[1]
Koch, R. Classics in infectious diseases. The etiology of tuberculosis: Robert Koch. Berlin, Germany 1882. Rev. Infect. Dis., 1982, 4(6), 1270-1274. [http://dx.doi.org/10.1093/clinids/4.6.1270]. [PMID: 6818657].
[3]
Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases E-Book; Elsevier Health Sciences, 2014.
[4]
Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev., 2003, 16(3), 463-496. [http://dx.doi.org/10.1128/CMR.16.3.463-496.2003]. [PMID: 12857778].
[5]
Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469(7331), 483-490. [http://dx.doi.org/10.1038/nature09657]. [PMID: 21270886].
[6]
Kahlon, A.; Sharma, A. Computational systems biology perspective on tuberculosis in big data era: Challenges and future goals. In: Big Data Analytics in Bioinformatics and Healthcare; IGI GLOBAL, 2015; pp. 240-264.
[7]
McKinney, J.D.; Höner zu Bentrup, K.; Muñoz-Elías, E.J.; Miczak, A.; Chen, B.; Chan, W-T.; Swenson, D.; Sacchettini, J.C.; Jacobs, W.R., Jr; Russell, D.G. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 2000, 406(6797), 735-738. [http://dx.doi.org/10.1038/35021074]. [PMID: 10963599].
[8]
Lorenz, M.C.; Fink, G.R. The glyoxylate cycle is required for fungal virulence. Nature, 2001, 412(6842), 83-86. [http://dx.doi.org/10.1038/35083594]. [PMID: 11452311].
[9]
Muñoz-Elías, E.J.; McKinney, J.D.M. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med., 2005, 11(6), 638-644. [http://dx.doi.org/ 10.1038/nm1252]. [PMID: 15895072].
[10]
Sharma, V.; Sharma, S.; Hoener zu Bentrup, K.; McKinney, J.D.; Russell, D.G.; Jacobs, W.R., Jr; Sacchettini, J.C. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat. Struct. Biol., 2000, 7(8), 663-668. [http://dx.doi.org/ 10.1038/77964]. [PMID: 10932251].
[11]
Lohman Jeremy, R.; Olson Andrew, C.; Remington, S. James. Atomic Resolution Structures of Escherichia Coli and Bacillus Anthracis Malate Synthase A: Comparison with isoform G and implications for structure‐based drug discovery. Protein Sci., 2009, 17, 1935-1945. [http://dx.doi.org/10.1110/ps.036269.108].
[12]
Moynihan, M.M.; Murkin, A.S. Cysteine is the general base that serves in catalysis by isocitrate lyase and in mechanism-based inhibition by 3-nitropropionate. Biochemistry, 2014, 53(1), 178-187. [http://dx.doi.org/10.1021/bi401432t]. [PMID: 24354272].
[13]
Jongkon, N.; Chotpatiwetchkul, W.; Gleeson, M.P. Probing the catalytic mechanism involved in the isocitrate lyase superfamily: Hybrid quantum mechanical/molecular mechanical calculations on 2,3-Dimethylmalate Lyase. J. Phys. Chem. B, 2015, 119(35), 11473-11484. [http://dx.doi.org/10.1021/acs.jpcb.5b04732]. [PMID: 26224328].
[14]
Shukla, H.; Kumar, V.; Singh, A.K.; Rastogi, S.; Khan, S.R.; Siddiqi, M.I.; Krishnan, M.Y.; Akhtar, M.S. Isocitrate lyase of Mycobacterium tuberculosis is inhibited by quercetin through binding at N-terminus. Int. J. Biol. Macromol., 2015, 78, 137-141. [http://dx.doi.org/10.1016/j.ijbiomac.2015.04.005]. [PMID: 25869309].
[15]
Casenghi, M.; Cole, S.T.; Nathan, C.F. New approaches to filling the gap in tuberculosis drug discovery. PLoS Med., 2007, 4(11)e293 [http://dx.doi.org/10.1371/journal.pmed.0040293]. [PMID: 17988169].
[16]
Butler, M.S. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25(3), 475-516. [http://dx.doi.org/10.1039/b514294f]. [PMID: 18497896].
[17]
García, A.; Bocanegra-García, V.; Palma-Nicolás, J.P.; Rivera, G. Recent advances in antitubercular natural products. Eur. J. Med. Chem., 2012, 49, 1-23. [http://dx.doi.org/10.1016/ j.ejmech.2011.12.029]. [PMID: 22280816].
[18]
Sansinenea, E.; Ortiz, A. Antitubercular natural terpenoids: Recent developments and syntheses. Curr. Org. Synth., 2014, 11, 545-591. [http://dx.doi.org/10.2174/1570179411666140321180629].
[19]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank, 1999-. In: International Tables for Crystallography Volume F: Crystallography of biological macromolecules;; Rossmann, M.G.; Arnold, E., Eds.; Springer Netherlands: Dordrecht,, 2001; pp. 675-684.
[20]
Morris Garrett, M. sing AutoDock for ligandreceptor docking. Curr. Protoc. Bioinforma., 2008, 24 8.14.1-8.14.40.
[21]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. [http://dx.doi.org/10.1002/ jcc.20084]. [PMID: 15264254].
[22]
Sharma, A.; Dutta, P.; Sharma, M.; Rajput, N.K.; Dodiya, B.; Georrge, J.J.; Kholia, T.; Bhardwaj, A. BioPhytMol: A drug discovery community resource on anti-mycobacterial phytomolecules and plant extracts. J. Cheminform., 2014, 6(1), 46. [http://dx.doi.org/10.1186/s13321-014-0046-2]. [PMID: 25360160].
and plant extracts. J. Cheminform., 2014, 6(1) [http://dx.doi.org/10.1186/s13321-014-0046-2.[PMID: 25360160] .
[23]
Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Bryant, S.H. PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res., 2009, 37(Web Server issue), W623-33. [http://dx.doi.org/10.1093/nar/gkp456. [PMID: 19498078] .
[24]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213. [http://dx.doi.org/10.1093/nar/gkv951]. [PMID: 26400175].
[25]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33. [http://dx.doi.org/10.1186/1758-2946-3-33]. [PMID: 21982300].
[26]
Ihlenfeldt, W.D.; Bolton, E.E.; Bryant, S.H. The PubChem chemical structure sketcher. J. Cheminform., 2009, 1(1), 20. [http://dx.doi.org/10.1186/1758-2946-1-20]. [PMID: 20298522].
[27]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. [PMID: 19499576].
[28]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250. [http://dx.doi.org/10.1007/978-1-4939-2269-7_19]. [PMID: 25618350].
[29]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723. [http://dx.doi.org/ 10.1002/elps.1150181505]. [PMID: 9504803].
[31]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341. [http://dx.doi.org/10.1016/j.ddtec.2004.11.007]. [PMID: 24981612].
[32]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. [http://dx.doi.org/10. 1002/jcc.21256]. [PMID: 19399780].
[33]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134. [http://dx.doi.org/ 10.1093/protein/8.2.127]. [PMID: 7630882].
[34]
Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev., 2006, 106(5), 1589-1615. [http://dx.doi.org/10.1021/cr040426m]. [PMID: 16683746].
[35]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25. [http://dx.doi.org/10.1016/ j.softx.2015.06.001].
[36]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962. [http://dx.doi.org/10.1021/ci500020m]. [PMID: 24850022].
[37]
Schloss, J.V.; Cleland, W.W. Inhibition of isocitrate lyase by 3-nitropropionate, a reaction-intermediate analogue. Biochemistry, 1982, 21(18), 4420-4427. [http://dx.doi.org/10.1021/bi00261a035]. [PMID: 7126549].
[38]
Ko, Y.H.; McFadden, B.A. Alkylation of isocitrate lyase from Escherichia coli by 3-bromopyruvate. Arch. Biochem. Biophys., 1990, 278(2), 373-380. [http://dx.doi.org/10.1016/0003-9861(90)90273-2]. [PMID: 2183722].
[39]
McFadden, B.A.; Purohit, S. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J. Bacteriol., 1977, 131(1), 136-144. [PMID: 17593].
[40]
Krátký, M.; Vinšová, J. Advances in mycobacterial isocitrate lyase targeting and inhibitors. Curr. Med. Chem., 2012, 19(36), 6126-6137. [http://dx.doi.org/10.2174/0929867311209066126]. [PMID: 23092127].
[41]
Shingnapurkar, D.; Dandawate, P.; Anson, C.E.; Powell, A.K.; Afrasiabi, Z.; Sinn, E.; Pandit, S.; Venkateswara Swamy, K.; Franzblau, S.; Padhye, S. Synthesis and characterization of pyruvate-isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(9), 3172-3176. [http://dx.doi.org/10.1016/j.bmcl.2012.03.047]. [PMID: 22475559].
[42]
Sriram, D.; Yogeeswari, P.; Methuku, S.; Vyas, D.R.K.; Senthilkumar, P.; Alvala, M.; Jeankumar, V.U. Synthesis of various 3-nitropropionamides as Mycobacterium tuberculosis isocitrate lyase inhibitor. Bioorg. Med. Chem. Lett., 2011, 21(18), 5149-5154. [http://dx.doi.org/10.1016/j.bmcl.2011.07.062]. [PMID: 21840711].
[43]
Sriram, D.; Yogeeswari, P.; Senthilkumar, P.; Dewakar, S.; Rohit, N.; Debjani, B.; Bhat, P.; Veugopal, B.; Pavan, V.V.S.; Thimmappa, H.M. Novel phthalazinyl derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis isocitrate lyase enzyme. Med. Chem., 2009, 5(5), 422-433. [http://dx.doi.org/10.2174/157340609789117886]. [PMID: 19534678].
[44]
Sriram, D.; Yogeeswari, P.; Senthilkumar, P.; Sangaraju, D.; Nelli, R.; Banerjee, D.; Bhat, P.; Manjashetty, T.H. Synthesis and antimycobacterial evaluation of novel Phthalazin-4-ylacetamides against log- and starved phase cultures. Chem. Biol. Drug Des., 2010, 75(4), 381-391. [http://dx.doi.org/10.1111/j.1747-0285.2010.00947.x]. [PMID: 20148903].
[45]
Sriram, D.; Yogeeswari, P.; Vyas, D.R.K.; Senthilkumar, P.; Bhat, P.; Srividya, M. 5-Nitro-2-furoic acid hydrazones: Design, synthesis and in vitro antimycobacterial evaluation against log and starved phase cultures. Bioorg. Med. Chem. Lett., 2010, 20(15), 4313-4316. [http://dx.doi.org/10.1016/j.bmcl.2010.06.096]. [PMID: 20615698].
[46]
Sriram, D.; Yogeeswari, P.; Senthilkumar, P.; Naidu, G.; Bhat, P. 5-Nitro-2,6-dioxohexahydro-4-pyrimidinecarboxamides: Synthesis, in vitro antimycobacterial activity, cytotoxicity, and isocitrate lyase inhibition studies. J. Enzyme Inhib. Med. Chem., 2010, 25(6), 765-772. [http://dx.doi.org/10.3109/14756360903425221]. [PMID: 20569083].
[47]
Banerjee, D.; Yogeeswari, P.; Bhat, P.; Thomas, A.; Srividya, M.; Sriram, D. Novel isatinyl thiosemicarbazones derivatives as potential molecule to combat HIV-TB co-infection. Eur. J. Med. Chem., 2011, 46(1), 106-121. [http://dx.doi.org/10.1016/j.ejmech. 2010.10.020]. [PMID: 21093117].
[48]
Lu, J.; Yue, J.; Wu, J.; Luo, R.; Hu, Z.; Li, J.; Bai, Y.; Tang, Z.; Xian, Q.; Zhang, X.; Wang, H. In vitro and in vivo activities of a new lead compound I2906 against Mycobacterium tuberculosis. Pharmacology, 2010, 85(6), 365-371. [http://dx.doi.org/10.1159/ 000299795]. [PMID: 20530976].
[49]
Ji, L.; Long, Q.; Yang, D.; Xie, J. Identification of mannich base as a novel inhibitor of Mycobacterium tuberculosis isocitrate by high-throughput screening. Int. J. Biol. Sci., 2011, 7(3), 376-382. [http://dx.doi.org/10.7150/ijbs.7.376]. [PMID: 21494431].
[50]
Kozic, J.; Novotná, E.; Volková, M.; Stolaříková, J.; Trejtnar, F.; Wsól, V.; Vinšová, J. Synthesis and in vitro antimycobacterial and isocitrate lyase inhibition properties of novel 2-methoxy-2′-hydroxybenzanilides, their thioxo analogues and benzoxazoles. Eur. J. Med. Chem., 2012, 56, 108-119. [http://dx.doi.org/10.1016/ j.ejmech.2012.08.016]. [PMID: 22960697].
[51]
Krátký, M.; Vinšová, J.; Novotná, E.; Mandíková, J.; Wsól, V.; Trejtnar, F.; Ulmann, V.; Stolaříková, J.; Fernandes, S.; Bhat, S.; Liu, J.O. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis (Edinb.), 2012, 92(5), 434-439. [http://dx.doi.org/10.1016/j.tube.2012.06.001]. [PMID: 22765970].
[52]
Langer, T.; Hoffmann, R.D. Virtual screening: An effective tool for lead structure discovery? Curr. Pharm. Des., 2001, 7(7), 509-527. [http://dx.doi.org/10.2174/1381612013397861]. [PMID: 11375766].
[53]
Gautam, R.; Saklani, A.; Jachak, S.M. Indian medicinal plants as a source of antimycobacterial agents. J. Ethnopharmacol., 2007, 110(2), 200-234. [http://dx.doi.org/10.1016/j.jep.2006.12.031]. [PMID: 17276637].
[54]
Shen, L.; Maddox, M.M.; Adhikari, S.; Bruhn, D.F.; Kumar, M.; Lee, R.E.; Hurdle, J.G.; Lee, R.E.; Sun, D. Syntheses and evaluation of macrocyclic engelhardione analogs as antitubercular and antibacterial agents. J. Antibiot. (Tokyo), 2013, 66(6), 319-325. [http://dx.doi.org/10.1038/ja.2013.21]. [PMID: 23549356].