[1]
Malki, A.; Elbayaa, R.Y.; Ali, O.; Sultan, A.; Youssef, A.M. Novel quinuclidinone derivatives induced apoptosis in human breast cancer via targeting p53. Bioorg. Chem., 2017, 72, 57-63.
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet‐Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[3]
Jabłońska-Trypuć, A.; Świderski, G.; Krętowski, R.; Lewandowski, W. Newly synthesized doxorubicin complexes with selected metals-synthesis, structure and anti-breast cancer activity. Molecules, 2017, 22(7), 1106.
[4]
Fan, L.; Cao, X.; Yan, H.; Wang, Q.; Tian, X.; Zhang, L.; He, X.; Borjihan, G. The synthetic antihyperlipidemic drug potassium piperate selectively kills breast cancer cells through inhibiting G1-S-phase transition and inducing apoptosis. Oncotarget, 2017, 8(29), 47250.
[5]
Liu, L.; Tang, Z.; Wu, C.; Li, X.; Huang, A.; Lu, X.; You, Q.; Xiang, H. Synthesis and biological evaluation of 4, 6-diaryl-2-pyrimidinamine derivatives as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2018, 28(6), 1138-1142.
[7]
Sayeed, M.A.; Bracci, M.; Lazzarini, R.; Tomasetti, M.; Amati, M.; Lucarini, G.; Di Primio, R.; Santarelli, L. Use of potential dietary phytochemicals to target miRNA: promising option for breast cancer prevention and treatment? J. Funct. Foods, 2017, 28, 177-193.
[8]
Fortes, M.P.; da Silva, P.B.; da Silva, T.G.; Kaufman, T.S.; Militao, G.C.; Silveira, C.C. Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents. Eur. J. Med. Chem., 2016, 118, 21-26.
[9]
Singh Sidhu, J.; Singla, R.; Jaitak, V. Indole derivatives as anticancer agents for breast cancer therapy: A review. Anticancer. Agents Med. Chem., 2016, 16(2), 160-173.
[10]
Rathi, K.A.; Syed, R.; Singh, V.; Shin, H-S.; Patel, V.R. Kinase inhibitor indole derivatives as anticancer agents: A patent review. Recent Patents Anticancer Drug Discov., 2017, 12(1), 55-72.
[11]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanism. Eur. J. Med. Chem., 2018, 150, 9-29.
[12]
Almutairi, M.S.; Zakaria, A.S.; Ignasius, P.P.; Al-Wabli, R.I.; Joe, I.H.; Attia, M.I. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches. J. Mol. Struct., 2018, 1153, 333-345.
[13]
Lin, W.; Zheng, Y-X.; Xun, Z.; Huang, Z-B.; Shi, D-Q. Microwave-assisted regioselective synthesis of 3-functionalized indole derivatives via three-component domino reaction. ACS Comb. Sci., 2017, 19(11), 708-713.
[14]
Abdelhamid, A.O.; Gomha, S.M.; Abdelriheem, N.A.; Kandeel, S.M. Synthesis of new 3-heteroarylindoles as potential anticancer agents. Molecules, 2016, 21(7), 929.
[15]
Bhale, P.S.; Chavan, H.V.; Dongare, S.B.; Shringare, S.N.; Mule, Y.B.; Nagane, S.S.; Bandgar, B.P. Synthesis of extended conjugated indolyl chalcones as potent anti-breast cancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2017, 27(7), 1502-1507.
[16]
Szaefer, H.; Krajka-Kuźniak, V.; Licznerska, B.; Bartoszek, A.; Baer-Dubowska, W. Cabbage juices and indoles modulate the expression profile of AhR, ERα, and Nrf2 in human breast cell lines. Nutr. Cancer, 2015, 67(8), 1344-1356.
[17]
Barigye, S.J.; Freitas, M.P.; Ausina, P.; Zancan, P.; Sola-Penna, M.; Castillo-Garit, J.A. Discrete fourier transform-based multivariate image analysis: Application to modeling of aromatase inhibitory activity. ACS Comb. Sci., 2018, 20(2), 75-81.
[18]
Yadav, M.R.; Barmade, M.A.; Tamboli, R.S.; Murumkar, P.R. Developing steroidal aromatase inhibitors-an effective armament to win the battle against breast cancer. Eur. J. Med. Chem., 2015, 105, 1-38.
[19]
Ghosh, D.; Lo, J.; Egbuta, C. Recent progress in the discovery of next generation inhibitors of aromatase from the structure-function perspective. J. Med. Chem., 2016, 59(11), 5131-5148.
[20]
Recanatini, M.; Cavalli, A. Comparative molecular field analysis of non-steroidal aromatase inhibitors: An extended model for two different structural classes. Bioorg. Med. Chem., 1998, 6(4), 377-388.
[21]
Osborne, C.K.; Schiff, R. Aromatase inhibitors: future directions. J. Steroid Biochem. Mol. Biol., 2005, 95(1-5), 183-187.
[22]
Brodie, A.; Sabnis, G.; Jelovac, D. Aromatase and breast cancer. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 97-102.
[23]
Spinelli, G.; Tomao, F.; Miele, E.; Pasciuti, G.; Russillo, M.; Tomao, S. Aromatase inhibitors in advanced breast cancer. Recenti Prog. Med., 2008, 99(1), 34-38.
[24]
Dutta, U.; Pant, K. Aromatase inhibitors: Past, present and future in breast cancer therapy. Med. Oncol., 2008, 25(2), 113-124.
[25]
Colozza, M.; Minenza, E.; Nunzi, M.; Sabatini, S.; Dinh, P.; Califano, R.; De Azambuja, E. Aromatase inhibitors: a new reality for the adjuvant endocrine treatment of early-stage breast cancer in postmenopausal women.In: Recent Advances in Medicinal Chemistry; Elsevier, 2015, Vol. 1, pp. 99-130.
[26]
Gobbi, S.; Cavalli, A.; Bisi, A.; Recanatini, M. From nonsteroidal aromatase inhibitors to multifunctional drug candidates: Classic and innovative strategies for the treatment of breast cancer. Curr. Top. Med. Chem., 2008, 8(10), 869-887.
[27]
Neves, M.A.; Dinis, T.C.; Colombo, G.; Melo, M.L.S. An efficient steroid pharmacophore-based strategy to identify new aromatase inhibitors. Eur. J. Med. Chem., 2009, 44(10), 4121-4127.
[28]
Jha, T.; Adhikari, N.; Halder, A.K.; Saha, A. Ligand-and structure-based drug design of non-steroidal aromatase inhibitors (NSAIs) in breast cancer.In: Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment; IGI Global, 2015, pp. 400-470.
[29]
Adhikari, N.; Amin, S.A.; Saha, A.; Jha, T. Combating breast cancer with non-steroidal aromatase inhibitors (NSAIs): Understanding the chemico-biological interactions through comparative SAR/QSAR study. Eur. J. Med. Chem., 2017, 137, 365-438.
[30]
Ahmad, I. Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. Eur. J. Med. Chem., 2015, 102, 375-386.
[31]
Neves, M.A.; Dinis, T.C.; Colombo, G.; Sá e Melo, M.L. Fast three dimensional pharmacophore virtual screening of new potent non-steroid aromatase inhibitors. J. Med. Chem., 2008, 52(1), 143-150.
[32]
Kang, H.; Xiao, X.; Huang, C.; Yuan, Y.; Tang, D.; Dai, X.; Zeng, X. Potent aromatase inhibitors and molecular mechanism of inhibitory action. Eur. J. Med. Chem., 2018, 143, 426-437.
[33]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[34]
Wang, R.; Shi, H-F.; Zhao, J-F.; He, Y-P.; Zhang, H-B.; Liu, J-P. Design, synthesis and aromatase inhibitory activities of novel indole-imidazole derivatives. Bioorg. Med. Chem. Lett., 2013, 23(6), 1760-1762.
[35]
Lézé, M-P.; Palusczak, A.; Hartmann, R.W.; Le Borgne, M. Synthesis of 6-or 4-functionalized indoles via a reductive cyclization approach and evaluation as aromatase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(16), 4713-4715.
[36]
Marchand, P.; Le Borgne, M.; Palzer, M.; Le Baut, G.; Hartmann, R.W. Preparation and pharmacological profile of 7-(α-Azolylbenzyl)-1H-indoles and indolines as new aromatase inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(9), 1553-1555.
[37]
Lézé, M-P.; Borgne, M.L.; Marchand, P.; Loquet, D.; Kogler, M.; Baut, G.L.; Palusczak, A.; Hartmann, R.W. 2-and 3-[(aryl)(azolyl) methyl] indoles as potential non-steroidal aromatase inhibitors. J. Enzyme Inhib. Med. Chem., 2004, 19(6), 549-557.
[38]
Lézé, M-P.; Le Borgne, M.; Pinson, P.; Palusczak, A.; Duflos, M.; Le Baut, G.; Hartmann, R.W. Synthesis and biological evaluation of 5-[(aryl)(1H-imidazol-1-yl) methyl]-1H-indoles: Potent and selective aromatase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(5), 1134-1137.
[39]
Zhou, Q.; Zhu, J.; Chen, J.; Ji, P.; Qiao, C. N-Arylsulfonylsubstituted-1H indole derivatives as small molecule dual inhibitors of signal transducer and activator of transcription 3 (STAT3) and tubulin. Bioorg. Med. Chem., 2018, 26(1), 96-106.
[40]
Yan, J.; Hu, J.; An, B.; Huang, L.; Li, X. Design, synthesis, and biological evaluation of cyclic-indole derivatives as anti-tumor agents via the inhibition of tubulin polymerization. Eur. J. Med. Chem., 2017, 125, 663-675.
[42]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124.
[43]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res., 2012, 29(11), 2943-2971.
[44]
Hu, M.J.; Zhang, B.; Yang, H.K.; Liu, Y.; Chen, Y.R.; Ma, T.Z.; Lu, L.; You, W.W.; Zhao, P.L. Design, synthesis and molecular docking studies of novel indole-pyrimidine hybrids as tubulin polymerization inhibitors. Chem. Biol. Drug Des., 2015, 86(6), 1491-1500.
[45]
Kamath, P.R.; Sunil, D.; Ajees, A.A. Synthesis of indole-quinoline-oxadiazoles: Their anticancer potential and computational tubulin binding studies. Res. Chem. Intermed., 2016, 42(6), 5899-5914.
[46]
Kim, B-H.; Yi, E.H.; Ye, S-K. Signal transducer and activator of transcription 3 as a therapeutic target for cancer and the tumor microenvironment. Arch. Pharm. Res., 2016, 39(8), 1085-1099.
[48]
Wang, Y-T.; Qin, Y-J.; Yang, N.; Zhang, Y-L.; Liu, C-H.; Zhu, H-L. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Eur. J. Med. Chem., 2015, 99, 125-137.
[49]
Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem., 2016, 59(11), 5264-5283.
[50]
Ramya, P.S.; Angapelly, S.; Guntuku, L.; Digwal, C.S.; Babu, B.N.; Naidu, V.; Kamal, A. Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2017, 127, 100-114.
[51]
Carbone, A.; Parrino, B.; Barraja, P.; Spanò, V.; Cirrincione, G.; Diana, P.; Maier, A.; Kelter, G.; Fiebig, H-H. Synthesis and antiproliferative activity of 2, 5-bis (3′-indolyl) pyrroles, analogues of the marine alkaloid nortopsentin. Mar. Drugs, 2013, 11(3), 643-654.
[52]
Tantak, M.P.; Klingler, L.; Arun, V.; Kumar, A.; Sadana, R.; Kumar, D. Design and synthesis of bis (indolyl) ketohydrazide-hydrazones: Identification of potent and selective novel tubulin inhibitors. Eur. J. Med. Chem., 2017, 136, 184-194.
[53]
Le Grand, A.; André-Leroux, G.L.; Marteil, G.L.; Duval, H.L.N.; Sire, O.; Le Tilly, V.R. Investigating the in vitro thermal stability and conformational flexibility of estrogen receptors as potential key factors of their in vivo activity. Biochemistry, 2015, 54(25), 3890-3900.
[54]
Dunlap, T.L.; Howell, C.E.; Mukand, N.; Chen, S-N.; Pauli, G.F.; Dietz, B.M.; Bolton, J.L. Red clover aryl hydrocarbon receptor (AhR) and Estrogen Receptor (ER) agonists enhance genotoxic estrogen metabolism. Chem. Res. Toxicol., 2017, 30(11), 2084-2092.
[55]
Maruthanila, V.; Elancheran, R.; Kunnumakkara, A.; Kabilan, S.; Kotoky, J. Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer, 2017, 24(2), 191-219.
[56]
Kelly, P.M.; Keely, N.O.; Bright, S.A.; Yassin, B.; Ana, G.; Fayne, D.; Zisterer, D.M.; Meegan, M.J. Novel selective estrogen receptor ligand conjugates incorporating endoxifen-combretastatin and cyclofenil-combretastatin hybrid scaffolds: Synthesis and biochemical evaluation. Molecules, 2017, 22(9), 1440.
[57]
Kelly, P.M.; Bright, S.A.; Fayne, D.; Pollock, J.K.; Zisterer, D.M.; Williams, D.C.; Meegan, M.J. Synthesis, antiproliferative and pro-apoptotic activity of 2-phenylindoles. Bioorg. Med. Chem., 2016, 24(18), 4075-4099.
[58]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α). Eur. J. Med. Chem., 2018, 146, 206-219.
[59]
Eto, R.; Misawa, T.; Noguchi-Yachide, T.; Ohoka, N.; Kurihara, M.; Naito, M.; Tanaka, M.; Demizu, Y. Design and synthesis of estrogen receptor ligands with a 4-heterocycle-4-phenylheptane skeleton. Bioorg. Med. Chem., 2018, 26(8), 1638-1642.
[60]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-xanthendione hybrids as selective estrogen receptor modulators. Bioorg. Med. Chem., 2018, 26(1), 266-277.
[61]
Singla, R.; Prakash, K.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Identification of novel indole based heterocycles as selective estrogen receptor modulator. Bioorg. Chem., 2018, 79, 72-88.
[63]
de Oliveira, J.F.; Lima, T.S.; Vendramini-Costa, D.B.; de Lacerda Pedrosa, S.C.B.; Lafayette, E.A.; da Silva, R.M.F.; de Almeida, S.M.V.; de Moura, R.O.; Ruiz, A.L.T.G.; de Carvalho, J.E. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur. J. Med. Chem., 2017, 136, 305-314.
[64]
Lafayette, E.A.; de Almeida, S.M.V.; Santos, R.V.C.; de Oliveira, J.F.; da Cruz Amorim, C.A.; da Silva, R.M.F.; da Rocha Pitta, M.G.; da Rocha Pitta, I.; de Moura, R.O.; de Carvalho, Junior, L.B. Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities. Eur. J. Med. Chem., 2017, 136, 511-522.
[65]
Arora, S.; Agarwal, S.; Singhal, S. Anticancer activities of thiosemicarbazides/thiosemicarbazones: A review. Structure, 2014, 2, R3.
[66]
de Oliveira, J.F.; da Silva, A.L.; Vendramini-Costa, D.B.; da Cruz Amorim, C.A.; Campos, J.F.; Ribeiro, A.G.; de Moura, R.O.; Neves, J.L.; Ruiz, A.L.T.G.; de Carvalho, J.E. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. Eur. J. Med. Chem., 2015, 104, 148-156.
[67]
Krishan, S.; Richardson, D.R.; Sahni, S. The anticancer agent, di-2-pyridylketone 4, 4-dimethyl-3-thiosemicarbazone (Dp44mT), up-regulates the AMPK-dependent energy homeostasis pathway in cancer cells. BBA-Mol. Cell Res., 2016, 1863(12), 2916-2933.
[68]
de Almeida, S.M.V.; Lafayette, E.A.; da Silva, L.P.B.G.; Amorim, C.A.D.C.; de Oliveira, T.B.; Ruiz, A.L.T.G.; de Carvalho, J.E.; de Moura, R.O.; Beltrão, E.I.C.; de Lima, M.D.C.A. Synthesis, DNA binding, and antiproliferative activity of novel acridine-thiosemicarbazone derivatives. Int. J. Mol. Sci., 2015, 16(6), 13023-13042.
[69]
Merlot, A.M.; Shafie, N.H.; Yu, Y.; Richardson, V.; Jansson, P.J.; Sahni, S.; Lane, D.J.; Kovacevic, Z.; Kalinowski, D.S.; Richardson, D.R. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4, 4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase. Biochem. Pharmacol., 2016, 109, 27-47.
[70]
Huang, H.; Chen, Q.; Ku, X.; Meng, L.; Lin, L.; Wang, X.; Zhu, C.; Wang, Y.; Chen, Z.; Li, M. A series of α-heterocyclic carboxaldehyde thiosemicarbazones inhibit topoisomerase IIα catalytic activity. J. Med. Chem., 2010, 53(8), 3048-3064.
[71]
Li, X.; Wang, Q.; Qing, Y.; Lin, Y.; Zhang, Y.; Qian, X.; Cui, J. Novel DNA intercalators without basic side chains as efficient antitumor agents: Design, synthesis and evaluation of benzo-[c, d]-indol-malononitrile derivatives. Bioorg. Med. Chem., 2010, 18(9), 3279-3284.
[72]
Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.; Miri, R.; Shafiee, A. 2H-chromene derivatives bearing thiazolidine-2, 4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur. J. Med. Chem., 2013, 59, 15-22.
[73]
Lafayette, E.A.; Vitalino de Almeida, S.M.; da Rocha Pitta, M.G.; Carneiro Beltrão, E.I.; Gonçalves da Silva, T.; Olímpio de Moura, R.; da Rocha Pitta, I.; de Carvalho, L.B.; do Carmo Alves de Lima, M. Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules, 2013, 18(12), 15035-15050.
[74]
Majumdar, P.; Bathula, C.; Basu, S.M.; Das, S.K.; Agarwal, R.; Hati, S.; Singh, A.; Sen, S.; Das, B.B. Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity. Eur. J. Med. Chem., 2015, 102, 540-551.
[75]
Shah, A.; Nosheen, E.; Munir, S.; Badshah, A.; Qureshi, R.; Muhammad, N.; Hussain, H. Characterization and DNA binding studies of unexplored imidazolidines by electronic absorption spectroscopy and cyclic voltammetry. J. Photochem. Photobiol. B, 2013, 120, 90-97.
[76]
Zhang, Z.; Bi, C.; Schmitt, S.M.; Fan, Y.; Dong, L.; Zuo, J.; Dou, Q.P. 1, 10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity. J. Biol. Inorg. Chem., 2012, 17(8), 1257-1267.
[77]
Zhang, Z.; Wang, H.; Wang, Q.; Yan, M.; Wang, H.; Bi, C.; Sun, S.; Fan, Y. Anticancer activity and computational modeling of ternary copper (II) complexes with 3-indolecarboxylic acid and 1, 10-phenanthroline. Int. J. Oncol., 2016, 49(2), 691-699.
[78]
Wang, X.; Yan, M.; Wang, Q.; Wang, H.; Wang, Z.; Zhao, J.; Li, J.; Zhang, Z. In vitro DNA-binding, anti-oxidant and anticancer activity of indole-2-carboxylic acid dinuclear copper (II) complexes. Molecules, 2017, 22(1), 171.
[79]
Venkatadri, R.; Muni, T.; Iyer, A.; Yakisich, J.; Azad, N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis., 2017, 7(2), e2104.
[80]
Shen, S.; Li, W.; Ouyang, M-A.; Wang, J. Structure-activity relationship of Triterpenes and derived Glycosides against cancer cells and mechanism of apoptosis induction. Nat. Prod. Res., 2018, 32(6), 654-661.
[81]
Matsuura, K.; Canfield, K.; Feng, W.; Kurokawa, M. Metabolic regulation of apoptosis in cancer.In: International Review of Cell and Molecular Biology; Elsevier, 2016, Vol. 327, pp. 43-87.
[82]
Liu, Q.; Cao, Y.; Zhou, P.; Gui, S.; Wu, X.; Xia, Y.; Tu, J. Panduratin a inhibits cell proliferation by inducing G0/G1 phase cell cycle arrest and induces apoptosis in breast cancer cells. Biomol. Ther., 2018, 26(3), 328.
[83]
Eldehna, W.M.; Almahli, H.; Al-Ansary, G.H.; Ghabbour, H.A.; Aly, M.H.; Ismael, O.E.; Al-Dhfyan, A.; Abdel-Aziz, H.A. Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis-inducing agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 600-613.
[84]
Kamath, P.R.; Sunil, D.; Ajees, A.A.; Pai, K.; Biswas, S.N. ′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl) methylene) benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur. J. Med. Chem., 2016, 120, 134-147.
[85]
Prajapti, S.K.; Nagarsenkar, A.; Guggilapu, S.D.; Gupta, K.K.; Allakonda, L.; Jeengar, M.K.; Naidu, V.; Babu, B.N. Synthesis and biological evaluation of oxindole linked indolyl-pyrimidine derivatives as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2016, 26(13), 3024-3028.
[86]
Nikalje, A.P.G.; Tiwari, S.V.; Sangshetti, J.N.; Damale, M.D. Ultrasound-mediated synthesis, biological evaluation, docking and in vivo acute oral toxicity study of novel indolin-2-one coupled pyrimidine derivatives. Res. Chem. Intermed., 2018, 44(5), 3031-3059.
[87]
Jowett, L.A.; Howe, E.N.; Soto-Cerrato, V.; Rossom, W.; Pérez-Tomás, R.; Gale, P.A. Indole-based perenosins as highly potent HCl transporters and potential anti-cancer agents. Sci. Rep., 2017, 7(1), 9397.
[88]
Haider, S.; Alam, M.S.; Hamid, H. 1, 3, 4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem., 2015, 92, 156-177.
[89]
Kamath, P.R.; Sunil, D.; Joseph, M.M.; Salam, A.A.A.; Sreelekha, T. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem., 2017, 136, 442-451.
[90]
Chakraborty, S.; Ghosh, S.; Banerjee, B.; Santra, A.; Adhikary, A.; Misra, A.K.; Sen, P.C. Phemindole, a synthetic di-indole derivative maneuvers the store operated calcium entry (SOCE) to induce potent anti-carcinogenic activity in human triple negative breast cancer cells. Front. Pharmacol., 2016, 7, 114.
[91]
Ibrahim, H.S.; Abou-Seri, S.M.; Abdel-Aziz, H.A. 3-Hydrazinoindolin-2-one derivatives: chemical classification and investigation of their targets as anticancer agents. Eur. J. Med. Chem., 2016, 122, 366-381.
[92]
Ibrahim, H.S.; Abou-seri, S.M.; Ismail, N.S.; Elaasser, M.M.; Aly, M.H.; Abdel-Aziz, H.A. Bis-isatin hydrazones with novel linkers: Synthesis and biological evaluation as cytotoxic agents. Eur. J. Med. Chem., 2016, 108, 415-422.
[93]
Eldehna, W.M.; Abo-Ashour, M.F.; Ibrahim, H.S.; Al-Ansary, G.H.; Ghabbour, H.A.; Elaasser, M.M.; Ahmed, H.Y.; Safwat, N.A. Novel [(3-indolylmethylene) hydrazono] indolin-2-ones as apoptotic anti-proliferative agents: design, synthesis and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 686-700.
[94]
Liang, Z.; Zhang, D.; Ai, J.; Chen, L.; Wang, H.; Kong, X.; Zheng, M.; Liu, H.; Luo, C.; Geng, M. Identification and synthesis of N′-(2-oxoindolin-3-ylidene) hydrazide derivatives against c-Met kinase. Bioorg. Med. Chem. Lett., 2011, 21(12), 3749-3754.
[95]
Hassan, T.A-F.M.; Kadi, A.A.; Abdel-Aziz, H.A-K.N. N, N′- hydrazino-bis-isatin derivatives with selective activity against multidrug-resistant cancer cells. U.S. Patent 8,497,296. 2013.
[96]
Eldehna, W.M. EL-Naggar, D.H.; Hamed, A.R.; Ibrahim, H.S.; Ghabbour, H.A.; Abdel-Aziz, H.A. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 309-318.
[97]
Su, S.C.; Hsieh, M.J.; Yang, W.E.; Chung, W.H.; Reiter, R.J.; Yang, S.F. Cancer metastasis: Mechanisms of inhibition by melatonin. J. Pineal Res., 2017, 62(1), e12370.
[98]
Gatti, G.; Lucini, V.; Dugnani, S.; Calastretti, A.; Spadoni, G.; Bedini, A.; Rivara, S.; Mor, M.; Canti, G.; Scaglione, F. Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells. Oncotarget, 2017, 8(40), 68338.
[99]
Esposito, L.; Indovina, P.; Magnotti, F.; Conti, D.; Giordano, A. Anticancer therapeutic strategies based on CDK inhibitors. Curr. Pharm. Des., 2013, 19(30), 5327-5332.
[101]
Parrino, B.; Attanzio, A.; Spano, V.; Cascioferro, S.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Diana, P.; Cirrincione, G.; Carbone, A. Synthesis, antitumor activity and CDK1 inhibiton of new thiazole nortopsentin analogues. Eur. J. Med. Chem., 2017, 138, 371-383.
[102]
Ibrahim, A.A.; Al-Noor, T.H. Anticancer activity of new di-nuclear copper (I) Complex. Chem. Mater. Res., 2015, 7, 11-19.
[104]
Sarma, P.; Bag, I.; Ramaiah, M.J.; Kamal, A.; Bhadra, U.; Pal Bhadra, M. Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis. Cancer Biol. Ther., 2015, 16(10), 1486-1501.
[105]
Sabbah, D.A.; Hu, J.; Zhong, H.A. Advances in the development of class I phosphoinositide 3-Kinase (PI3K) inhibitors. Curr. Top. Med. Chem., 2016, 16(13), 1413-1426.
[106]
Chakraborty, S.; Ghosh, S.; Banerjee, B.; Santra, A.; Bhat, J.; Adhikary, A.; Chatterjee, S.; Misra, A.K.; Sen, P.C. Mephebrindole, a synthetic indole analog coordinates the crosstalk between p38MAPK and eIF2α/ATF4/CHOP signalling pathways for induction of apoptosis in human breast carcinoma cells. Apoptosis, 2016, 21(10), 1106-1124.
[108]
Sweidan, K.; Sabbah, A.D.; Engelmann, J.; Abdel-Halim, H.; Abu Sheikha, G. Computational docking studies of novel heterocyclic carboxamides as potential PI3Kα inhibitors. Lett. Drug Des. Discov., 2015, 12(10), 856-863.
[109]
Sweidan, K.; Sabbah, D.A.; Bardaweel, S.; Dush, K.A.; Sheikha, G.A.; Mubarak, M.S. Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3Kα/EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(11), 2685-2690.
[110]
Rajesh Kumar, M.; Alagumuthu, M.; Violet Dhayabaran, V. N‐substituted hydroxynaphthalene imino‐oxindole derivatives as new class of PI 3‐kinase inhibitor and breast cancer drug: Molecular validation and structure–activity relationship studies. Chem. Biol. Drug Des., 2018, 91(1), 277-284.
[111]
Giusiano, S.; Cochet, C.; Filhol, O.; Duchemin-Pelletier, E.; Secq, V.; Bonnier, P.; Carcopino, X.; Boubli, L.; Birnbaum, D.; Garcia, S. Protein kinase CK2α subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. Eur. J. Cancer, 2011, 47(5), 792-801.
[112]
Zhao, T.; Jia, H.; Li, L.; Zhang, G.; Zhao, M.; Cheng, Q.; Zheng, J.; Li, D. Inhibition of CK2 enhances UV-triggered apoptotic cell death in lung cancer cell lines. Oncol. Rep., 2013, 30(1), 377-384.
[113]
Yao, K.; Youn, H.; Gao, X.; Huang, B.; Zhou, F.; Li, B.; Han, H. Casein kinase 2 inhibition attenuates androgen receptor function and cell proliferation in prostate cancer cells. Prostate, 2012, 72(13), 1423-1430.
[115]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl‐spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed., 2007, 46(46), 8748-8758.
[116]
Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P.P.; Tomita, Y. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc., 2005, 127(29), 10130-10131.
[117]
Lotfy, G.; El Sayed, H.; Said, M.M.; Aziz, Y.M.A.; Al-Dhfyan, A.; Al-Majid, A.M.; Barakat, A. Regio-and stereoselective synthesis of new spirooxindoles via 1, 3-dipolar cycloaddition reaction: Anticancer and molecular docking studies. J. Photochem. Photobiol. B, 2018, 180, 98-108.
[119]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[120]
Pruitt, K. Molecular and Cellular Changes During Cancer Progression Resulting From Genetic and Epigenetic Alterations. In: Progress in Molecular Biology and Translational Science; Elsevier, 2016, Vol. 144, pp. 3-47.
[121]
Dokmanovic, M.; Clarke, C.; Marks, P.A. Histone deacetylase inhibitors: Overview and perspectives. Mol. Cancer Res., 2007, 5(10), 981-989.
[122]
Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet., 2009, 10(1), 32.
[123]
Witt, O.; Deubzer, H.E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett., 2009, 277(1), 8-21.
[124]
Manna, P.R.; Ahmed, A.U.; Vartak, D.; Molehin, D.; Pruitt, K. Overexpression of the steroidogenic acute regulatory protein in breast cancer: Regulation by histone deacetylase inhibition. Biochem. Biophys. Res. Commun., 2019, 509(2), 476-482.
[125]
Zhang, Y.; Yang, P.; Chou, C.J.; Liu, C.; Wang, X.; Xu, W. Development of N-hydroxycinnamamide-based histone deacetylase inhibitors with an indole-containing cap group. ACS Med. Chem. Lett., 2013, 4(2), 235-238.
[126]
Mehndiratta, S.; Hsieh, Y-L.; Liu, Y-M.; Wang, A.W.; Lee, H-Y.; Liang, L-Y.; Kumar, S.; Teng, C-M.; Yang, C-R.; Liou, J-P. Indole-3-ethylsulfamoylphenylacrylamides: potent histone deacetylase inhibitors with anti-inflammatory activity. Eur. J. Med. Chem., 2014, 85, 468-479.
[127]
Huang, Y-C.; Huang, F-I.; Mehndiratta, S.; Lai, S-C.; Liou, J-P.; Yang, C-R. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget, 2015, 6(21), 18590.
[128]
Mehndiratta, S.; Pan, S-L.; Kumar, S.; Liou, J-P. Indole-3-ethylsulfamoylphenylacrylamides with Potent Anti-proliferative and Anti-angiogenic Activities. Anticancer. Agents Med. Chem., 2016, 16(7), 907-913.
[129]
Cho, Y.S.; Whitehead, L.; Li, J.; Chen, C.H-T.; Jiang, L.; Vögtle, M.; Francotte, E.; Richert, P.; Wagner, T.; Traebert, M. Conformational refinement of hydroxamate-based histone deacetylase inhibitors and exploration of 3-piperidin-3-ylindole analogues of dacinostat (LAQ824). J. Med. Chem., 2010, 53(7), 2952-2963.
[130]
Mahboobi, S.; Sellmer, A.; Höcher, H.; Garhammer, C.; Pongratz, H.; Maier, T.; Ciossek, T.; Beckers, T. 2-Aroylindoles and 2-aroylbenzofurans with N-hydroxyacrylamide substructures as a novel series of rationally designed histone deacetylase inhibitors. J. Med. Chem., 2007, 50(18), 4405-4418.
[131]
Mehndiratta, S.; Wang, R-S.; Huang, H-L.; Su, C-J.; Hsu, C-M.; Wu, Y-W.; Pan, S-L.; Liou, J-P. 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur. J. Med. Chem., 2017, 134, 13-23.
[132]
Wang, X.; Li, X.; Li, J.; Hou, J.; Qu, Y.; Yu, C.; He, F.; Xu, W.; Wu, J. Design, synthesis, and preliminary bioactivity evaluation of N1‐hydroxyterephthalamide derivatives with indole cap as novel histone deacetylase inhibitors. Chem. Biol. Drug Des., 2017, 89(1), 38-46.
[133]
Nagarsenkar, A.; Guntuku, L.; Guggilapu, S.D.; Gannoju, S.; Naidu, V.; Bathini, N.B. Synthesis and apoptosis inducing studies of triazole linked 3-benzylidene isatin derivatives. Eur. J. Med. Chem., 2016, 124, 782-793.
[134]
Singh, A.; Saha, S.T.; Perumal, S.; Kaur, M.; Kumar, V. Azide-alkyne cycloaddition en route to 1 H-1, 2, 3-triazole-tethered isatin-ferrocene, ferrocenylmethoxy-isatin, and isatin-ferrocenylchalcone conjugates: Synthesis and antiproliferative evaluation. ACS Omega, 2018, 3(1), 1263-1268.
[135]
Amr, A.E-G.E.; Abdalla, M.M.; Al-Omar, M.A.; Elsayed, E.A. Anti-ovarian and anti-breast cancers with dual topoisomerase ii/braf600e inhibitors activities of some substituted indole derivatives. Biomed. Res., 2017, 28(1), 75-80.
[136]
Ghaidan, A.F.; Faraj, F.L.; Abdulghany, Z.S. Synthesis, characterization and cytotoxic activity of new indole schiff bases derived from 2-(5-chloro-3, 3-dimethyl-1, 3-dihydro-indol-2-ylidene)-malonaldehyde with aniline substituted. Orient. J. Chem., 2018, 34(1), 169-181.
[138]
Gokhale, N.; Dalimba, U.; Kumsi, M. Facile synthesis of indole-pyrimidine hybrids and evaluation of their anticancer and antimicrobial activity. J. Saudi Chem. Soc., 2017, 21(7), 761-775.
[140]
Sreenivasulu, R.; Sujitha, P.; Jadav, S.S.; Ahsan, M.J.; Kumar, C.G.; Raju, R.R. Synthesis, antitumor evaluation, and molecular docking studies of indole-indazolyl hydrazide-hydrazone derivatives. Monatsh. Chem., 2017, 148(2), 305-314.
[141]
Murali, K.; Sparkes, H.A.; Prasad, K.J.R. Regio-and stereoselective synthesis of dispirooxindole-pyrrolocarbazole hybrids via 1, 3-dipolar cycloaddition reactions: Cytotoxic activity and SAR studies. Eur. J. Med. Chem., 2018, 143, 292-305.
[142]
Chhabra, M.; Sinha, S.; Banerjee, S.; Paira, P. An efficient green synthesis of 2-arylbenzothiazole analogues as potent antibacterial and anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(1), 213-217.
[143]
Van Rossom, W.; Asby, D.J.; Tavassoli, A.; Gale, P.A. Perenosins: a new class of anion transporter with anti-cancer activity. Org. Biomol. Chem., 2016, 14(9), 2645-2650.
[145]
Vaddula, B.R.; Tantak, M.P.; Sadana, R.; Gonzalez, M.A.; Kumar, D. One-pot synthesis and in-vitro anticancer evaluation of 5-(2′-indolyl) thiazoles. Sci. Rep., 2016, 6, 23401.
[146]
Mandour, A.H. Synthesis, anticancer activity and molecular docking study of novel 1, 3-diheterocycles indole derivatives. Int. J. Pharm. Pharm. Sci., 2015, 7(6), 377-385.
[147]
Gupta, S.; Maurya, P.; Upadhyay, A.; Kushwaha, P.; Krishna, S.; Siddiqi, M.I.; Sashidhara, K.V.; Banerjee, D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur. J. Med. Chem., 2018, 143, 1981-1996.