Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Pathological Role of Advanced Glycation End Products (AGEs) and their Receptor Axis in Atrial Fibrillation

Author(s): Sho-ichi Yamagishi*, Ami Sotokawauchi and Takanori Matsui

Volume 19, Issue 13, 2019

Page: [1040 - 1048] Pages: 9

DOI: 10.2174/1389557519666190311140737

Price: $65

Abstract

Accumulating evidence has shown that the incidence of atrial fibrillation (AF) is higher in patients with diabetes, especially those with poor glycemic control or long disease duration. Nonenzymatic glycation of amino acids of proteins, lipids, and nucleic acids has progressed under normal aging process and/or diabetic condition, which could lead to the formation and accumulation of advanced glycation end products (AGEs). AGEs not only alter the tertiary structure and physiological function of macromolecules, but also evoke inflammatory and fibrotic reactions through the interaction of cell surface receptor for AGEs (RAGE), thereby being involved in aging-related disorders. In this paper, we briefly review the association of chronic hyperglycemia and type 1 diabetes with the risk of AF and then discuss the pathological role of AGE-RAGE axis in AF and its thromboembolic complications.

Keywords: AGEs, atrial fibrillation, diabetes, oxidative stress, RAGE, thromboembolism.

Graphical Abstract

[1]
IDF Diabetes Atlas-8th Edition. http://www.diabetesatlas.org/key-messages.html (Accessed on December 17, 2018).
[2]
Yamagishi, S.I.; Matsui, T. Therapeutic Potential of DNA-aptamers Raised Against AGE-RAGE Axis in Diabetes-related Complications. Curr. Pharm. Des., 2018, 24, 2802-2809.
[3]
Seshasai, S.R.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; Njølstad, I.; Fletcher, A.; Nilsson, P.; Lewington, S.; Collins, R.; Gudnason, V.; Thompson, S.G.; Sattar, N.; Selvin, E.; Hu, F.B.; Danesh, J. Emerging risk factors collaboration, diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med., 2011, 364, 829-841.
[4]
Yamagishi, S.; Imaizumi, T. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr. Pharm. Des., 2005, 11, 2279-2299.
[5]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93, 137-188.
[6]
Senatus, L.M.; Schmidt, A.M. The AGE-RAGE Axis: Implications for age-associated arterial diseases. Front. Genet., 2017, 8, 187.
[7]
Yamagishi, S.; Fukami, K.; Matsui, T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int. J. Cardiol., 2015, 185, 263-268.
[8]
Vlassara, H.; Uribarri, J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr. Diab. Rep., 2014, 14, 453.
[9]
Yamagishi, S.I.; Matsui, T. Role of ligands of receptor for advanced glycation end products (RAGE) in peripheral artery disease. Rejuvenation Res., 2018, 21, 456-463.
[10]
Sell, D.R.; Monnier, V.M. Molecular basis of arterial stiffening: Role of glycation - a mini-review. Gerontology, 2012, 58, 227-237.
[11]
Yamagishi, S. Potential clinical utility of advanced glycation end product cross-link breakers in age and diabetes-associated disorders. Rejuvenation Res., 2012, 15, 564-572.
[12]
Song, M.K.; Davies, N.M.; Roufogalis, B.D.; Huang, T.H. Management of cardiorenal metabolic syndrome in diabetes mellitus: A phytotherapeutic perspective. J. Diabetes Res., 2014, 2014, 313718.
[13]
Stattin, P.; Bjor, O.; Ferrari, P.; Lukanova, A.; Lenner, P.; Lindahl, B.; Hallmans, G.; Kaaks, R. Prospective study of hyperglycemia and cancer risk. Diabetes Care, 2007, 30, 561-567.
[14]
Yamagishi, S.; Matsui, T.; Fukami, K. Role of receptor for advanced glycation end products (RAGE) and its ligands in cancer risk. Rejuvenation Res., 2015, 18, 48-56.
[15]
Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; Vigneri, R. Diabetes and cancer. Endocr. Relat. Cancer, 2009, 16, 1103-1123.
[16]
Nakamura, N.; Matsui, T.; Ishibashi, Y.; Sotokawauchi, A.; Fukami, K.; Higashimoto, Y.; Yamagishi, S.I. RAGE-aptamer attenuates the growth and liver metastasis of malignant melanoma in nude mice. Mol. Med., 2017, 23, 295-306.
[17]
Jiang, N.; Xia, W. Assessment of bone quality in patients with diabetes mellitus. Osteoporos. Int., 2018, 29, 1721-1736.
[18]
Yamagishi, S. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr. Drug Targets, 2011, 12, 2096-2102.
[19]
Abate, G.; Marziano, M.; Rungratanawanich, W.; Memo, M.; Uberti, D. Nutrion and AGE-ing: Focusing on alzheimer’s disease. Oxid. Med. Cell. Longev., 2017, 2017, 7039816.
[20]
Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol., 2018, 15, 505-522.
[21]
Takeuchi, M.; Yamagishi, S. Involvement of toxic AGEs (TAGE) in the pathogenesis of diabetic vascular complications and alzheimer’s disease. J. Alzheimers Dis., 2009, 16, 845-858.
[22]
Yamagishi, S.; Matsui, T. Role of receptor for advanced glycation end products (RAGE) in liver disease. Eur. J. Med. Res., 2015, 20, 15.
[23]
Loukine, L.; Waters, C.; Choi, B.C.; Ellison, J. Impact of diabetes mellitus on life expectancy and health-adjusted life expectancy in Canada. Popul. Health Metr., 2012, 10, 7.
[24]
Rhodes, E.T.; Prosser, L.A.; Hoerger, T.J.; Lieu, T.; Ludwig, D.S.; Laffel, L.M. Estimated morbidity and mortality in adolescents and young adults diagnosed with Type 2 diabetes mellitus. Diabet. Med., 2012, 29, 453-463.
[25]
Kannel, W.B.; Wolf, P.A.; Benjamin, E.J.; Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: Population-based estimates. Am. J. Cardiol., 1998, 82, 2N-9N.
[26]
Ferro, J.M. Atrial fibrillation and cardio embolic stroke. Minerva Cardioangiol., 2004, 52, 111-124.
[27]
Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ. Res., 2017, 120, 1501-1517.
[28]
Yamagishi, S.I.; Matsui, T.; Nakamura, K. Possible molecular mechanisms by which angiotensin II type 1 receptor blockers (ARBs) prevent the development of atrial fibrillation in insulin resistant patients. Horm. Metab. Res., 2008, 40, 640-644.
[29]
Ruddox, V.; Sandven, I.; Munkhaugen, J.; Skattebu, J.; Edvardsen, T.; Otterstad, J.E. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: A systematic review and meta-analysis. Eur. J. Prev. Cardiol., 2017, 24, 1555-1566.
[30]
Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; Emdin, C.A. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ, 2016, 354, i4482.
[31]
Smith, J.G.; Platonov, P.G.; Hedblad, B.; Engström, G.; Melander, O. Atrial fibrillation in the malmö diet and cancer study: A study of occurrence, risk factors and diagnostic validity. Eur. J. Epidemiol., 2010, 25, 95-102.
[32]
Huxley, R.R.; Filion, K.B.; Konety, S.; Alonso, A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am. J. Cardiol., 2011, 108, 56-62.
[33]
Benjamin, E.J.; Levy, D.; Vaziri, S.M.; D’Agostino, R.B.; Belanger, A.J.; Wolf, P.A. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA, 1994, 271, 840-844.
[34]
Schoen, T.; Pradhan, A.D.; Albert, C.M.; Conen, D. Type 2 diabetes mellitus and risk of incident atrial fibrillation in women. J. Am. Coll. Cardiol., 2012, 60, 1421-1428.
[35]
Méndez-Bailón, M.; Muñoz-Rivas, N.; Jiménez-García, R.; Esteban-Hernández, J.; Hernández-Barrera, V.; de Miguel-Yanes, J.M.; Lorenzo-Villalba, N.; Lopez-de-Andrés, A. Impact of type 2 diabetes mellitus in hospitalizations for atrial fibrillation in spain (2004-2013). Int. J. Cardiol., 2016, 221, 688-694.
[36]
Latini, R.; Staszewsky, L.; Sun, J.L.; Bethel, M.A.; Disertori, M.; Haffner, S.M.; Holman, R.R.; Chang, F.; Giles, T.D.; Maggioni, A.P.; Rutten, G.E.; Standl, E.; Thomas, L.; Tognoni, G.; Califf, R.M.; McMurray, J.J. Incidence of atrial fibrillation in a population with impaired glucose tolerance: The contribution of glucose metabolism and other risk factors. A post hoc analysis of the nateglinide and valsartan in impaired glucose tolerance outcomes research trial. Am. Heart J., 2013, 166, 935-940.
[37]
Watanabe, H.; Tanabe, N.; Watanabe, T.; Darbar, D.; Roden, D.M.; Sasaki, S.; Aizawa, Y. Metabolic syndrome and risk of development of atrial fibrillation: The niigata preventive medicine study. Circulation, 2008, 117, 1255-1260.
[38]
Ostgren, C.J.; Merlo, J.; Råstam, L.; Lindblad, U. Atrial fibrillation and its association with type 2 diabetes and hypertension in a swedish community. Diabetes Obes. Metab., 2004, 6, 367-374.
[39]
Rosengren, A.; Hauptman, P.J.; Lappas, G.; Olsson, L.; Wilhelmsen, L.; Swedberg, K. Big men and atrial fibrillation: Effects of body size and weight gain on risk of atrial fibrillation in men. Eur. Heart J., 2009, 30, 1113-1120.
[40]
Frost, L.; Hune, L.J.; Vestergaard, P. Overweight and obesity as risk factors for atrial fibrillation or flutter: The danish diet, cancer, and health study. Am. J. Med., 2005, 118, 489-495.
[41]
Movahed, M.R.; Hashemzadeh, N.; Jamal, M.M. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int. J. Cardiol., 2005, 105, 315-318.
[42]
Aksnes, T.A.; Schmieder, R.E.; Kjeldsen, S.E.; Ghani, S.; Hua, T.A.; Julius, S. Impact of new-onset diabetes mellitus on development of atrial fibrillation and heart failure in high-risk hypertension (from the VALUE Trial). Am. J. Cardiol., 2008, 101, 634-638.
[43]
Nichols, G.A.; Reinier, K.; Chugh, S.S. Independent contribution of diabetes to increased prevalence and incidence of atrial fibrillation. Diabetes Care, 2009, 32, 1851-1856.
[44]
Tadic, M.; Cuspidi, C. Type 2 diabetes mellitus and atrial fibrillation: From mechanisms to clinical practice. Arch. Cardiovasc. Dis., 2015, 108, 269-276.
[45]
Bell, D.S.H.; Goncalves, E. Atrial fibrillation and type 2 diabetes: Prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes Obes. Metab., 2018.
[http://dx.doi.org/10.1111/dom.13512]
[46]
Rizzo, M.R.; Sasso, F.C.; Marfella, R.; Siniscalchi, M.; Paolisso, P.; Carbonara, O.; Capoluongo, M.C.; Lascar, N.; Pace, C.; Sardu, C.; Passavanti, B.; Barbieri, M.; Mauro, C.; Paolisso, G. Autonomic dysfunction is associated with brief episodes of atrial fibrillation in type 2 diabetes. J. Diabetes Complications, 2015, 29, 88-92.
[47]
Asghar, O.; Alam, U.; Hayat, S.A.; Aghamohammadzadeh, R.; Heagerty, A.M.; Malik, R.A. Diabetes, obesity and atrial fibrillation: Epidemiology, mechanisms and interventions. J. Atr. Fibrillation, 2013, 6, 869.
[48]
Grundvold, I.; Bodegard, J.; Nilsson, P.M.; Svennblad, B.; Johansson, G.; Östgren, C.J.; Sundström, J. Body weight and risk of atrial fibrillation in 7,169 patients with newly diagnosed type 2 diabetes; An observational study. Cardiovasc. Diabetol., 2015, 14, 5.
[49]
Yamagishi, S. Cardiovascular disease in recent onset diabetes mellitus. J. Cardiol., 2011, 57, 257-262.
[50]
Lavernia, F.; Adkins, S.E.; Shubrook, J.H. Use of oral combination therapy for type 2 diabetes in primary care: Meeting individualized patient goals. Postgrad. Med., 2015, 127, 808-817.
[51]
Huxley, R.R.; Alonso, A.; Lopez, F.L.; Filion, K.B.; Agarwal, S.K.; Loehr, L.R.; Soliman, E.Z.; Pankow, J.S.; Selvin, E. Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: The atherosclerosis risk in communities’ study. Heart, 2012, 98, 133-138.
[52]
Dublin, S.; Glazer, N.L.; Smith, N.L.; Psaty, B.M.; Lumley, T.; Wiggins, K.L.; Page, R.L.; Heckbert, S.R. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J. Gen. Intern. Med., 2010, 25, 853-858.
[53]
Lu, Z.H.; Liu, N.; Bai, R.; Yao, Y.; Li, S.N.; Yu, R.H.; Sang, C.H.; Tang, R.B.; Long, D.Y.; Du, X.; Dong, J.Z.; Ma, C.S. HbA1c levels as predictors of ablation outcome in type 2 diabetes mellitus and paroxysmal atrial fibrillation. Herz, 2015, 40(Suppl. 2), 130-136.
[54]
Yamagishi, S.I.; Nakamura, N.; Matsui, T. Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory. J. Diabetes, 2017, 9, 141-148.
[55]
Dahlqvist, S.; Rosengren, A.; Gudbjörnsdottir, S.; Pivodic, A.; Wedel, H.; Kosiborod, M.; Svensson, A.M.; Lind, M. Risk of atrial fibrillation in people with type 1 diabetes compared with matched controls from the general population: A prospective case-control study. Lancet Diabetes Endocrinol., 2017, 5, 799-807.
[56]
Larsson, S.C.; Wallin, A.; Håkansson, N.; Stackelberg, O.; Bäck, M.; Wolk, A. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. Int. J. Cardiol., 2018, 262, 66-70.
[57]
Bekki, M.; Tahara, N.; Tahara, A.; Igata, S.; Honda, A.; Sugiyama, Y.; Nakamura, T.; Sun, J.; Kumashiro, Y.; Matsui, T.; Fukumoto, Y.; Yamagishi, S.I. Switching dipeptidyl peptidase-4 inhibitors to tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2 improves arterial stiffness evaluated by cardio-ankle vascular index in patients with type 2 diabetes: A pilot study. Curr. Vasc. Pharmacol., 2018.
[http://dx.doi.org/10.2174/1570161116666180515154555]
[58]
Tahara, N.; Yamagishi, S.I.; Bekki, M.; Kodama, N.; Nakamura, T.; Sugiyama, Y.; Oshige, T.; Kumashiro, Y.; Honda, A.; Tahara, A.; Igata, S.; Fukumoto, Y. Anagliptin, A Dipeptidyl peptidase-4 inhibitor ameliorates arterial stiffness in association with reduction of remnant-like particle cholesterol and alanine transaminase levels in type 2 diabetic patients. Curr. Vasc. Pharmacol., 2016, 14, 552-562.
[59]
Sell, D.R.; Monnier, V.M. Molecular basis of arterial stiffness: Role of glycation-a mini review. Gerontology, 2012, 58, 227-237.
[60]
Valbusa, F.; Bonapace, S.; Bertolini, L.; Zenari, L.; Arcaro, G.; Targher, G. Increased pulse pressure independently predicts incident atrial fibrillation in patients with type 2 diabetes. Diabetes Care, 2012, 35, 2337-2339.
[61]
Ando, R.; Ueda, S.; Yamagishi, S.; Miyazaki, H.; Kaida, Y.; Kaifu, K.; Yokoro, M.; Nakayama, Y.; Obara, N.; Fukami, K.; Takeuchi, M.; Okuda, S. Involvement of advanced glycation end product-induced asymmetric dimethylarginine generation in endothelial dysfunction. Diab. Vasc. Dis. Res., 2013, 10, 436-441.
[62]
Yamagishi, S.; Matsui, T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid. Med. Cell. Longev., 2010, 3, 101-108.
[63]
Yamagishi, S.; Nakamura, K.; Matsui, T.; Inagaki, Y.; Takenaka, K.; Jinnouchi, Y.; Yoshida, Y.; Matsuura, T.; Narama, I.; Motomiya, Y.; Takeuchi, M.; Inoue, H.; Yoshimura, A.; Bucala, R.; Imaizumi, T. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J. Biol. Chem., 2006, 281, 20213-20220.
[64]
Nagano, M.; Fukami, K.; Yamagishi, S.; Sakai, K.; Kaida, Y.; Matsumoto, T.; Hazama, T.; Tanaka, M.; Ueda, S.; Okuda, S. Tissue level of advanced glycation end products is an independent determinant of high-sensitivity C-reactive protein levels in haemodialysis patients. Nephrology (Carlton), 2011, 16, 299-303.
[65]
Adachi, T.; Fukami, K.; Yamagishi, S.; Kaida, Y.; Ando, R.; Sakai, K.; Adachi, H.; Otsuka, A.; Ueda, S.; Sugi, K.; Okuda, S. Decreased serum carnitine is independently correlated with increased tissue accumulation levels of advanced glycation end products in haemodialysis patients. Nephrology (Carlton), 2012, 17, 689-694.
[66]
Yanagisawa, K.; Ashihara, J.; Obara, S.; Wada, N.; Takeuchi, M.; Nishino, Y.; Maeda, S.; Ishibashi, Y.; Yamagishi, S. Switching to multiple daily injection therapy with glulisine improves glycaemic control, vascular damage and treatment satisfaction in basal insulin glargine-injected diabetic patients. Diabetes Metab. Res. Rev., 2014, 30, 693-700.
[67]
Tsunosue, M.; Mashiko, N.; Ohta, Y.; Matsuo, Y.; Ueda, K.; Ninomiya, M.; Tanaka, S.; Hoshiko, M.; Yoshiyama, Y.; Takeuchi, M.; Ueda, S.; Yamagishi, S. An alpha-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin. Exp. Med., 2010, 10, 139-141.
[68]
Hempe, J.M.; Liu, S.; Myers, L.; McCarter, R.J.; Buse, J.B.; Fonseca, V. The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD trial. Diabetes Care, 2015, 38, 1067-1074.
[69]
Sakata, K.; Hayakawa, M.; Yano, Y.; Tamaki, N.; Yokota, N.; Eto, T.; Watanabe, R.; Hirayama, N.; Matsuo, T.; Kuroki, K.; Sagara, S.; Mishima, O.; Koga, M.; Nagata, N.; Nishino, Y.; Kitamura, K.; Kario, K.; Takeuchi, M.; Yamagishi, S. Efficacy of alogliptin, a dipeptidyl peptidase-4 inhibitor, on glucose parameters, the activity of the advanced glycation end product (AGE) - receptor for AGE (RAGE) axis and albuminuria in Japanese type 2 diabetes. Diabetes Metab. Res. Rev., 2013, 29, 624-630.
[70]
Khan, M.I.; Rath, S.; Adhami, V.M.; Mukhtar, H. Hypoxia driven glycation: Mechanisms and therapeutic opportunities. Semin. Cancer Biol., 2018, 49, 75-82.
[71]
Chang, J.S.; Wendt, T.; Qu, W.; Kong, L.; Zou, Y.S.; Schmidt, A.M.; Yan, S.F. Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ. Res., 2008, 102, 905-913.
[72]
Ko, S.H.; Park, Y.M.; Yun, J.S.; Cha, S.A.; Choi, E.K.; Han, K.; Han, E.; Lee, Y.H.; Ahn, Y.B. Severe hypoglycemia is a risk factor for atrial fibrillation in type 2 diabetes mellitus: Nationwide population-based cohort study. J. Diabetes Complications, 2018, 32, 157-163.
[73]
Baxter, M.A.; Garewal, C.; Jordan, R.; Wright, A.D.; Nattrass, M. Hypoglycaemia and atrial fibrillation. Postgrad. Med. J., 1990, 66, 981.
[74]
Collier, A.; Matthews, D.M.; Young, R.J.; Clarke, B.F. Transient atrial fibrillation precipitated by hypoglycaemia: Two case reports. Postgrad. Med. J., 1987, 63, 895-897.
[75]
Gu, J.; Fan, Y.Q.; Zhang, J.F.; Wang, C.Q. Impact of long-term glycemic variability on development of atrial fibrillation in type 2 diabetic patients. Anatol. J. Cardiol., 2017, 18, 410-416.
[76]
Sato, H.; Hosojima, M.; Ishikawa, T.; Aoki, K.; Okamoto, T.; Saito, A.; Tsuchida, M. Glucose variability based on continuous glucose monitoring assessment is associated with postoperative complications after cardiovascular surgery. Ann. Thorac. Cardiovasc. Surg., 2017, 23, 239-247.
[77]
Begieneman, M.P.; Rijvers, L.; Kubat, B.; Paulus, W.J.; Vonk, A.B.; van Rossum, A.C.; Schalkwijk, C.G.; Stooker, W.; Niessen, H.W.; Krijnen, P.A. Atrial fibrillation coincides with the advanced glycation end product N(ε)-(carboxymethyl)lysine in the atrium. Am. J. Pathol., 2015, 185, 2096-2104.
[78]
Campbell, D.J.; Somaratne, J.B.; Jenkins, A.J.; Prior, D.L.; Yii, M.; Kenny, J.F.; Newcomb, A.E.; Schalkwijk, C.G.; Black, M.J.; Kelly, D.J. Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS One, 2012, 7, e49813.
[79]
Kim, S.M.; Lee, J.H.; Kim, J.R.; Shin, D.G.; Lee, S.H.; Cho, K.H. Female patients with atrial fibrillation have increased oxidized and glycated lipoprotein properties and lower apolipoprotein A-I expression in HDL. Int. J. Mol. Med., 2011, 27, 841-849.
[80]
Kim, S.M.; Kim, J.M.; Shin, D.G.; Kim, J.R.; Cho, K.H. Relation of atrial fibrillation (AF) and change of lipoproteins: Male patients with AF exhibited severe pro-inflammatory and pro-atherogenic properties in lipoproteins. Clin. Biochem., 2014, 47, 869-875.
[81]
Wannamethee, S.G.; Welsh, P.; Papacosta, O.; Ellins, E.A.; Halcox, J.P.J.; Whincup, P.H.; Sattar, N. Circulating soluble receptor for advanced glycation end product: Cross-sectional associations with cardiac markers and subclinical vascular disease in older men with and without diabetes. Atherosclerosis, 2017, 264, 36-43.
[82]
Yamagishi, S. Comment on: Selvin et al. sRAGE and risk of diabetes, cardiovascular disease, and death. Diabetes, 2013, 62, 2116- 2121, e26.
[83]
Maillard-Lefebvre, H.; Boulanger, E.; Daroux, M.; Gaxatte, C.; Hudson, B.I.; Lambert, M. Soluble receptor for advanced glycation end products: A new biomarker in diagnosis and prognosis of chronic inflammatory diseases. Rheumatology (Oxford), 2009, 48, 1190-1196.
[84]
Yamagishi, S.; Matsui, T. Soluble form of a receptor for advanced glycation end products (sRAGE) as a biomarker. Front. Biosci. (Elite Ed.), 2010, 2, 1184-1195.
[85]
Santilli, F.; Vazzana, N.; Bucciarelli, L.G.; Davì, G. Soluble forms of RAGE in human diseases: Clinical and therapeutical implications. Curr. Med. Chem., 2009, 16, 940-952.
[86]
Nakamura, T.; Sato, E.; Fujiwara, N.; Kawagoe, Y.; Ueda, Y.; Suzuki, T.; Yamada, S.; Takeuchi, M.; Fukami, K.; Ueda, S.; Adachi, H.; Matsui, T.; Okuda, S.; Yamagishi, S. Positive association of serum levels of advanced glycation end products and high mobility group box-1 with asymmetric dimethylarginine in nondiabetic chronic kidney disease patients. Metabolism, 2009, 58, 1624-168.
[87]
Geroldi, D.; Falcone, C.; Emanuele, E. Soluble receptor for advanced glycation end products: From disease marker to potential therapeutic target. Curr. Med. Chem., 2006, 13, 1971-1978.
[88]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Matsui, T.; Kurita-Nakamura, Y.; Takeuchi, M.; Inoue, H.; Imaizumi, T. Serum levels of soluble form of receptor for advanced glycation end products (sRAGE) are positively associated with circulating AGEs and soluble form of VCAM-1 in patients with type 2 diabetes. Microvasc. Res., 2008, 76, 52-56.
[89]
Vazzana, N.; Santilli, F.; Cuccurullo, C.; Davì, G. Soluble forms of RAGE in internal medicine. Intern. Emerg. Med., 2009, 4, 389-401.
[90]
Nakamura, K.; Yamagishi, S.I.; Matsui, T.; Adachi, H.; Takeuchi, M.; Imaizumi, T. Serum levels of soluble form of receptor for advanced glycation end products (sRAGE) are correlated with AGEs in both diabetic and non-diabetic subjects. Clin. Exp. Med., 2007, 7, 188-190.
[91]
Yamagishi, S.; Matsui, T.; Nakamura, K. Kinetics, role and therapeutic implications of endogenous soluble form of receptor for advanced glycation end products (sRAGE) in diabetes. Curr. Drug Targets, 2007, 8, 1138-1143.
[92]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Matsui, T.; Kurita-Nakamura, Y.; Takeuchi, M.; Inoue, H.; Imaizumi, T. Circulating advanced glycation end products (AGEs) and soluble form of receptor for AGEs (sRAGE) are independent determinants of serum monocyte chemoattractant protein-1 (MCP-1) levels in patients with type 2 diabetes. Diabetes Metab. Res. Rev., 2008, 24, 109-114.
[93]
Jensen, L.J.; Flyvbjerg, A.; Bjerre, M. Soluble receptor for advanced glycation end product: A biomarker for acute coronary syndrome. BioMed Res. Int., 2015, 2015, 815942.
[94]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Kurita-Nakamura, Y.; Matsui, T.; Yoshida, T.; Imaizumi, T. Serum levels of sRAGE, the soluble form of receptor for advanced glycation end products, are associated with inflammatory markers in patients with type 2 diabetes. Mol. Med., 2007, 13, 185-189.
[95]
Yamagishi, S.; Imaizumi, T. Serum levels of soluble form of receptor for advanced glycation end products (sRAGE) may reflect tissue RAGE expression in diabetes. Arterioscler. Thromb. Vasc. Biol., 2007, 27, e32.
[96]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Kurita-Nakamura, Y.; Matsui, T.; Yoshida, T.; Sato, A.; Imaizumi, T. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease. Diabetes Metab. Res. Rev., 2007, 23, 368-371.
[97]
Yamagishi, S.; Adachi, H.; Nakamura, K.; Matsui, T.; Jinnouchi, Y.; Takenaka, K.; Takeuchi, M.; Enomoto, M.; Furuki, K.; Hino, A.; Shigeto, Y.; Imaizumi, T. Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism, 2006, 55, 1227-1231.
[98]
Nakamura, K.; Yamagishi, S.; Nakamura, Y.; Takenaka, K.; Matsui, T.; Jinnouchi, Y.; Imaizumi, T. Telmisartan inhibits expression of a receptor for advanced glycation end products (RAGE) in angiotensin-II-exposed endothelial cells and decreases serum levels of soluble RAGE in patients with essential hypertension. Microvasc. Res., 2005, 70, 137-141.
[99]
Nin, J.W.; Jorsal, A.; Ferreira, I.; Schalkwijk, C.G.; Prins, M.H.; Parving, H.H.; Tarnow, L.; Rossing, P.; Stehouwer, C.D. Higher plasma soluble receptor for advanced glycation end products (sRAGE) levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: A 12-year follow-up study. Diabetes, 2010, 59, 2027-2032.
[100]
Colhoun, H.M.; Betteridge, D.J.; Durrington, P.; Hitman, G.; Neil, A.; Livingstone, S.; Charlton-Menys, V.; Bao, W.; Demicco, D.A.; Preston, G.M.; Deshmukh, H.; Tan, K.; Fuller, J.H. Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: An analysis from the CARDS trial. Diabetes, 2011, 60, 2379-2385.
[101]
Fujisawa, K.; Katakami, N.; Kaneto, H.; Naka, T.; Takahara, M.; Sakamoto, F.; Irie, Y.; Miyashita, K.; Kubo, F.; Yasuda, T.; Matsuoka, T.A.; Shimomura, I. Circulating soluble RAGE as a predictive biomarker of cardiovascular event risk in patients with type 2 diabetes. Atherosclerosis, 2013, 227, 425-428.
[102]
Raucci, A.; Cugusi, S.; Antonelli, A.; Barabino, S.M.; Monti, L.; Bierhaus, A.; Reiss, K.; Saftig, P.; Bianchi, M.E. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J., 2008, 22, 3716-3727.
[103]
Miyoshi, A.; Koyama, S.; Sasagawa-Monden, M.; Kadoya, M.; Konishi, K.; Shoji, T.; Inaba, M.; Yamamoto, Y.; Koyama, H. JNK and ATF4 as two important platforms for tumor necrosis factor-α-stimulated shedding of receptor for advanced glycation end products. FASEB J., 2018.
[http://dx.doi.org/10.1096/fj.201701553RR]
[104]
Raposeiras-Roubín, S.; Rodiño-Janeiro, B.K.; Grigorian-Shamagian, L.; Seoane-Blanco, A.; Moure-González, M.; Varela-Román, A.; Álvarez, E.; González-Juanatey, J.R. Evidence for a role of advanced glycation end products in atrial fibrillation. Int. J. Cardiol., 2012, 157, 397-402.
[105]
Iguchi, Y.; Kimura, K.; Shibazaki, K.; Aoki, J.; Sakai, K.; Sakamoto, Y.; Uemura, J.; Yamashita, S. HbA1c and atrial fibrillation: A cross-sectional study in Japan. Int. J. Cardiol., 2012, 156, 156-159.
[106]
Raposeiras-Roubín, S.; Barreiro-Parda, C.; Roubín-Camiña, F.; Rodiño-Janeiro, B.K.; Paradela-Dobarro, B.; Alvarez-Castro, E.; Grigorian-Shamagian, L.; González-Juanatey, J.R. Advanced glycation end products: A mysterious shadow beyond the relationship between HbA1c and atrial fibrillation. Int. J. Cardiol., 2012, 157(3), 441.
[107]
Yang, P.S.; Lee, S.H.; Park, J.; Kim, T.H.; Uhm, J.S.; Joung, B.; Lee, M.H.; Chang, B.C.; Pak, H.N. Atrial tissue expression of receptor for advanced glycation end-products (RAGE) and atrial fibrosis in patients with mitral valve disease. Int. J. Cardiol., 2016, 220, 1-6.
[108]
Kato, T.; Yamashita, T.; Sekiguchi, A.; Tsuneda, T.; Sagara, K.; Takamura, M.; Kaneko, S.; Aizawa, T.; Fu, L.T. AGEs-RAGE system mediates atrial structural remodeling in the diabetic rat. J. Cardiovasc. Electrophysiol., 2008, 19, 415-420.
[109]
Zhang, Q.; Li, G.; Liu, T. Receptor for advanced glycation end products (RAGE): Novel biomarker and therapeutic target for atrial fibrillation. Int. J. Cardiol., 2013, 168, 4802-4804.
[110]
Mahajan, N.; Dhawan, V. Receptor for advanced glycation end products (RAGE) in atrial fibrillation. Int. J. Cardiol., 2013, 168, 5072-5073.
[111]
Lancefield, T.F.; Patel, S.K.; Freeman, M.; Velkoska, E.; Wai, B.; Srivastava, P.M.; Horrigan, M.; Farouque, O.; Burrell, L.M. The receptor for advanced glycation end products (RAGE) Is associated with persistent atrial fibrillation. PLoS One, 2016, 11, e0161715.
[112]
Zhao, D.; Wang, Y.; Xu, Y. Decreased serum endogenous secretory receptor for advanced glycation endproducts and increased cleaved receptor for advanced glycation endproducts levels in patients with atrial fibrillation. Int. J. Cardiol., 2012, 158, 471-472.
[113]
Montaner, J.; Perea-Gainza, M.; Delgado, P.; Ribó, M.; Chacón, P.; Rosell, A.; Quintana, M.; Palacios, M.E.; Molina, C.A.; Alvarez-Sabín, J. Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke, 2008, 39, 2280-2287.
[114]
Yokota, C.; Minematsu, K.; Tomii, Y.; Naganuma, M.; Ito, A.; Nagasawa, H.; Yamaguchi, T. Low levels of plasma soluble receptor for advanced glycation end products are associated with severe leukoaraiosis in acute stroke patients. J. Neurol. Sci., 2009, 287, 41-44.
[115]
Tang, S.C.; Yang, K.C.; Hu, C.J.; Chiou, H.Y.; Wu, C.C.; Jeng, J.S. Elevated plasma level of soluble form of RAGE in ischemic stroke patients with dementia. Neuromol. Med., 2017, 19, 579-583.
[116]
Al Rifai, M.; Schneider, A.L.; Alonso, A.; Maruthur, N.; Parrinello, C.M.; Astor, B.C.; Hoogeveen, R.C.; Soliman, E.Z.; Chen, L.Y.; Ballantyne, C.M.; Halushka, M.K.; Selvin, E. sRAGE, inflammation, and risk of atrial fibrillation: Results from the atherosclerosis risk in communities (ARIC) study. J. Diabetes Complications, 2015, 29, 180-185.
[117]
Yang, P.S.; Kim, T.H.; Uhm, J.S.; Park, S.; Joung, B.; Lee, M.H.; Pak, H.N. High plasma level of soluble RAGE is independently associated with a low recurrence of atrial fibrillation after catheter ablation in diabetic patient. Europace, 2016, 18, 1711-1718.
[118]
Tontonoz, P.; Spiegelman, B.M. Fat and beyond: The diverse biology of PPARgamma. Annu. Rev. Biochem., 2008, 77, 289-312.
[119]
Sulistio, M.S.; Zion, A.; Thukral, N.; Chilton, R. PPARgamma agonists and coronary atherosclerosis. Curr. Atheroscler. Rep., 2008, 10, 134-141.
[120]
Yoshida, T.; Yamagishi, S.; Nakamura, K.; Matsui, T.; Imaizumi, T.; Takeuchi, M.; Koga, H.; Ueno, T.; Sata, M. Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia, 2006, 49, 3094-3099.
[121]
Yamagishi, S.; Nakamura, K.; Matsui, T. Potential utility of telmisartan, an angiotensin II type 1 receptor blocker with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity for the treatment of cardiometabolic disorders. Curr. Mol. Med., 2007, 7, 463-469.
[122]
Chen, M.; Li, H.; Wang, G.; Shen, X.; Zhao, S.; Su, W. Atorvastatin prevents advanced glycation end products (AGEs)-induced cardiac fibrosis via activating peroxisome proliferator-activated receptor gamma (PPAR-γ). Metabolism, 2016, 65, 441-453.
[123]
Matsui, T.; Yamagishi, S.; Takeuchi, M.; Ueda, S.; Fukami, K.; Okuda, S. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation. Biochem. Biophys. Res. Commun., 2009, 385, 269-272.
[124]
Yamagishi, S.; Nakamura, K.; Matsui, T. Regulation of advanced glycation end product (AGE)-receptor (RAGE) system by PPAR-gamma agonists and its implication in cardiovascular disease. Pharmacol. Res., 2009, 60, 174-178.
[125]
Ma, L.; Gao, H.Q.; Li, B.Y.; Ma, Y.B.; You, B.A.; Zhang, F.L. Grape seed proanthocyanidin extracts inhibit vascular cell adhesion molecule expression induced by advanced glycation end products through activation of peroxisome proliferators-activated receptor gamma. J. Cardiovasc. Pharmacol., 2007, 49, 293-298.
[126]
Matsui, T.; Yamagishi, S.; Takeuchi, M.; Ueda, S.; Fukami, K.; Okuda, S. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation. Biochem. Biophys. Res. Commun., 2010, 398, 326-330.
[127]
Ma, C.; Zhang, Y.; Li, Y.Q.; Chen, C.; Cai, W.; Zeng, Y.L. The role of PPARγ in advanced glycation end products-induced inflammatory response in human chondrocytes. PLoS One, 2015, 10, e0125776.
[128]
Ishibashi, Y.; Matsui, T.; Ohta, K.; Tanoue, R.; Takeuchi, M.; Asanuma, K.; Fukami, K.; Okuda, S.; Nakamura, K.; Yamagishi, S. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation. Microvasc. Res., 2013, 85, 54-58.
[129]
Liu, B.; Wang, J.; Wang, G. Beneficial effects of pioglitazone on retardation of persistent atrial fibrillation progression in diabetes mellitus patients. Int. Heart J., 2014, 55, 499-505.
[130]
Chao, T.F.; Leu, H.B.; Huang, C.C.; Chen, J.W.; Chan, W.L.; Lin, S.J.; Chen, S.A. Thiazolidinediones can prevent new onset atrial fibrillation in patients with non-insulin dependent diabetes. Int. J. Cardiol., 2012, 156, 199-202.
[131]
Pallisgaard, J.L.; Brooks, M.M.; Chaitman, B.R.; Boothroyd, D.B.; Perez, M.; Hlatky, M.A. Bypass angioplasty revascularization investigation 2 diabetes study group. Thiazolidinediones and risk of atrial fibrillation among patients with diabetes and coronary disease. Am. J. Med., 2018, 131, 805-812.
[132]
Pallisgaard, J.L.; Lindhardt, T.B.; Staerk, L.; Olesen, J.B.; Torp-Pedersen, C.; Hansen, M.L.; Gislason, G.H. Thiazolidinediones are associated with a decreased risk of atrial fibrillation compared with other antidiabetic treatment: A nationwide cohort study. Eur. Heart J. Cardiovasc. Pharmacother., 2017, 3, 140-146.
[133]
Zhang, Z.; Zhang, X.; Korantzopoulos, P.; Letsas, K.P.; Tse, G.; Gong, M.; Meng, L.; Li, G.; Liu, T. Thiazolidinedione use and atrial fibrillation in diabetic patients: A meta-analysis. BMC Cardiovasc. Disord., 2017, 17, 96.
[134]
Yamagishi, S. Clinical markers associated with glycaemic response to dipeptidyl peptidase-4 inhibitor therapy. Diabetes Metab. Res. Rev., 2018, 34, e3024.
[135]
Elgendy, I.Y.; Mahmoud, A.N. Barakat. A.F.; Elgendy, A.Y.; Saad. M.; Abuzaid, A.; Wayangankar, S.A.; Bavry, A.A. Cardiovascular Safety of Dipeptidyl-Peptidase IV Inhibitors: A meta-analysis of placebo-controlled randomized trials. Am. J. Cardiovasc. Drugs, 2017, 17, 143-155.
[136]
Rehman, M.B.; Tudrej, B.V.; Soustre, J.; Buisson, M.; Archambault, P.; Pouchain, D.; Vaillant-Roussel, H.; Gueyffier, F.; Faillie, J.L.; Perault-Pochat, M.C.; Cornu, C.; Boussageon, R. Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: Meta-analysis of placebo-controlled randomized clinical trials. Diabetes Metab., 2017, 43, 48-58.
[137]
Kawalec, P.; Mikrut, A.; Łopuch, S. The safety of dipeptidyl peptidase-4 (DPP-4) inhibitors or sodium-glucose cotransporter 2 (SGLT-2) inhibitors added to metformin background therapy in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab. Res. Rev., 2014, 30, 269-283.
[138]
Liu, Y.; Hou, B.; Zhang, Y.; Fan, Y.; Peng, B.; Liu, W.; Han, S.; Yin, J.; He, X. Anticonvulsant agent DPP4 inhibitor sitagliptin downregulates CXCR3/RAGE pathway on seizure models. Exp. Neurol., 2018, 307, 90-98.
[139]
Matsui, T.; Nishino, Y.; Takeuchi, M.; Yamagishi, S. Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis. Pharmacol. Res., 2011, 63, 383-388.
[140]
Kaifu, K.; Ueda, S.; Nakamura, N.; Matsui, T.; Yamada-Obara, N.; Ando, R.; Kaida, Y.; Nakata, M.; Matsukuma-Toyonaga, M.; Higashimoto, Y.; Fukami, K.; Suzuki, Y.; Okuda, S.; Yamagishi, S.I. Advanced glycation end products evoke inflammatory reactions in proximal tubular cells via autocrine production of dipeptidyl peptidase-4. Microvasc. Res., 2018, 120, 90-93.
[141]
Matsui, T.; Nakashima, S.; Nishino, Y. Ojima. A.; Nakamura, N.; Arima, K.; Fukami, K.; Okuda, S.; Yamagishi, S. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. Lab. Invest., 2015, 95, 525-533.
[142]
Abdelsalam, R.M.; Safar, M.M. Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: Role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J. Neurochem., 2015, 133, 700-707.
[143]
Yamagishi, S.; Fukami, K.; Matsui, T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc. Diabetol., 2015, 14, 2.
[144]
Tahara, N.; Yamagishi, S.; Matsui, T.; Nishino, Y.; Honda, A.; Tahara, A.; Igata, S.; Fukumoto, Y. Serum levels of pigment epithelium-derived factor (PEDF) are inversely associated with circulating levels of dipeptidyl peptidase-4 (DPP-4) in humans. Int. J. Cardiol., 2015, 184, 14-16.
[145]
Ishibashi, Y.; Matsui, T.; Maeda, S.; Higashimoto, Y.; Yamagishi, S. Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovasc. Diabetol., 2013, 12, 125.
[146]
Tahara, N.; Yamagishi, S.; Takeuchi, M.; Tahara, A.; Kaifu, K.; Ueda, S.; Okuda, S.; Imaizumi, T. Serum levels of advanced glycation end products (AGEs) are independently correlated with circulating levels of dipeptidyl peptidase-4 (DPP-4) in humans. Clin. Biochem., 2013, 46, 300-303.
[147]
Chang, C.Y.; Yeh, Y.H.; Chan, Y.H.; Liu, J.R.; Chang, S.H.; Lee, H.F.; Wu, L.S.; Yen, K.C.; Kuo, C.T.; See, L.C. Dipeptidyl peptidase-4 inhibitor decreases the risk of atrial fibrillation in patients with type 2 diabetes: A nationwide cohort study in Taiwan. Cardiovasc. Diabetol., 2017, 16, 159.
[148]
Chen, H.Y.; Yang, F.Y.; Jong, G.P.; Liou, Y.S. Antihyperglycemic drugs use and new-onset atrial fibrillation in elderly patients. Eur. J. Clin. Invest., 2017, 47, 388-393.
[149]
Varjabedian, L.; Bourji, M.; Pourafkari, L.; Nader, N.D. Cardioprotection by Metformin: Beneficial effects beyond glucose reduction. Am. J. Cardiovasc. Drugs, 2018, 18, 181-193.
[150]
Campbell, J.M.; Bellman, S.M.; Stephenson, M.D.; Lisy, K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis. Ageing Res. Rev., 2017, 40, 31-44.
[151]
Prasad, K.; Mishra, M. Do advanced glycation end products and its receptor play a role in pathophysiology of hypertension? Int. J. Angiol., 2017, 26, 1-11.
[152]
Yamagishi, S.; Nakamura, K.; Matsui, T. Ueda. S.: Noda, Y.; Imaizumi, T. Inhibitors of advanced glycation end products (AGEs): Potential utility for the treatment of cardiovascular disease. Cardiovasc. Ther., 2008, 26, 50-58.
[153]
Ahmad, S.; Khan, M.S.; Akhter, F.; Khan, M.S.; Khan, A.; Ashraf, J.M.; Pandey, R.P.; Shahab, U. Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology, 2014, 24, 979-990.
[154]
Beisswenger, P.; Ruggiero-Lopez, D. Metformin inhibition of glycation processes. Diabetes Metab., 2003, 29(4 Pt 2), 6S95-103.
[155]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm. Metab. Res., 2013, 45, 387-390.
[156]
Lin, C.H.; Cheng, Y.C.; Nicol, C.J.; Lin, K.H.; Yen, C.H.; Chiang, M.C. Activation of AMPK is neuroprotective in the oxidative stress by advanced glycosylation end products in human neural stem cells. Exp. Cell Res., 2017, 359, 367-373.
[157]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression. Horm. Metab. Res., 2012, 44, 891-895.
[158]
Zhou, Z.; Tang, Y.; Jin, X.; Chen, C.; Lu, Y.; Liu, L.; Shen, C. Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFkB pathway suppression. J. Diabetes Res., 2016, 2016, 4847812.
[159]
Zhang, T.; Hu, X.; Cai, Y.; Yi, B.; Wen, Z. Metformin protects against hyperglycemia-induced cardiomyocytes injury by inhibiting the expressions of receptor for advanced glycation end products and high mobility group box 1 protein. Mol. Biol. Rep., 2014, 41, 1335-1340.
[160]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Beneficial effects of metformin and irbesartan on advanced glycation end products (AGEs)-RAGE-induced proximal tubular cell injury. Pharmacol. Res., 2012, 65, 297-302.
[161]
Chang, S.H.; Wu, L.S.; Chiou, M.J.; Liu, J.R.; Yu, K.H.; Kuo, C.F.; Wen, M.S.; Chen, W.J.; Yeh, Y.H.; See, L.C. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: A population-based dynamic cohort and in vitro studies. Cardiovasc. Diabetol., 2014, 13, 123.
[162]
Ojima, A.; Oda, E.; Higashimoto, Y.; Matsui, T.; Yamagishi, S. DNA aptamer raised against advanced glycation end products inhibits neointimal hyperplasia in balloon-injured rat carotid arteries. Int. J. Cardiol., 2014, 17, 443-446.
[163]
Willeit, K.; Kiechl, S. Atherosclerosis and atrial fibrillation–Two closely intertwined diseases. Atherosclerosis, 2014, 233, 679-681.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy