Research Article

炖的果汁:蛋白质稳态机械抑制降低多发性骨髓瘤细胞系的细胞活力

卷 19, 期 2, 2019

页: [112 - 119] 页: 8

弟呕挨: 10.2174/1566524019666190305134441

价格: $65

摘要

简介:多发性骨髓瘤(MM)细胞在骨髓中积聚并产生大量免疫球蛋白,引起内质网应激和蛋白质处理机制的激活,如热休克蛋白反应,自噬和未折叠蛋白反应(UPR)。 方法:我们评估了用硼替佐米(B)与HSP70(VER-15508)和自噬(SBI-0206965)或UPR(STF-083010)抑制剂联合治疗后的细胞系活力。 结果:对于RPMI-8226,用B + VER + STF或B + VER + SBI处理72小时后,我们观察到15%的活细胞,但单独用B处理更好(90%的细胞死亡)。对于U266,用B + VER + STF或B + VER + SBI处理72小时导致20%的细胞活力,并且两种处理均优于单独使用B处理(40%的细胞死亡)。在两种三联体组合后,RPMI-8226和U266呈现XBP-1 UPR蛋白的过表达,表明它作为补偿机制起作用,试图使细胞处理否则致命的大量免疫球蛋白超载。 结论:我们的体外结果提供了额外的证据,可以探索蛋白质稳态抑制剂的组合作为MM的治疗选择。

关键词: 多发性骨髓瘤,蛋白酶体,HSP70,自噬,UPR,UPS。

[1]
Rajkumar S, Kumar S. Multiple Myeloma: Diagnosis and Treatment. Mayo Clin Proc 2016; 91(1): 101-19.
[2]
Aronson LI, Davies FE. DangER: protein ovERload. Targeting protein degradation to treat myeloma. Haematologica 2012; 97(8): 1119-30.
[3]
Jego G, Hazoumé A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett 2013; 332(2): 275-85.
[4]
Zhang L, Fok JJL, Davies FE. Heat shock proteins in multiple myeloma. Oncotarget 2014; 5(5): 1132-45.
[5]
Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6(4): 463-77.
[6]
Benbrook DM, Long A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol 2012; 34: 286-97.
[7]
Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20(7): 1992-2003.
[8]
Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin 1- binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009; 11(4): 385-96.
[9]
Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23(21): 7448-59.
[10]
Hu MC, Gong HY, Lin GH, et al. XBP-1, a key regulator of unfolded protein response, activates transcription of IGF1 and Akt phosphorylation in zebrafish embryonic cell line. Biochem Biophys Res Commun 2007; 359(3): 778-83.
[11]
Adams J. Proteasome inhibition in cancer: Development of PS-341. Semin Oncol 2001; 28: 613-9.
[12]
Karin M, Cao Y, Greten FR, Li ZW. NF-kappa in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002. 2:301-10. 15
[13]
Massey AJ, Williamson DS, Browne H, et al. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 2010; 66(3): 535-45.
[14]
Zhang L, Fok JJL, Mirabella F, et al. HSP70 inhibition induces myeloma cell death via the intracellular accumulation of immunoglobulin and the generation of proteotoxic estress. Cancer Lett 2013; 339(1): 49-59.
[15]
Bailey CK, Budina-Kolomets A, Murphy ME, Nefedova Y. Efficacy of the HSP70 inhibitor PET-16 in multiple myeloma. Cancer Biol Ther 2015; 16(9): 1422-6.
[16]
Eugenio AIP, Fook-Alves VL, Oliveira MB, Fernando RC, Zanatta DB, Strauss BE, et al. . Proteasome and heat shock protein 70 (HSP70) inhibitors as therapeutic alternative in multiple myeloma. Oncotarget 2017. published online
[17]
Egan DF, Chun MG, Vamos M, et al. Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. Mol Cell 2015; 59(2): 285-97.
[18]
Papandreou I, Denko NC, Olson M, et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 2011; 117(4): 1311-4.
[19]
de Oliveira MB, Fook-Alves VL, Eugenio AIP. etal. Anti-myeloma effects of ruxolitinib combined with bortezomib and lenalidomide: A rationale for JAK/STAT pathway inhibition in myeloma patients. Cancer Lett 2017; 403: 206-15.
[20]
Park J, Bae E, Lee C, et al. Establishment and characterization of bortezomib-resistant U266 cell line: Constitutive activation of NF-κB-mediated cell signals and/or alterations of ubiquitylation-related genes reduce bortezomib-induced apoptosis. BMB Rep 2014; 47(5): 274-9.
[21]
Fernando R, Carvalho F, Mazzotti D, et al. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and Immune system as potential therapeutic targets. Genes & Cancer [Internet] 2015; 6: 462-71.
[22]
Gene Cards® The Human Gene Database. Available at http://www.genecards.org/ Access in: 14 November . 2017.
[23]
Walter P, and Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 3(34): 1081-6.
[24]
Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmatic reticulum stress and the hallmarks of cancer. Trends Cancer 2016; 2(5): 252-62.
[25]
Li M, Wang J, Jing J, et al. Synergistic promotion of breast cancer cells by targeting molecular chaperone GRP78 and heat shock protein 70. J Cell Mol Med 2009; 13(11-12): 4540-50.
[26]
Deegan S, Saveljeva S, Gorman AM, Samali A. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci 2013; 70: 2425-41.
[27]
Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta 2013; 1833: 3460-70.
[28]
Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 2003; 100(17): 9946-51.
[29]
Kumar SK, Callander NS, Alsina M, et al. Multiple myeloma, version 3. 2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2017; 15: 230-69.
[30]
Bulatov E, Zagidullin A, Valiullina A, Savarona R, Rizvanov A. Small molecule modulators of RING-Type E3 ligases: MDM and Cullin Families as targets. Front Pharmacol 2018; 9: 450.
[31]
Hoang B, Benavides A, Shi Y, Frost P, Lichtenstein A. Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther 2009; 8(7): 1974-84.
[32]
Mimura N, Fulciniti M, Gorgun G, et al. Blockage of XBP1splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 2012; 119: 5772-81.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy