[2]
Yamagishi, S.I.; Matsui, T. Therapeutic Potential of DNA-aptamers Raised Against AGE-RAGE Axis in Diabetes-related Complications. Curr. Pharm. Des., 2018, 24, 2802-2809.
[3]
Seshasai, S.R.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; Njølstad, I.; Fletcher, A.; Nilsson, P.; Lewington, S.; Collins, R.; Gudnason, V.; Thompson, S.G.; Sattar, N.; Selvin, E.; Hu, F.B.; Danesh, J. Emerging risk factors collaboration, diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med., 2011, 364, 829-841.
[4]
Yamagishi, S.; Imaizumi, T. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr. Pharm. Des., 2005, 11, 2279-2299.
[5]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93, 137-188.
[6]
Senatus, L.M.; Schmidt, A.M. The AGE-RAGE Axis: Implications for age-associated arterial diseases. Front. Genet., 2017, 8, 187.
[7]
Yamagishi, S.; Fukami, K.; Matsui, T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int. J. Cardiol., 2015, 185, 263-268.
[8]
Vlassara, H.; Uribarri, J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr. Diab. Rep., 2014, 14, 453.
[9]
Yamagishi, S.I.; Matsui, T. Role of ligands of receptor for advanced glycation end products (RAGE) in peripheral artery disease. Rejuvenation Res., 2018, 21, 456-463.
[10]
Sell, D.R.; Monnier, V.M. Molecular basis of arterial stiffening: Role of glycation - a mini-review. Gerontology, 2012, 58, 227-237.
[11]
Yamagishi, S. Potential clinical utility of advanced glycation end product cross-link breakers in age and diabetes-associated disorders. Rejuvenation Res., 2012, 15, 564-572.
[12]
Song, M.K.; Davies, N.M.; Roufogalis, B.D.; Huang, T.H. Management of cardiorenal metabolic syndrome in diabetes mellitus: A phytotherapeutic perspective. J. Diabetes Res., 2014, 2014, 313718.
[13]
Stattin, P.; Bjor, O.; Ferrari, P.; Lukanova, A.; Lenner, P.; Lindahl, B.; Hallmans, G.; Kaaks, R. Prospective study of hyperglycemia and cancer risk. Diabetes Care, 2007, 30, 561-567.
[14]
Yamagishi, S.; Matsui, T.; Fukami, K. Role of receptor for advanced glycation end products (RAGE) and its ligands in cancer risk. Rejuvenation Res., 2015, 18, 48-56.
[15]
Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; Vigneri, R. Diabetes and cancer. Endocr. Relat. Cancer, 2009, 16, 1103-1123.
[16]
Nakamura, N.; Matsui, T.; Ishibashi, Y.; Sotokawauchi, A.; Fukami, K.; Higashimoto, Y.; Yamagishi, S.I. RAGE-aptamer attenuates the growth and liver metastasis of malignant melanoma in nude mice. Mol. Med., 2017, 23, 295-306.
[17]
Jiang, N.; Xia, W. Assessment of bone quality in patients with diabetes mellitus. Osteoporos. Int., 2018, 29, 1721-1736.
[18]
Yamagishi, S. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr. Drug Targets, 2011, 12, 2096-2102.
[19]
Abate, G.; Marziano, M.; Rungratanawanich, W.; Memo, M.; Uberti, D. Nutrion and AGE-ing: Focusing on alzheimer’s disease. Oxid. Med. Cell. Longev., 2017, 2017, 7039816.
[20]
Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol., 2018, 15, 505-522.
[21]
Takeuchi, M.; Yamagishi, S. Involvement of toxic AGEs (TAGE) in the pathogenesis of diabetic vascular complications and alzheimer’s disease. J. Alzheimers Dis., 2009, 16, 845-858.
[22]
Yamagishi, S.; Matsui, T. Role of receptor for advanced glycation end products (RAGE) in liver disease. Eur. J. Med. Res., 2015, 20, 15.
[23]
Loukine, L.; Waters, C.; Choi, B.C.; Ellison, J. Impact of diabetes mellitus on life expectancy and health-adjusted life expectancy in Canada. Popul. Health Metr., 2012, 10, 7.
[24]
Rhodes, E.T.; Prosser, L.A.; Hoerger, T.J.; Lieu, T.; Ludwig, D.S.; Laffel, L.M. Estimated morbidity and mortality in adolescents and young adults diagnosed with Type 2 diabetes mellitus. Diabet. Med., 2012, 29, 453-463.
[25]
Kannel, W.B.; Wolf, P.A.; Benjamin, E.J.; Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: Population-based estimates. Am. J. Cardiol., 1998, 82, 2N-9N.
[26]
Ferro, J.M. Atrial fibrillation and cardio embolic stroke. Minerva Cardioangiol., 2004, 52, 111-124.
[27]
Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ. Res., 2017, 120, 1501-1517.
[28]
Yamagishi, S.I.; Matsui, T.; Nakamura, K. Possible molecular mechanisms by which angiotensin II type 1 receptor blockers (ARBs) prevent the development of atrial fibrillation in insulin resistant patients. Horm. Metab. Res., 2008, 40, 640-644.
[29]
Ruddox, V.; Sandven, I.; Munkhaugen, J.; Skattebu, J.; Edvardsen, T.; Otterstad, J.E. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: A systematic review and meta-analysis. Eur. J. Prev. Cardiol., 2017, 24, 1555-1566.
[30]
Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; Emdin, C.A. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ, 2016, 354, i4482.
[31]
Smith, J.G.; Platonov, P.G.; Hedblad, B.; Engström, G.; Melander, O. Atrial fibrillation in the malmö diet and cancer study: A study of occurrence, risk factors and diagnostic validity. Eur. J. Epidemiol., 2010, 25, 95-102.
[32]
Huxley, R.R.; Filion, K.B.; Konety, S.; Alonso, A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am. J. Cardiol., 2011, 108, 56-62.
[33]
Benjamin, E.J.; Levy, D.; Vaziri, S.M.; D’Agostino, R.B.; Belanger, A.J.; Wolf, P.A. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA, 1994, 271, 840-844.
[34]
Schoen, T.; Pradhan, A.D.; Albert, C.M.; Conen, D. Type 2 diabetes mellitus and risk of incident atrial fibrillation in women. J. Am. Coll. Cardiol., 2012, 60, 1421-1428.
[35]
Méndez-Bailón, M.; Muñoz-Rivas, N.; Jiménez-García, R.; Esteban-Hernández, J.; Hernández-Barrera, V.; de Miguel-Yanes, J.M.; Lorenzo-Villalba, N.; Lopez-de-Andrés, A. Impact of type 2 diabetes mellitus in hospitalizations for atrial fibrillation in spain (2004-2013). Int. J. Cardiol., 2016, 221, 688-694.
[36]
Latini, R.; Staszewsky, L.; Sun, J.L.; Bethel, M.A.; Disertori, M.; Haffner, S.M.; Holman, R.R.; Chang, F.; Giles, T.D.; Maggioni, A.P.; Rutten, G.E.; Standl, E.; Thomas, L.; Tognoni, G.; Califf, R.M.; McMurray, J.J. Incidence of atrial fibrillation in a population with impaired glucose tolerance: The contribution of glucose metabolism and other risk factors. A post hoc analysis of the nateglinide and valsartan in impaired glucose tolerance outcomes research trial. Am. Heart J., 2013, 166, 935-940.
[37]
Watanabe, H.; Tanabe, N.; Watanabe, T.; Darbar, D.; Roden, D.M.; Sasaki, S.; Aizawa, Y. Metabolic syndrome and risk of development of atrial fibrillation: The niigata preventive medicine study. Circulation, 2008, 117, 1255-1260.
[38]
Ostgren, C.J.; Merlo, J.; Råstam, L.; Lindblad, U. Atrial fibrillation and its association with type 2 diabetes and hypertension in a swedish community. Diabetes Obes. Metab., 2004, 6, 367-374.
[39]
Rosengren, A.; Hauptman, P.J.; Lappas, G.; Olsson, L.; Wilhelmsen, L.; Swedberg, K. Big men and atrial fibrillation: Effects of body size and weight gain on risk of atrial fibrillation in men. Eur. Heart J., 2009, 30, 1113-1120.
[40]
Frost, L.; Hune, L.J.; Vestergaard, P. Overweight and obesity as risk factors for atrial fibrillation or flutter: The danish diet, cancer, and health study. Am. J. Med., 2005, 118, 489-495.
[41]
Movahed, M.R.; Hashemzadeh, N.; Jamal, M.M. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int. J. Cardiol., 2005, 105, 315-318.
[42]
Aksnes, T.A.; Schmieder, R.E.; Kjeldsen, S.E.; Ghani, S.; Hua, T.A.; Julius, S. Impact of new-onset diabetes mellitus on development of atrial fibrillation and heart failure in high-risk hypertension (from the VALUE Trial). Am. J. Cardiol., 2008, 101, 634-638.
[43]
Nichols, G.A.; Reinier, K.; Chugh, S.S. Independent contribution of diabetes to increased prevalence and incidence of atrial fibrillation. Diabetes Care, 2009, 32, 1851-1856.
[44]
Tadic, M.; Cuspidi, C. Type 2 diabetes mellitus and atrial fibrillation: From mechanisms to clinical practice. Arch. Cardiovasc. Dis., 2015, 108, 269-276.
[46]
Rizzo, M.R.; Sasso, F.C.; Marfella, R.; Siniscalchi, M.; Paolisso, P.; Carbonara, O.; Capoluongo, M.C.; Lascar, N.; Pace, C.; Sardu, C.; Passavanti, B.; Barbieri, M.; Mauro, C.; Paolisso, G. Autonomic dysfunction is associated with brief episodes of atrial fibrillation in type 2 diabetes. J. Diabetes Complications, 2015, 29, 88-92.
[47]
Asghar, O.; Alam, U.; Hayat, S.A.; Aghamohammadzadeh, R.; Heagerty, A.M.; Malik, R.A. Diabetes, obesity and atrial fibrillation: Epidemiology, mechanisms and interventions. J. Atr. Fibrillation, 2013, 6, 869.
[48]
Grundvold, I.; Bodegard, J.; Nilsson, P.M.; Svennblad, B.; Johansson, G.; Östgren, C.J.; Sundström, J. Body weight and risk of atrial fibrillation in 7,169 patients with newly diagnosed type 2 diabetes; An observational study. Cardiovasc. Diabetol., 2015, 14, 5.
[49]
Yamagishi, S. Cardiovascular disease in recent onset diabetes mellitus. J. Cardiol., 2011, 57, 257-262.
[50]
Lavernia, F.; Adkins, S.E.; Shubrook, J.H. Use of oral combination therapy for type 2 diabetes in primary care: Meeting individualized patient goals. Postgrad. Med., 2015, 127, 808-817.
[51]
Huxley, R.R.; Alonso, A.; Lopez, F.L.; Filion, K.B.; Agarwal, S.K.; Loehr, L.R.; Soliman, E.Z.; Pankow, J.S.; Selvin, E. Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: The atherosclerosis risk in communities’ study. Heart, 2012, 98, 133-138.
[52]
Dublin, S.; Glazer, N.L.; Smith, N.L.; Psaty, B.M.; Lumley, T.; Wiggins, K.L.; Page, R.L.; Heckbert, S.R. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J. Gen. Intern. Med., 2010, 25, 853-858.
[53]
Lu, Z.H.; Liu, N.; Bai, R.; Yao, Y.; Li, S.N.; Yu, R.H.; Sang, C.H.; Tang, R.B.; Long, D.Y.; Du, X.; Dong, J.Z.; Ma, C.S. HbA1c levels as predictors of ablation outcome in type 2 diabetes mellitus and paroxysmal atrial fibrillation. Herz, 2015, 40(Suppl. 2), 130-136.
[54]
Yamagishi, S.I.; Nakamura, N.; Matsui, T. Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory. J. Diabetes, 2017, 9, 141-148.
[55]
Dahlqvist, S.; Rosengren, A.; Gudbjörnsdottir, S.; Pivodic, A.; Wedel, H.; Kosiborod, M.; Svensson, A.M.; Lind, M. Risk of atrial fibrillation in people with type 1 diabetes compared with matched controls from the general population: A prospective case-control study. Lancet Diabetes Endocrinol., 2017, 5, 799-807.
[56]
Larsson, S.C.; Wallin, A.; Håkansson, N.; Stackelberg, O.; Bäck, M.; Wolk, A. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. Int. J. Cardiol., 2018, 262, 66-70.
[58]
Tahara, N.; Yamagishi, S.I.; Bekki, M.; Kodama, N.; Nakamura, T.; Sugiyama, Y.; Oshige, T.; Kumashiro, Y.; Honda, A.; Tahara, A.; Igata, S.; Fukumoto, Y. Anagliptin, A Dipeptidyl peptidase-4 inhibitor ameliorates arterial stiffness in association with reduction of remnant-like particle cholesterol and alanine transaminase levels in type 2 diabetic patients. Curr. Vasc. Pharmacol., 2016, 14, 552-562.
[59]
Sell, D.R.; Monnier, V.M. Molecular basis of arterial stiffness: Role of glycation-a mini review. Gerontology, 2012, 58, 227-237.
[60]
Valbusa, F.; Bonapace, S.; Bertolini, L.; Zenari, L.; Arcaro, G.; Targher, G. Increased pulse pressure independently predicts incident atrial fibrillation in patients with type 2 diabetes. Diabetes Care, 2012, 35, 2337-2339.
[61]
Ando, R.; Ueda, S.; Yamagishi, S.; Miyazaki, H.; Kaida, Y.; Kaifu, K.; Yokoro, M.; Nakayama, Y.; Obara, N.; Fukami, K.; Takeuchi, M.; Okuda, S. Involvement of advanced glycation end product-induced asymmetric dimethylarginine generation in endothelial dysfunction. Diab. Vasc. Dis. Res., 2013, 10, 436-441.
[62]
Yamagishi, S.; Matsui, T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid. Med. Cell. Longev., 2010, 3, 101-108.
[63]
Yamagishi, S.; Nakamura, K.; Matsui, T.; Inagaki, Y.; Takenaka, K.; Jinnouchi, Y.; Yoshida, Y.; Matsuura, T.; Narama, I.; Motomiya, Y.; Takeuchi, M.; Inoue, H.; Yoshimura, A.; Bucala, R.; Imaizumi, T. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J. Biol. Chem., 2006, 281, 20213-20220.
[64]
Nagano, M.; Fukami, K.; Yamagishi, S.; Sakai, K.; Kaida, Y.; Matsumoto, T.; Hazama, T.; Tanaka, M.; Ueda, S.; Okuda, S. Tissue level of advanced glycation end products is an independent determinant of high-sensitivity C-reactive protein levels in haemodialysis patients. Nephrology (Carlton), 2011, 16, 299-303.
[65]
Adachi, T.; Fukami, K.; Yamagishi, S.; Kaida, Y.; Ando, R.; Sakai, K.; Adachi, H.; Otsuka, A.; Ueda, S.; Sugi, K.; Okuda, S. Decreased serum carnitine is independently correlated with increased tissue accumulation levels of advanced glycation end products in haemodialysis patients. Nephrology (Carlton), 2012, 17, 689-694.
[66]
Yanagisawa, K.; Ashihara, J.; Obara, S.; Wada, N.; Takeuchi, M.; Nishino, Y.; Maeda, S.; Ishibashi, Y.; Yamagishi, S. Switching to multiple daily injection therapy with glulisine improves glycaemic control, vascular damage and treatment satisfaction in basal insulin glargine-injected diabetic patients. Diabetes Metab. Res. Rev., 2014, 30, 693-700.
[67]
Tsunosue, M.; Mashiko, N.; Ohta, Y.; Matsuo, Y.; Ueda, K.; Ninomiya, M.; Tanaka, S.; Hoshiko, M.; Yoshiyama, Y.; Takeuchi, M.; Ueda, S.; Yamagishi, S. An alpha-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin. Exp. Med., 2010, 10, 139-141.
[68]
Hempe, J.M.; Liu, S.; Myers, L.; McCarter, R.J.; Buse, J.B.; Fonseca, V. The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD trial. Diabetes Care, 2015, 38, 1067-1074.
[69]
Sakata, K.; Hayakawa, M.; Yano, Y.; Tamaki, N.; Yokota, N.; Eto, T.; Watanabe, R.; Hirayama, N.; Matsuo, T.; Kuroki, K.; Sagara, S.; Mishima, O.; Koga, M.; Nagata, N.; Nishino, Y.; Kitamura, K.; Kario, K.; Takeuchi, M.; Yamagishi, S. Efficacy of alogliptin, a dipeptidyl peptidase-4 inhibitor, on glucose parameters, the activity of the advanced glycation end product (AGE) - receptor for AGE (RAGE) axis and albuminuria in Japanese type 2 diabetes. Diabetes Metab. Res. Rev., 2013, 29, 624-630.
[70]
Khan, M.I.; Rath, S.; Adhami, V.M.; Mukhtar, H. Hypoxia driven glycation: Mechanisms and therapeutic opportunities. Semin. Cancer Biol., 2018, 49, 75-82.
[71]
Chang, J.S.; Wendt, T.; Qu, W.; Kong, L.; Zou, Y.S.; Schmidt, A.M.; Yan, S.F. Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ. Res., 2008, 102, 905-913.
[72]
Ko, S.H.; Park, Y.M.; Yun, J.S.; Cha, S.A.; Choi, E.K.; Han, K.; Han, E.; Lee, Y.H.; Ahn, Y.B. Severe hypoglycemia is a risk factor for atrial fibrillation in type 2 diabetes mellitus: Nationwide population-based cohort study. J. Diabetes Complications, 2018, 32, 157-163.
[73]
Baxter, M.A.; Garewal, C.; Jordan, R.; Wright, A.D.; Nattrass, M. Hypoglycaemia and atrial fibrillation. Postgrad. Med. J., 1990, 66, 981.
[74]
Collier, A.; Matthews, D.M.; Young, R.J.; Clarke, B.F. Transient atrial fibrillation precipitated by hypoglycaemia: Two case reports. Postgrad. Med. J., 1987, 63, 895-897.
[75]
Gu, J.; Fan, Y.Q.; Zhang, J.F.; Wang, C.Q. Impact of long-term glycemic variability on development of atrial fibrillation in type 2 diabetic patients. Anatol. J. Cardiol., 2017, 18, 410-416.
[76]
Sato, H.; Hosojima, M.; Ishikawa, T.; Aoki, K.; Okamoto, T.; Saito, A.; Tsuchida, M. Glucose variability based on continuous glucose monitoring assessment is associated with postoperative complications after cardiovascular surgery. Ann. Thorac. Cardiovasc. Surg., 2017, 23, 239-247.
[77]
Begieneman, M.P.; Rijvers, L.; Kubat, B.; Paulus, W.J.; Vonk, A.B.; van Rossum, A.C.; Schalkwijk, C.G.; Stooker, W.; Niessen, H.W.; Krijnen, P.A. Atrial fibrillation coincides with the advanced glycation end product N(ε)-(carboxymethyl)lysine in the atrium. Am. J. Pathol., 2015, 185, 2096-2104.
[78]
Campbell, D.J.; Somaratne, J.B.; Jenkins, A.J.; Prior, D.L.; Yii, M.; Kenny, J.F.; Newcomb, A.E.; Schalkwijk, C.G.; Black, M.J.; Kelly, D.J. Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS One, 2012, 7, e49813.
[79]
Kim, S.M.; Lee, J.H.; Kim, J.R.; Shin, D.G.; Lee, S.H.; Cho, K.H. Female patients with atrial fibrillation have increased oxidized and glycated lipoprotein properties and lower apolipoprotein A-I expression in HDL. Int. J. Mol. Med., 2011, 27, 841-849.
[80]
Kim, S.M.; Kim, J.M.; Shin, D.G.; Kim, J.R.; Cho, K.H. Relation of atrial fibrillation (AF) and change of lipoproteins: Male patients with AF exhibited severe pro-inflammatory and pro-atherogenic properties in lipoproteins. Clin. Biochem., 2014, 47, 869-875.
[81]
Wannamethee, S.G.; Welsh, P.; Papacosta, O.; Ellins, E.A.; Halcox, J.P.J.; Whincup, P.H.; Sattar, N. Circulating soluble receptor for advanced glycation end product: Cross-sectional associations with cardiac markers and subclinical vascular disease in older men with and without diabetes. Atherosclerosis, 2017, 264, 36-43.
[82]
Yamagishi, S. Comment on: Selvin et al. sRAGE and risk of diabetes,
cardiovascular disease, and death. Diabetes, 2013, 62, 2116-
2121, e26.
[83]
Maillard-Lefebvre, H.; Boulanger, E.; Daroux, M.; Gaxatte, C.; Hudson, B.I.; Lambert, M. Soluble receptor for advanced glycation end products: A new biomarker in diagnosis and prognosis of chronic inflammatory diseases. Rheumatology (Oxford), 2009, 48, 1190-1196.
[84]
Yamagishi, S.; Matsui, T. Soluble form of a receptor for advanced glycation end products (sRAGE) as a biomarker. Front. Biosci. (Elite Ed.), 2010, 2, 1184-1195.
[85]
Santilli, F.; Vazzana, N.; Bucciarelli, L.G.; Davì, G. Soluble forms of RAGE in human diseases: Clinical and therapeutical implications. Curr. Med. Chem., 2009, 16, 940-952.
[86]
Nakamura, T.; Sato, E.; Fujiwara, N.; Kawagoe, Y.; Ueda, Y.; Suzuki, T.; Yamada, S.; Takeuchi, M.; Fukami, K.; Ueda, S.; Adachi, H.; Matsui, T.; Okuda, S.; Yamagishi, S. Positive association of serum levels of advanced glycation end products and high mobility group box-1 with asymmetric dimethylarginine in nondiabetic chronic kidney disease patients. Metabolism, 2009, 58, 1624-168.
[87]
Geroldi, D.; Falcone, C.; Emanuele, E. Soluble receptor for advanced glycation end products: From disease marker to potential therapeutic target. Curr. Med. Chem., 2006, 13, 1971-1978.
[88]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Matsui, T.; Kurita-Nakamura, Y.; Takeuchi, M.; Inoue, H.; Imaizumi, T. Serum levels of soluble form of receptor for advanced glycation end products (sRAGE) are positively associated with circulating AGEs and soluble form of VCAM-1 in patients with type 2 diabetes. Microvasc. Res., 2008, 76, 52-56.
[89]
Vazzana, N.; Santilli, F.; Cuccurullo, C.; Davì, G. Soluble forms of RAGE in internal medicine. Intern. Emerg. Med., 2009, 4, 389-401.
[90]
Nakamura, K.; Yamagishi, S.I.; Matsui, T.; Adachi, H.; Takeuchi, M.; Imaizumi, T. Serum levels of soluble form of receptor for advanced glycation end products (sRAGE) are correlated with AGEs in both diabetic and non-diabetic subjects. Clin. Exp. Med., 2007, 7, 188-190.
[91]
Yamagishi, S.; Matsui, T.; Nakamura, K. Kinetics, role and therapeutic implications of endogenous soluble form of receptor for advanced glycation end products (sRAGE) in diabetes. Curr. Drug Targets, 2007, 8, 1138-1143.
[92]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Matsui, T.; Kurita-Nakamura, Y.; Takeuchi, M.; Inoue, H.; Imaizumi, T. Circulating advanced glycation end products (AGEs) and soluble form of receptor for AGEs (sRAGE) are independent determinants of serum monocyte chemoattractant protein-1 (MCP-1) levels in patients with type 2 diabetes. Diabetes Metab. Res. Rev., 2008, 24, 109-114.
[93]
Jensen, L.J.; Flyvbjerg, A.; Bjerre, M. Soluble receptor for advanced glycation end product: A biomarker for acute coronary syndrome. BioMed Res. Int., 2015, 2015, 815942.
[94]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Kurita-Nakamura, Y.; Matsui, T.; Yoshida, T.; Imaizumi, T. Serum levels of sRAGE, the soluble form of receptor for advanced glycation end products, are associated with inflammatory markers in patients with type 2 diabetes. Mol. Med., 2007, 13, 185-189.
[95]
Yamagishi, S.; Imaizumi, T. Serum levels of soluble form of receptor for advanced glycation end products (sRAGE) may reflect tissue RAGE expression in diabetes. Arterioscler. Thromb. Vasc. Biol., 2007, 27, e32.
[96]
Nakamura, K.; Yamagishi, S.; Adachi, H.; Kurita-Nakamura, Y.; Matsui, T.; Yoshida, T.; Sato, A.; Imaizumi, T. Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease. Diabetes Metab. Res. Rev., 2007, 23, 368-371.
[97]
Yamagishi, S.; Adachi, H.; Nakamura, K.; Matsui, T.; Jinnouchi, Y.; Takenaka, K.; Takeuchi, M.; Enomoto, M.; Furuki, K.; Hino, A.; Shigeto, Y.; Imaizumi, T. Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism, 2006, 55, 1227-1231.
[98]
Nakamura, K.; Yamagishi, S.; Nakamura, Y.; Takenaka, K.; Matsui, T.; Jinnouchi, Y.; Imaizumi, T. Telmisartan inhibits expression of a receptor for advanced glycation end products (RAGE) in angiotensin-II-exposed endothelial cells and decreases serum levels of soluble RAGE in patients with essential hypertension. Microvasc. Res., 2005, 70, 137-141.
[99]
Nin, J.W.; Jorsal, A.; Ferreira, I.; Schalkwijk, C.G.; Prins, M.H.; Parving, H.H.; Tarnow, L.; Rossing, P.; Stehouwer, C.D. Higher plasma soluble receptor for advanced glycation end products (sRAGE) levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: A 12-year follow-up study. Diabetes, 2010, 59, 2027-2032.
[100]
Colhoun, H.M.; Betteridge, D.J.; Durrington, P.; Hitman, G.; Neil, A.; Livingstone, S.; Charlton-Menys, V.; Bao, W.; Demicco, D.A.; Preston, G.M.; Deshmukh, H.; Tan, K.; Fuller, J.H. Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: An analysis from the CARDS trial. Diabetes, 2011, 60, 2379-2385.
[101]
Fujisawa, K.; Katakami, N.; Kaneto, H.; Naka, T.; Takahara, M.; Sakamoto, F.; Irie, Y.; Miyashita, K.; Kubo, F.; Yasuda, T.; Matsuoka, T.A.; Shimomura, I. Circulating soluble RAGE as a predictive biomarker of cardiovascular event risk in patients with type 2 diabetes. Atherosclerosis, 2013, 227, 425-428.
[102]
Raucci, A.; Cugusi, S.; Antonelli, A.; Barabino, S.M.; Monti, L.; Bierhaus, A.; Reiss, K.; Saftig, P.; Bianchi, M.E. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J., 2008, 22, 3716-3727.
[104]
Raposeiras-Roubín, S.; Rodiño-Janeiro, B.K.; Grigorian-Shamagian, L.; Seoane-Blanco, A.; Moure-González, M.; Varela-Román, A.; Álvarez, E.; González-Juanatey, J.R. Evidence for a role of advanced glycation end products in atrial fibrillation. Int. J. Cardiol., 2012, 157, 397-402.
[105]
Iguchi, Y.; Kimura, K.; Shibazaki, K.; Aoki, J.; Sakai, K.; Sakamoto, Y.; Uemura, J.; Yamashita, S. HbA1c and atrial fibrillation: A cross-sectional study in Japan. Int. J. Cardiol., 2012, 156, 156-159.
[106]
Raposeiras-Roubín, S.; Barreiro-Parda, C.; Roubín-Camiña, F.; Rodiño-Janeiro, B.K.; Paradela-Dobarro, B.; Alvarez-Castro, E.; Grigorian-Shamagian, L.; González-Juanatey, J.R. Advanced glycation end products: A mysterious shadow beyond the relationship between HbA1c and atrial fibrillation. Int. J. Cardiol., 2012, 157(3), 441.
[107]
Yang, P.S.; Lee, S.H.; Park, J.; Kim, T.H.; Uhm, J.S.; Joung, B.; Lee, M.H.; Chang, B.C.; Pak, H.N. Atrial tissue expression of receptor for advanced glycation end-products (RAGE) and atrial fibrosis in patients with mitral valve disease. Int. J. Cardiol., 2016, 220, 1-6.
[108]
Kato, T.; Yamashita, T.; Sekiguchi, A.; Tsuneda, T.; Sagara, K.; Takamura, M.; Kaneko, S.; Aizawa, T.; Fu, L.T. AGEs-RAGE system mediates atrial structural remodeling in the diabetic rat. J. Cardiovasc. Electrophysiol., 2008, 19, 415-420.
[109]
Zhang, Q.; Li, G.; Liu, T. Receptor for advanced glycation end products (RAGE): Novel biomarker and therapeutic target for atrial fibrillation. Int. J. Cardiol., 2013, 168, 4802-4804.
[110]
Mahajan, N.; Dhawan, V. Receptor for advanced glycation end products (RAGE) in atrial fibrillation. Int. J. Cardiol., 2013, 168, 5072-5073.
[111]
Lancefield, T.F.; Patel, S.K.; Freeman, M.; Velkoska, E.; Wai, B.; Srivastava, P.M.; Horrigan, M.; Farouque, O.; Burrell, L.M. The receptor for advanced glycation end products (RAGE) Is associated with persistent atrial fibrillation. PLoS One, 2016, 11, e0161715.
[112]
Zhao, D.; Wang, Y.; Xu, Y. Decreased serum endogenous secretory receptor for advanced glycation endproducts and increased cleaved receptor for advanced glycation endproducts levels in patients with atrial fibrillation. Int. J. Cardiol., 2012, 158, 471-472.
[113]
Montaner, J.; Perea-Gainza, M.; Delgado, P.; Ribó, M.; Chacón, P.; Rosell, A.; Quintana, M.; Palacios, M.E.; Molina, C.A.; Alvarez-Sabín, J. Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke, 2008, 39, 2280-2287.
[114]
Yokota, C.; Minematsu, K.; Tomii, Y.; Naganuma, M.; Ito, A.; Nagasawa, H.; Yamaguchi, T. Low levels of plasma soluble receptor for advanced glycation end products are associated with severe leukoaraiosis in acute stroke patients. J. Neurol. Sci., 2009, 287, 41-44.
[115]
Tang, S.C.; Yang, K.C.; Hu, C.J.; Chiou, H.Y.; Wu, C.C.; Jeng, J.S. Elevated plasma level of soluble form of RAGE in ischemic stroke patients with dementia. Neuromol. Med., 2017, 19, 579-583.
[116]
Al Rifai, M.; Schneider, A.L.; Alonso, A.; Maruthur, N.; Parrinello, C.M.; Astor, B.C.; Hoogeveen, R.C.; Soliman, E.Z.; Chen, L.Y.; Ballantyne, C.M.; Halushka, M.K.; Selvin, E. sRAGE, inflammation, and risk of atrial fibrillation: Results from the atherosclerosis risk in communities (ARIC) study. J. Diabetes Complications, 2015, 29, 180-185.
[117]
Yang, P.S.; Kim, T.H.; Uhm, J.S.; Park, S.; Joung, B.; Lee, M.H.; Pak, H.N. High plasma level of soluble RAGE is independently associated with a low recurrence of atrial fibrillation after catheter ablation in diabetic patient. Europace, 2016, 18, 1711-1718.
[118]
Tontonoz, P.; Spiegelman, B.M. Fat and beyond: The diverse biology of PPARgamma. Annu. Rev. Biochem., 2008, 77, 289-312.
[119]
Sulistio, M.S.; Zion, A.; Thukral, N.; Chilton, R. PPARgamma agonists and coronary atherosclerosis. Curr. Atheroscler. Rep., 2008, 10, 134-141.
[120]
Yoshida, T.; Yamagishi, S.; Nakamura, K.; Matsui, T.; Imaizumi, T.; Takeuchi, M.; Koga, H.; Ueno, T.; Sata, M. Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia, 2006, 49, 3094-3099.
[121]
Yamagishi, S.; Nakamura, K.; Matsui, T. Potential utility of telmisartan, an angiotensin II type 1 receptor blocker with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity for the treatment of cardiometabolic disorders. Curr. Mol. Med., 2007, 7, 463-469.
[122]
Chen, M.; Li, H.; Wang, G.; Shen, X.; Zhao, S.; Su, W. Atorvastatin prevents advanced glycation end products (AGEs)-induced cardiac fibrosis via activating peroxisome proliferator-activated receptor gamma (PPAR-γ). Metabolism, 2016, 65, 441-453.
[123]
Matsui, T.; Yamagishi, S.; Takeuchi, M.; Ueda, S.; Fukami, K.; Okuda, S. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation. Biochem. Biophys. Res. Commun., 2009, 385, 269-272.
[124]
Yamagishi, S.; Nakamura, K.; Matsui, T. Regulation of advanced glycation end product (AGE)-receptor (RAGE) system by PPAR-gamma agonists and its implication in cardiovascular disease. Pharmacol. Res., 2009, 60, 174-178.
[125]
Ma, L.; Gao, H.Q.; Li, B.Y.; Ma, Y.B.; You, B.A.; Zhang, F.L. Grape seed proanthocyanidin extracts inhibit vascular cell adhesion molecule expression induced by advanced glycation end products through activation of peroxisome proliferators-activated receptor gamma. J. Cardiovasc. Pharmacol., 2007, 49, 293-298.
[126]
Matsui, T.; Yamagishi, S.; Takeuchi, M.; Ueda, S.; Fukami, K.; Okuda, S. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation. Biochem. Biophys. Res. Commun., 2010, 398, 326-330.
[127]
Ma, C.; Zhang, Y.; Li, Y.Q.; Chen, C.; Cai, W.; Zeng, Y.L. The role of PPARγ in advanced glycation end products-induced inflammatory response in human chondrocytes. PLoS One, 2015, 10, e0125776.
[128]
Ishibashi, Y.; Matsui, T.; Ohta, K.; Tanoue, R.; Takeuchi, M.; Asanuma, K.; Fukami, K.; Okuda, S.; Nakamura, K.; Yamagishi, S. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation. Microvasc. Res., 2013, 85, 54-58.
[129]
Liu, B.; Wang, J.; Wang, G. Beneficial effects of pioglitazone on retardation of persistent atrial fibrillation progression in diabetes mellitus patients. Int. Heart J., 2014, 55, 499-505.
[130]
Chao, T.F.; Leu, H.B.; Huang, C.C.; Chen, J.W.; Chan, W.L.; Lin, S.J.; Chen, S.A. Thiazolidinediones can prevent new onset atrial fibrillation in patients with non-insulin dependent diabetes. Int. J. Cardiol., 2012, 156, 199-202.
[131]
Pallisgaard, J.L.; Brooks, M.M.; Chaitman, B.R.; Boothroyd, D.B.; Perez, M.; Hlatky, M.A. Bypass angioplasty revascularization investigation 2 diabetes study group. Thiazolidinediones and risk of atrial fibrillation among patients with diabetes and coronary disease. Am. J. Med., 2018, 131, 805-812.
[132]
Pallisgaard, J.L.; Lindhardt, T.B.; Staerk, L.; Olesen, J.B.; Torp-Pedersen, C.; Hansen, M.L.; Gislason, G.H. Thiazolidinediones are associated with a decreased risk of atrial fibrillation compared with other antidiabetic treatment: A nationwide cohort study. Eur. Heart J. Cardiovasc. Pharmacother., 2017, 3, 140-146.
[133]
Zhang, Z.; Zhang, X.; Korantzopoulos, P.; Letsas, K.P.; Tse, G.; Gong, M.; Meng, L.; Li, G.; Liu, T. Thiazolidinedione use and atrial fibrillation in diabetic patients: A meta-analysis. BMC Cardiovasc. Disord., 2017, 17, 96.
[134]
Yamagishi, S. Clinical markers associated with glycaemic response to dipeptidyl peptidase-4 inhibitor therapy. Diabetes Metab. Res. Rev., 2018, 34, e3024.
[135]
Elgendy, I.Y.; Mahmoud, A.N. Barakat. A.F.; Elgendy, A.Y.; Saad. M.; Abuzaid, A.; Wayangankar, S.A.; Bavry, A.A. Cardiovascular Safety of Dipeptidyl-Peptidase IV Inhibitors: A meta-analysis of placebo-controlled randomized trials. Am. J. Cardiovasc. Drugs, 2017, 17, 143-155.
[136]
Rehman, M.B.; Tudrej, B.V.; Soustre, J.; Buisson, M.; Archambault, P.; Pouchain, D.; Vaillant-Roussel, H.; Gueyffier, F.; Faillie, J.L.; Perault-Pochat, M.C.; Cornu, C.; Boussageon, R. Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: Meta-analysis of placebo-controlled randomized clinical trials. Diabetes Metab., 2017, 43, 48-58.
[137]
Kawalec, P.; Mikrut, A.; Łopuch, S. The safety of dipeptidyl peptidase-4 (DPP-4) inhibitors or sodium-glucose cotransporter 2 (SGLT-2) inhibitors added to metformin background therapy in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab. Res. Rev., 2014, 30, 269-283.
[138]
Liu, Y.; Hou, B.; Zhang, Y.; Fan, Y.; Peng, B.; Liu, W.; Han, S.; Yin, J.; He, X. Anticonvulsant agent DPP4 inhibitor sitagliptin downregulates CXCR3/RAGE pathway on seizure models. Exp. Neurol., 2018, 307, 90-98.
[139]
Matsui, T.; Nishino, Y.; Takeuchi, M.; Yamagishi, S. Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis. Pharmacol. Res., 2011, 63, 383-388.
[140]
Kaifu, K.; Ueda, S.; Nakamura, N.; Matsui, T.; Yamada-Obara, N.; Ando, R.; Kaida, Y.; Nakata, M.; Matsukuma-Toyonaga, M.; Higashimoto, Y.; Fukami, K.; Suzuki, Y.; Okuda, S.; Yamagishi, S.I. Advanced glycation end products evoke inflammatory reactions in proximal tubular cells via autocrine production of dipeptidyl peptidase-4. Microvasc. Res., 2018, 120, 90-93.
[141]
Matsui, T.; Nakashima, S.; Nishino, Y. Ojima. A.; Nakamura, N.; Arima, K.; Fukami, K.; Okuda, S.; Yamagishi, S. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. Lab. Invest., 2015, 95, 525-533.
[142]
Abdelsalam, R.M.; Safar, M.M. Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: Role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J. Neurochem., 2015, 133, 700-707.
[143]
Yamagishi, S.; Fukami, K.; Matsui, T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc. Diabetol., 2015, 14, 2.
[144]
Tahara, N.; Yamagishi, S.; Matsui, T.; Nishino, Y.; Honda, A.; Tahara, A.; Igata, S.; Fukumoto, Y. Serum levels of pigment epithelium-derived factor (PEDF) are inversely associated with circulating levels of dipeptidyl peptidase-4 (DPP-4) in humans. Int. J. Cardiol., 2015, 184, 14-16.
[145]
Ishibashi, Y.; Matsui, T.; Maeda, S.; Higashimoto, Y.; Yamagishi, S. Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cardiovasc. Diabetol., 2013, 12, 125.
[146]
Tahara, N.; Yamagishi, S.; Takeuchi, M.; Tahara, A.; Kaifu, K.; Ueda, S.; Okuda, S.; Imaizumi, T. Serum levels of advanced glycation end products (AGEs) are independently correlated with circulating levels of dipeptidyl peptidase-4 (DPP-4) in humans. Clin. Biochem., 2013, 46, 300-303.
[147]
Chang, C.Y.; Yeh, Y.H.; Chan, Y.H.; Liu, J.R.; Chang, S.H.; Lee, H.F.; Wu, L.S.; Yen, K.C.; Kuo, C.T.; See, L.C. Dipeptidyl peptidase-4 inhibitor decreases the risk of atrial fibrillation in patients with type 2 diabetes: A nationwide cohort study in Taiwan. Cardiovasc. Diabetol., 2017, 16, 159.
[148]
Chen, H.Y.; Yang, F.Y.; Jong, G.P.; Liou, Y.S. Antihyperglycemic drugs use and new-onset atrial fibrillation in elderly patients. Eur. J. Clin. Invest., 2017, 47, 388-393.
[149]
Varjabedian, L.; Bourji, M.; Pourafkari, L.; Nader, N.D. Cardioprotection by Metformin: Beneficial effects beyond glucose reduction. Am. J. Cardiovasc. Drugs, 2018, 18, 181-193.
[150]
Campbell, J.M.; Bellman, S.M.; Stephenson, M.D.; Lisy, K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis. Ageing Res. Rev., 2017, 40, 31-44.
[151]
Prasad, K.; Mishra, M. Do advanced glycation end products and its receptor play a role in pathophysiology of hypertension? Int. J. Angiol., 2017, 26, 1-11.
[152]
Yamagishi, S.; Nakamura, K.; Matsui, T. Ueda. S.: Noda, Y.; Imaizumi, T. Inhibitors of advanced glycation end products (AGEs): Potential utility for the treatment of cardiovascular disease. Cardiovasc. Ther., 2008, 26, 50-58.
[153]
Ahmad, S.; Khan, M.S.; Akhter, F.; Khan, M.S.; Khan, A.; Ashraf, J.M.; Pandey, R.P.; Shahab, U. Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology, 2014, 24, 979-990.
[154]
Beisswenger, P.; Ruggiero-Lopez, D. Metformin inhibition of glycation processes. Diabetes Metab., 2003, 29(4 Pt 2), 6S95-103.
[155]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm. Metab. Res., 2013, 45, 387-390.
[156]
Lin, C.H.; Cheng, Y.C.; Nicol, C.J.; Lin, K.H.; Yen, C.H.; Chiang, M.C. Activation of AMPK is neuroprotective in the oxidative stress by advanced glycosylation end products in human neural stem cells. Exp. Cell Res., 2017, 359, 367-373.
[157]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression. Horm. Metab. Res., 2012, 44, 891-895.
[158]
Zhou, Z.; Tang, Y.; Jin, X.; Chen, C.; Lu, Y.; Liu, L.; Shen, C. Metformin inhibits advanced glycation end products-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFkB pathway suppression. J. Diabetes Res., 2016, 2016, 4847812.
[159]
Zhang, T.; Hu, X.; Cai, Y.; Yi, B.; Wen, Z. Metformin protects against hyperglycemia-induced cardiomyocytes injury by inhibiting the expressions of receptor for advanced glycation end products and high mobility group box 1 protein. Mol. Biol. Rep., 2014, 41, 1335-1340.
[160]
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Beneficial effects of metformin and irbesartan on advanced glycation end products (AGEs)-RAGE-induced proximal tubular cell injury. Pharmacol. Res., 2012, 65, 297-302.
[161]
Chang, S.H.; Wu, L.S.; Chiou, M.J.; Liu, J.R.; Yu, K.H.; Kuo, C.F.; Wen, M.S.; Chen, W.J.; Yeh, Y.H.; See, L.C. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: A population-based dynamic cohort and in vitro studies. Cardiovasc. Diabetol., 2014, 13, 123.
[162]
Ojima, A.; Oda, E.; Higashimoto, Y.; Matsui, T.; Yamagishi, S. DNA aptamer raised against advanced glycation end products inhibits neointimal hyperplasia in balloon-injured rat carotid arteries. Int. J. Cardiol., 2014, 17, 443-446.
[163]
Willeit, K.; Kiechl, S. Atherosclerosis and atrial fibrillation–Two closely intertwined diseases. Atherosclerosis, 2014, 233, 679-681.