, 2018, S0891-S5849.
[17]
Ayala-Fontánez, N.; Soler, D.C.; McCormick, T.S. Current knowledge on psoriasis and autoimmune diseases. Psoriasis (Auckl), 2016, 6, 7-32.
[18]
Bel, E.H.; Brinke, A.T. New anti-eosinophil drugs for asthma and COPD: Targeting the trait! Chest, 2017, 152(6), 1276-1282.
[19]
Thomson, A.B.; Gupta, M.; Freeman, J. Use of tumor necrosis factor-blockers for Crohn’s disease. World J. Gastroenterol., 2012, 18(35), 4823-4854.
[20]
Zhai, K.F.; Duan, H.; Luo, L.; Cao, W.G.; Han, F.K.; Shan, L.L.; Fang, X.M. Protective effects of paeonol on inflammatory response in IL-1β-induced human fibroblast-like Synoviocytes and rheumatoid arthritis progression via modulating NF-κB pathway. Inflammopharmacology, 2017, 25(5), 523-532.
[21]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[22]
Sies, H. Oxidative stress: From basic research clinical application. Am. J. Med., 1991, 91(3), S31-S38.
[23]
Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[24]
Moniruzzaman, M.; Lee, G.; Bose, S.; Choi, M.; Jung, J.K.; Lee, H.; Cho, J. Antioxidant and Anti-inflammatory activities of N-((3, 4-dihydro-2H-benzo [h] chromene-2-yl) methyl)-4-methoxyaniline in LPS-induced BV2 Microglial Cells. Biol. Pharm. Bull., 2015, 38(12), 1831-1835.
[25]
Gutiérrez-Grijalva, E.P.; Picos-Salas, M.A.; Leyva-López, N.; Criollo-Mendoza, M.S.; Vazquez-Olivo, G.; Heredia, J.B. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits. Plants, 2017, 7(1), 2.
[26]
Lesjak, M.; Nataša, I.B.; Pintać, S.D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Neda Dukić, N.M. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[27]
Jang, Y.W.; Lee, J.Y.; Kim, C.J. Anti-cannibalistic activity of phenolic compounds from the roots of Gastrodia elata Bl. Int. Immunopharmacol., 2010, 10(2), 147-154.
[28]
Wu, S.L.; Chen, J.C.; Li, C.C.; So, H.Y.; Ho, T.Y.; School, C.Y. Vanillin improves and prevents trinitrobenzene sulfonic acid-induced colitis in mice. J. Pharmacol. Exp. Ther., 2009, 330(2), 370-376.
[29]
Wojdasiewicz, P.; Poniatowski, Ł. Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014, 1-19.
[30]
Arab, H.H.; Salama, S.A.; Omar, H.A.; Arafa, E.S.A.; Principe, I.A. Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions. PLoS One, 2015, 10(3)e0122417
[31]
Sarkar, N.; Purkayastha, S.; Sarkar, B.; Guha, D. Modulation of gastric mucosal mast cell population: Role of vestibulo cerebellar lesion. Indian J. Exp. Biol., 2006, 44, 627-634.
[32]
Thomas, D.; Govindhan, S.; Baiju, E.C.; Arjun, G.; Kunnumakkara, A.B.; Padikkala, J. Cyperus rotundus L. prevents non-steroidal anti-inflammatory drug-induced gastric mucosal damage by inhibiting oxidative stress. J. Basic Clin. Physiol. Pharmacol., 2015, 26(5), 485-490.
[33]
Al-Asmari, A.; Al Shahrani, H.; Al Masri, N.; Al Faraidi, A.; Elfaki, I.; Arshaduddin, M. Vanillin abrogates ethanol-induced gastric injury in rats via modulation of gastric secretion, oxidative stress and inflammation. Toxicol. Rep., 2016, 3, 105-113.
[34]
Molderings, G.J.; Meis, K.; Kolck, U.W.; Homann, J.; Frieling, T. Comparative analysis of mutation of kit tyrosine kinase in mast cells from patients with systemic mast cell activation syndrome and healthy subjects. Immunogenetics, 2010, 62(11-12), 721-727.
[35]
An, S.M.; Park, C.H.; Heo, J.C.; Park, J.Y.; Woo, S.U.; Seo, J.H.; Lee, S.H. Gastrodia Elata Blume protects against stress-induced gastric mucosal lesions in mice. Int. J. Mol. Med., 2007, 20(2), 209-215.
[36]
Park, S.; Kim, D.S.; Kang, S. Gastrodia Elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur. J. Nutr., 2011, 50(2), 107-118.
[37]
Makni, M.; Chtourou, Y.; Fetoui, H.; Garoui, E.M.; Boudawara, T.; Zeghal, N. Evaluation of the antioxidant, anti-inflammatory and hepatoprotective properties of vanillin in carbon fumigants-treated rats. Eur. J. Pharmacol., 2011, 668(1-2), 133-139.
[38]
Galgani, J.E.; Núñez, B.; Videla, L.A. Vanillin suppresses Kupffer cell-related carbon colloidal-induced respiratory burst activity in isolated perfused rat liver: Anti-inflammatory implications. Food Funct., 2012, 3, 1319-1323.
[39]
Kanegae, M.P.; Fonseca, L.M.; Brunetti, I.L.; Silva, S.O.; Ximenes, V.F. The reactivity of ortho-methoxy-substituted catechol radicals with sulfhydryl groups: contribution for the comprehension of the mechanism of stage of NADPH oxidase by apocynin. Biochem. Pharmacol., 2007, 74(3), 457-464.
[40]
Saad, H.B.; Driss, D.; Amara, I.B.; Boudawara, O.; Boudawara, T.; Chaabouni, S.E.; Zeghal, K.M.; Hakim, A. Altered hepatic mRNA expression of immune response‐associated DNA damage in mice liver induced by potassium bromate: Protective role of vanillin. Environ. Toxicol., 2016, 31(12), 1796-1807.
[41]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[42]
Lam, P.; Cheung, F.; Tan, H.Y.; Wang, N.; Yuen, M.F.; Feng, Y. Hepatoprotective effects of Chinese medicinal herbs: The focus on anti-inflammatory and anti-oxidative activities. Int. J. Mol. Sci., 2016, 17(4), 465.
[43]
Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int., 2008, 73(9), 994-1007.
[44]
Alhoshani, A.R.; Hafez, M.; Husain, S.; Al-Sheikh, A.M.; Alotaibi, M.R.; Al-Rejaie, S.S.; Al-Shabanah, O.A. Protective effect of rutin supplementation against cisplatin-induced nephrotoxicity in rats. BMC Nephrol., 2017, 18(1), 194-203.
[45]
Lee, H.; Lee, G.; Kim, H.; Bae, H. Paeonol, the major compound of moutan cortex, attenuates cisplatin-induced nephrotoxicity in mice. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-7.
[46]
Elseweidy, M.; Askar, M.E.; Elswefy, S.E.; Shawky, M. The new modulator Vanillin candidate renal injury induced by cisplatin in experimental rats. Cytokine, 2017, 99, 260-265.
[47]
Fouad, A.A.; Al-Melhim, W.N. Vanillin mitigates the adverse impact of cisplatin and methotrexate on rat kidneys. Hum. Exp. Toxicol., 2017, 2017, 1-7.
[48]
Makni, M.; Chtourou, Y.; Garoui, E.M.; Boudawara, T.; Fetoui, H. Fumigants Carbon-induced nephrotoxicity and DNA damage in rats: protective role of vanillin. Hum. Exp. Toxicol., 2012, 31(8), 844-852.
[49]
Ho, K.; Yazan, L.S.; Ismail, N.; Ismail, M. Toxicology study of vanillin on rats orally and intra-peritoneal administration. Food Chem. Toxicol., 2011, 49(1), 25-30.
[50]
Lin, L.C.; Chen, Y.F.; Lee, W.C.; Wu, Y.T.; Tsai, T.H. Pharmacokinetics of gastrodin and its metabolite p-hydroxybenzyl alcohol in rat blood, brain and bile by microdialysis coupled to LC-MS/ MS. J. Pharm. Biomed. Anal., 2008, 48(3), 909-917.
[51]
Saad, H.; Kharrat, N.; Driss, D.; Gargouri, M.; Marrakchi, R.; Jammoussi, K.; Hakim, A. Effects of vanillin on potassium bromate-induced neurotoxicity in adult mice: Impact on behavior, oxidative stress, inflammation and gene expression, fatty acid composition. Arch. Physiol. Biochem., 2017, 123(3), 165-174.
[52]
Tsai, C.F.; Huang, C.L.; Lin, Y.L.; Lee, Y.C.; Yang, Y.C.; Huang, N.K. The neuroprotective effects of an extract of Gastrodia Elata. J. Ethnopharmacol., 2011, 138(1), 119-125.
[53]
Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis., 2010, 37(3), 510-518.
[54]
Virgilio, A.; Greco, A.; Fabbrini, G.; Inghilleri, M.; Rizzo, M.I.; Gallo, A.; Vincentiis, M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev., 2016, 15(10), 1005-1011.
[55]
Yan, X.; Liu, D.F.; Zhang, X.Y.; Liu, D.; Xu, S.Y.; Chen, G.X.; Liu, J.X. Vanillin protects dopaminergic neurons against inflammation-mediated cell death by inhibiting ERK1/2, p38 and the NF-κB signaling pathway. Int. J. Mol. Sci., 2017, 18(2), 389.
[56]
Dhanalakshmi, C.; Janakiraman, U.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.; Kalandar, A.; Guillemin, G.J. Vanillin attenuated behavioral impairments, neurochemical deficts, oxidative stress and apoptosis against rotenone induced rat model of Parkinson’s disease. Neurochem. Res., 2016, 41(8), 1899-1910.
[57]
Cheng, H.M.; Chen, F.Y.; Li, C.C.; So, H.Y.; Liao, Y.F.; Ho, T.Y.; School, C.Y. Oral administration of Vanillin Improves Imiquimod-Induced Psoriatic Skin Inflammation in mice. J. Agric. Food Chem., 2017, 65(47), 10233-10242.
[58]
Lim, E.J.; Kang, H.J.; Jung, H.J.; Song, Y.S.; Lim, C.J.; Park, E.H. Anti-angiogenic, anti-inflammatory and anti-nociceptive activities of vanillin in ICR mice. Biomol. Ther. , 2008, 16, 132-136.
[59]
He, F.; Duan, X.; Dai, R.; Wang, W.; Yang, C.; Lin, Q. Protective Effects of ethyl acetate extraction from Gastrodia Elata blume on blood-brain barrier in cerebral focal ischemia reperfusion. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 199-209.
[60]
Strand, L.P.; Scheline, R.R. The metabolism of vanillin and isovanillin in the rat. Xenobiotica, 1975, 5(1), 49-63.
[61]
Chao, W.W.; Hong, Y.H.; Chen, M.L.; Lin, B.F. Inhibitory effects of Angelica sinensis ethyl acetate extract and major compounds on NF-κB trans-activation activity and LPS-induced inflammation. J. Ethnopharmacol., 2010, 129(2), 244-249.
[62]
Hua, Y.; Xue, W.; Zhang, M.; Wei, Y.; Ji, P. Metabonomics study on the hepatoprotective effect of polysaccharides from different preparations of Angelica sinensis. J. Ethnopharmacol., 2014, 151(3), 1090-1099.
[63]
Bunel, V.; Antoine, M.H.; Nortier, J.; Duez, P.; Stévigny, C. Nephroprotective effects of ferulic acid, Z-ligustilide and E-ligustilide isolated from Angelica sinensis against cisplatin toxicity in vitro. Toxicol. In Vitro, 2015, 29(3), 458-467.
[64]
Nbalagan, V.; Raju, K.; Shanmugam, S. Manoharan. Assessment of Lipid Peroxidation and Antioxidant Status in Vanillic Acid Treated 7, 12-Dimethylbenz [a] anthracene Induced Hamster Buccal Pouch Carcinogenesis. J. Clin. Diagn. Res: JCDR, 2017, 11(3), BF01-BF04.
[65]
Chou, T.H.; Ding, H.Y.; Hung, W.J.; Liang, C.H. Antioxidative characteristics and inhibition of α‐melanocyte‐stimulating hormone‐stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp. Dermatol., 2010, 19(8), 742-750.
[66]
Prince, P.S.M.; Rajakumar, S.; Dhanasekar, K. Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats. Eur. J. Pharmacol., 2011, 668(1-2), 233-240.
[67]
Kim, S.J.; Kim, M.C.; Um, J.Y.; Hong, S.H. The beneficial effect of vanillic acid on ulcerative colitis. Molecules, 2010, 15(10), 7208-7217.
[68]
Kim, M.C.; Kim, S.J.; Kim, D.S.; Jeon, Y.D.; Park, S.J.; Lee, H.S.; Um, J.Y.; Hong, S.H. Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated peritoneal mouse macrophages. Immunopharmacol. Immunotoxicol., 2011, 33(3), 525-532.
[69]
Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Kobayashi, M.; Tamesada, M.; Yagi, K. Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Biol. Pharm. Bull., 2009, 32(7), 1215-1219.
[70]
Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Watari, A.; Kobayashi, M.; Yagi, K. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol. Pharm. Bull., 2010, 33(6), 983-987.
[71]
Kakalij, M.R.; Tejaswini, G.; Patil, M.A.; Dinesh, K.B.; Diwan, P.V. Vanillic acid ameliorates cationic bovine serum albumin induced immune complex glomerulonephritis in BALB/c mice. Drug Dev. Res., 2016, 77(4), 171-179.
[72]
Amin, F.U.; Shah, S.A.; Kim, M.O. Vanillic acid attenuates Aβ 1-42-induced oxidative stress and cognitive impairment in mice. Sci. Rep., 2017, 7, 40753.
[73]
Huang, S.H.; Lin, C.M.; Chiang, B.H. Protective effects of Angelica sinensis extract on amyloid β-peptide-induced neurotoxicity. Phytomedicine, 2008, 15(9), 710-721.
[74]
Zhan, H.D.; Zhou, H.Y.; Sui, Y.P.; Du, X.L.; Wang, W.H.; Dai, L.; Jiang, T.L. The rhizome of Gastrodia elata Blume-An ethnopharmacological review. J. Ethnopharmacol., 2016, 18(9), 361-385.
[75]
Kim, I.S.; Choi, D.K.; Jung, H.J. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules, 2011, 16(7), 5349-5361.
[76]
An, H.; Kim, I.S.; Koppula, S.; Kim, B.W.; Park, P.J.; Lim, B.O.; Choi, D.K. Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells. J. Ethnopharmacol., 2010, 130(2), 290-298.
[77]
Jung, H.J.; Song, Y.S.; Lim, C.J.; Park, E.H. Anti-angiogenic, anti-inflammatory and anti-nociceptive activities of vanillyl alcohol. Arch. Pharm. Res., 2008, 31(10), 1275-1279.
[78]
Murakami, M.; Kudo, I. Phospholipase A2. J. Biochem., 2002, 131(3), 285-292.
[79]
Dileep, K.V.; Remya, C.; Cerezo, J.; Fassihi, A.; Pérez-Sánchez, H.; Sadasivan, C. Comparative studies on the inhibitory activities of selected benzoic acid derivatives against secretory phospholipase A2, a key enzyme involved in the inflammatory pathway. Mol. Biosyst., 2015, 11(7), 1973-1979.
[80]
Yamada, M.; Okada, Y.; Yoshida, T.; Nagasawa, T. Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl. Microbiol. Biotechnol., 2007, 73(5), 1025-1030.
[81]
Zhao, L.Q.; Sun, Z.H.; Zheng, P.; Zhu, L.L. Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol. Lett., 2005, 27(19), 1505-1509.
[82]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliand, G.; Bhat, T.N.; Weissig, H.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[83]
Van Den Heuvel, R.H.; Fraaije, M.W.; Mattevi, A.; Van Berkel, W.J. Asp-170 is crucial for the redox properties of vanillyl-alcohol oxidase. J. Biol. Chem., 2000, 275(20), 14799-14808.
[84]
Janssen, M.J.; Van Der Wiel, W.A.; Beiboer, S.H.; Van Kampen, M.D.; Verheji, H.M.; Slotboom, A.J.; Egmond, M.R. Catalytic role of the active site histidine of porcine pancreatic phospholipase A2 probed by the variants H48Q, H48N and H48K. Protein Eng., 1999, 12(6), 497-503.
[85]
Tatulian, S.A. Structural effects of covalent inhibition of phospholipase A2 suggest allosteric coupling between membrane binding and catalytic sites. Biophys. J., 2003, 84(3), 1773-1783.
[86]
Shukla, P.K.; Gautam, L.; Sinha, M.; Kaur, P.; Sharma, S.; Singh, T.P. Structures and binding studies of the complexes of phospholipase A2 with five inhibitors. Biochim. Biophys. Acta, 2015, 1854(4), 269-27.