Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Mitochondria Associated Membranes (MAMs): Emerging Drug Targets for Diabetes

Author(s): U.S. Swapna Sasi , Sindhu Ganapathy, Salin Raj Palayyan and Raghu K. Gopal*

Volume 27, Issue 20, 2020

Page: [3362 - 3385] Pages: 24

DOI: 10.2174/0929867326666190212121248

Price: $65

Abstract

MAMs, the physical association between the Endoplasmic Reticulum (ER) and mitochondria are, functional domains performing a significant role in the maintenance of cellular homeostasis. It is evolving as an important signaling center that coordinates nutrient and hormonal signaling for the proper regulation of hepatic insulin action and glucose homeostasis. Moreover, MAMs can be considered as hot spots for the transmission of stress signals from ER to mitochondria. The altered interaction between ER and mitochondria results in the amendment of several insulin-sensitive tissues, revealing the role of MAMs in glucose homeostasis. The development of mitochondrial dysfunction, ER stress, altered lipid and Ca2+ homeostasis are typically co-related with insulin resistance and β cell dysfunction. But little facts are known about the role played by these stresses in the development of metabolic disorders. In this review, we highlight the mechanisms involved in maintaining the contact site with new avenues of investigations for the development of novel preventive and therapeutic targets for T2DM.

Keywords: Mitochondria associated membranes, endoplasmic reticulum, mitochondria, calcium ions, insulin resistance, T2DM.

[1]
Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121), 840-846.
[http://dx.doi.org/10.1038/nature05482] [PMID: 17167471]
[2]
Goodge, K.A.; Hutton, J.C. Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta-cell. Semin. Cell Dev. Biol., 2000, 11(4), 235-242.
[http://dx.doi.org/10.1006/scdb.2000.0172] [PMID: 10966857]
[3]
Scheuner, D.; Vander Mierde, D.; Song, B.; Flamez, D.; Creemers, J.W.; Tsukamoto, K.; Ribick, M.; Schuit, F.C.; Kaufman, R.J. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat. Med., 2005, 11(7), 757-764.
[http://dx.doi.org/10.1038/nm1259] [PMID: 15980866]
[4]
Kaufman, R.J.; Scheuner, D.; Schröder, M.; Shen, X.; Lee, K.; Liu, C.Y.; Arnold, S.M. The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 411-421.
[http://dx.doi.org/10.1038/nrm829] [PMID: 12042763]
[5]
Anelli, T.; Sitia, R. Protein quality control in the early secretory pathway. EMBO J., 2008, 27(2), 315-327.
[http://dx.doi.org/10.1038/sj.emboj.7601974] [PMID: 18216874]
[6]
Prentki, M.; Nolan, C.J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest., 2006, 116(7), 1802-1812.
[http://dx.doi.org/10.1172/JCI29103] [PMID: 16823478]
[7]
McGarry, J.D.; Dobbins, R.L. Fatty acids, lipotoxicity and insulin secretion. Diabetologia, 1999, 42(2), 128-138.
[http://dx.doi.org/10.1007/s001250051130] [PMID: 10064091]
[8]
Kharroubi, I.; Ladrière, L.; Cardozo, A.K.; Dogusan, Z.; Cnop, M.; Eizirik, D.L. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology, 2004, 145(11), 5087-5096.
[http://dx.doi.org/10.1210/en.2004-0478] [PMID: 15297438]
[9]
Bollheimer, L.C.; Skelly, R.H.; Chester, M.W.; McGarry, J.D.; Rhodes, C.J. Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J. Clin. Invest., 1998, 101(5), 1094-1101.
[http://dx.doi.org/10.1172/JCI420] [PMID: 9486980]
[10]
Zhou, Y.P.; Grill, V.E. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J. Clin. Invest., 1994, 93(2), 870-876.
[http://dx.doi.org/10.1172/JCI117042] [PMID: 8113418]
[11]
Lee, Y.; Hirose, H.; Ohneda, M.; Johnson, J.H.; McGarry, J.D.; Unger, R.H. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc. Natl. Acad. Sci. USA, 1994, 91(23), 10878-10882.
[http://dx.doi.org/10.1073/pnas.91.23.10878] [PMID: 7971976]
[12]
Listenberger, L.L.; Ory, D.S.; Schaffer, J.E. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem., 2001, 276(18), 14890-14895.
[http://dx.doi.org/10.1074/jbc.M010286200] [PMID: 11278654]
[13]
Egnatchik, R.A.; Leamy, A.K.; Jacobson, D.A.; Shiota, M.; Young, J.D. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol. Metab., 2014, 3(5), 544-553.
[http://dx.doi.org/10.1016/j.molmet.2014.05.004] [PMID: 25061559]
[14]
Cao, J.; Dai, D.L.; Yao, L.; Yu, H.H.; Ning, B.; Zhang, Q.; Chen, J.; Cheng, W.H.; Shen, W.; Yang, Z.X. Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol. Cell. Biochem., 2012, 364(1-2), 115-129.
[http://dx.doi.org/10.1007/s11010-011-1211-9] [PMID: 22246806]
[15]
Gu, X.; Li, K.; Laybutt, D.R.; He, M.L.; Zhao, H.L.; Chan, J.C.; Xu, G. Bip overexpression, but not CHOP inhibition, attenuates fatty-acid-induced endoplasmic reticulum stress and apoptosis in HepG2 liver cells. Life Sci., 2010, 87(23-26), 724-732.
[http://dx.doi.org/10.1016/j.lfs.2010.10.012] [PMID: 20970436]
[16]
Pan, Q.R.; Ren, Y.L.; Liu, W.X.; Hu, Y.J.; Zheng, J.S.; Xu, Y.; Wang, G. Resveratrol prevents hepatic steatosis and endoplasmic reticulum stress and regulates the expression of genes involved in lipid metabolism, insulin resistance, and inflammation in rats. Nutr. Res., 2015, 35(7), 576-584.
[http://dx.doi.org/10.1016/j.nutres.2015.05.006] [PMID: 26055348]
[17]
Ao, N.; Yang, J.; Wang, X.; Du, J. Glucagon-like peptide-1 preserves non-alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stress-associated pathway. Hepatol. Res., 2016, 46(4), 343-353.
[http://dx.doi.org/10.1111/hepr.12551] [PMID: 26147696]
[18]
González-Rodríguez, A.; Mayoral, R.; Agra, N.; Valdecantos, M.P.; Pardo, V.; Miquilena-Colina, M.E.; Vargas-Castrillón, J.; Lo Iacono, O.; Corazzari, M.; Fimia, G.M.; Piacentini, M.; Muntané, J.; Boscá, L.; García-Monzón, C.; Martín-Sanz, P.; Valverde, Á.M. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis., 2014, 5e1179,
[http://dx.doi.org/10.1038/cddis.2014.162] [PMID: 24743734]
[19]
Poitout, V.; Robertson, R.P. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr. Rev., 2008, 29(3), 351-366.
[http://dx.doi.org/10.1210/er.2007-0023] [PMID: 18048763]
[20]
Robertson, R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem., 2004, 279(41), 42351-42354.
[http://dx.doi.org/10.1074/jbc.R400019200] [PMID: 15258147]
[21]
Robertson, R.P. Oxidative stress and impaired insulin secretion in type 2 diabetes. Curr. Opin. Pharmacol., 2006, 6(6), 615-619.
[http://dx.doi.org/10.1016/j.coph.2006.09.002] [PMID: 17045527]
[22]
Tiedge, M.; Lortz, S.; Drinkgern, J.; Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes, 1997, 46(11), 1733-1742.
[http://dx.doi.org/10.2337/diab.46.11.1733] [PMID: 9356019]
[23]
Malhotra, J.D.; Miao, H.; Zhang, K.; Wolfson, A.; Pennathur, S.; Pipe, S.W.; Kaufman, R.J. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc. Natl. Acad. Sci. USA, 2008, 105(47), 18525-18530.
[http://dx.doi.org/10.1073/pnas.0809677105] [PMID: 19011102]
[24]
Haynes, C.M.; Titus, E.A.; Cooper, A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol. Cell, 2004, 15(5), 767-776.
[http://dx.doi.org/10.1016/j.molcel.2004.08.025] [PMID: 15350220]
[25]
Tu, B.P.; Weissman, J.S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol., 2004, 164(3), 341-346.
[http://dx.doi.org/10.1083/jcb.200311055] [PMID: 14757749]
[26]
Kaufman, R.J.; Back, S.H.; Song, B.; Han, J.; Hassler, J. The unfolded protein response is required to maintain the integrity of the endoplasmic reticulum, prevent oxidative stress and preserve differentiation in β-cells. Diabetes Obes. Metab., 2010, 12(2)(Suppl. 2), 99-107.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01281.x] [PMID: 21029306]
[27]
Dodson, G.; Steiner, D. The role of assembly in insulin’s biosynthesis. Curr. Opin. Struct. Biol., 1998, 8(2), 189-194.
[http://dx.doi.org/10.1016/S0959-440X(98)80037-7] [PMID: 9631292]
[28]
Sharma, R.B.; Alonso, L.C. Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well? Curr. Diab. Rep., 2014, 14(6), 492.
[http://dx.doi.org/10.1007/s11892-014-0492-2] [PMID: 24740729]
[29]
Hou, Z.Q.; Li, H.L.; Gao, L.; Pan, L.; Zhao, J.J.; Li, G.W. Involvement of chronic stresses in rat islet and INS-1 cell glucotoxicity induced by intermittent high glucose. Mol. Cell. Endocrinol., 2008, 291(1-2), 71-78.
[http://dx.doi.org/10.1016/j.mce.2008.03.004] [PMID: 18485584]
[30]
Jonas, J.C.; Bensellam, M.; Duprez, J.; Elouil, H.; Guiot, Y.; Pascal, S.M. Glucose regulation of islet stress responses and beta-cell failure in type 2 diabetes. Diabetes Obes. Metab., 2009, 11(Suppl. 4), 65-81.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01112.x] [PMID: 19817790]
[31]
Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 519-529.
[http://dx.doi.org/10.1038/nrm2199] [PMID: 17565364]
[32]
Bertolotti, A.; Zhang, Y.; Hendershot, L.M.; Harding, H.P.; Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol., 2000, 2(6), 326-332.
[http://dx.doi.org/10.1038/35014014] [PMID: 10854322]
[33]
Wu, J.; Kaufman, R.J. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ., 2006, 13(3), 374-384.
[http://dx.doi.org/10.1038/sj.cdd.4401840] [PMID: 16397578]
[34]
Tirasophon, W.; Welihinda, A.A.; Kaufman, R.J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev., 1998, 12(12), 1812-1824.
[http://dx.doi.org/10.1101/gad.12.12.1812] [PMID: 9637683]
[35]
Shamu, C.E.; Walter, P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J., 1996, 15(12), 3028-3039.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00666.x] [PMID: 8670804]
[36]
Welihinda, A.A.; Kaufman, R.J. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J. Biol. Chem., 1996, 271(30), 18181-18187.
[http://dx.doi.org/10.1074/jbc.271.30.18181] [PMID: 8663458]
[37]
Calfon, M.; Zeng, H.; Urano, F.; Till, J.H.; Hubbard, S.R.; Harding, H.P.; Clark, S.G.; Ron, D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 2002, 415(6867), 92-96.
[http://dx.doi.org/10.1038/415092a] [PMID: 11780124]
[38]
Yoshida, H.; Matsui, T.; Yamamoto, A.; Okada, T.; Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 2001, 107(7), 881-891.
[http://dx.doi.org/10.1016/S0092-8674(01)00611-0] [PMID: 11779464]
[39]
Casagrande, R.; Stern, P.; Diehn, M.; Shamu, C.; Osario, M.; Zúñiga, M.; Brown, P.O.; Ploegh, H. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell, 2000, 5(4), 729-735.
[http://dx.doi.org/10.1016/S1097-2765(00)80251-8] [PMID: 10882108]
[40]
Lee, A.H.; Iwakoshi, N.N.; Glimcher, L.H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol., 2003, 23(21), 7448-7459.
[http://dx.doi.org/10.1128/MCB.23.21.7448-7459.2003] [PMID: 14559994]
[41]
Acosta-Alvear, D.; Zhou, Y.; Blais, A.; Tsikitis, M.; Lents, N.H.; Arias, C.; Lennon, C.J.; Kluger, Y.; Dynlacht, B.D. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell, 2007, 27(1), 53-66.
[http://dx.doi.org/10.1016/j.molcel.2007.06.011] [PMID: 17612490]
[42]
Hassler, J.R.; Scheuner, D.L.; Wang, S.; Han, J.; Kodali, V.K.; Li, P.; Nguyen, J.; George, J.S.; Davis, C.; Wu, S.P.; Bai, Y.; Sartor, M.; Cavalcoli, J.; Malhi, H.; Baudouin, G.; Zhang, Y.; Yates, J.R., III; Itkin-Ansari, P.; Volkmann, N.; Kaufman, R.J. The IRE1alpha/XBP1s pathway is essential for the glucose response and protection of cells. PLoS Biol., 2015, 13(10)e1002277
[http://dx.doi.org/10.1371/journal.pbio.1002277] [PMID: 26469762]
[43]
Urano, F.; Wang, X.; Bertolotti, A.; Zhang, Y.; Chung, P.; Harding, H.P.; Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287(5453), 664-666.
[http://dx.doi.org/10.1126/science.287.5453.664] [PMID: 10650002]
[44]
Nishitoh, H.; Matsuzawa, A.; Tobiume, K.; Saegusa, K.; Takeda, K.; Inoue, K.; Hori, S.; Kakizuka, A.; Ichijo, H. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev., 2002, 16(11), 1345-1355.
[http://dx.doi.org/10.1101/gad.992302] [PMID: 12050113]
[45]
Haze, K.; Okada, T.; Yoshida, H.; Yanagi, H.; Yura, T.; Negishi, M.; Mori, K. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem. J., 2001, 355(Pt 1), 19-28.
[http://dx.doi.org/10.1042/bj3550019] [PMID: 11256944]
[46]
Wu, J.; Rutkowski, D.T.; Dubois, M.; Swathirajan, J.; Saunders, T.; Wang, J.; Song, B.; Yau, G.D.; Kaufman, R.J. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell, 2007, 13(3), 351-364.
[PMID: 17765679]
[47]
Yamamoto, K.; Sato, T.; Matsui, T.; Sato, M.; Okada, T.; Yoshida, H.; Harada, A.; Mori, K. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev. Cell, 2007, 13(3), 365-376.
[http://dx.doi.org/10.1016/j.devcel.2007.07.018] [PMID: 17765680]
[48]
Wek, R.C.; Cavener, D.R. Translational control and the unfolded protein response. Antioxid. Redox Signal., 2007, 9(12), 2357-2371.
[http://dx.doi.org/10.1089/ars.2007.1764] [PMID: 17760508]
[49]
Gardner, B.M.; Pincus, D.; Gotthardt, K.; Gallagher, C.M.; Walter, P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol., 2013, 5(3)a013169
[http://dx.doi.org/10.1101/cshperspect.a013169] [PMID: 23388626]
[50]
Ameri, K.; Harris, A.L. Activating transcription factor 4. Int. J. Biochem. Cell Biol., 2008, 40(1), 14-21.
[http://dx.doi.org/10.1016/j.biocel.2007.01.020] [PMID: 17466566]
[51]
Harding, H.P.; Zhang, Y.; Zeng, H.; Novoa, I.; Lu, P.D.; Calfon, M.; Sadri, N.; Yun, C.; Popko, B.; Paules, R.; Stojdl, D.F.; Bell, J.C.; Hettmann, T.; Leiden, J.M.; Ron, D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell, 2003, 11(3), 619-633.
[http://dx.doi.org/10.1016/S1097-2765(03)00105-9] [PMID: 12667446]
[52]
Lange, P.S.; Chavez, J.C.; Pinto, J.T.; Coppola, G.; Sun, C.W.; Townes, T.M.; Geschwind, D.H.; Ratan, R.R. ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J. Exp. Med., 2008, 205(5), 1227-1242.
[http://dx.doi.org/10.1084/jem.20071460] [PMID: 18458112]
[53]
Wieckowski, M.R.; Giorgi, C.; Lebiedzinska, M.; Duszynski, J.; Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc., 2009, 4(11), 1582-1590.
[http://dx.doi.org/10.1038/nprot.2009.151] [PMID: 19816421]
[54]
Sala-Vila, A.; Navarro-Lérida, I.; Sánchez-Alvarez, M.; Bosch, M.; Calvo, C.; López, J.A.; Calvo, E.; Ferguson, C.; Giacomello, M.; Serafini, A.; Scorrano, L.; Enriquez, J.A.; Balsinde, J.; Parton, R.G.; Vázquez, J.; Pol, A.; Del Pozo, M.A. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci. Rep., 2016, 6, 27351.
[http://dx.doi.org/10.1038/srep27351] [PMID: 27272971]
[55]
Marchi, S.; Pinton, P. Alterations of calcium homeostasis in cancer cells. Curr. Opin. Pharmacol., 2016, 29, 1-6.
[http://dx.doi.org/10.1016/j.coph.2016.03.002] [PMID: 27043073]
[56]
Missiroli, S.; Bonora, M.; Patergnani, S.; Poletti, F.; Perrone, M.; Gafà, R.; Magri, E.; Raimondi, A.; Lanza, G.; Tacchetti, C.; Kroemer, G.; Pandolfi, P.P.; Pinton, P.; Giorgi, C. PML at mitochondria-associated membranes is critical for the repression of autophagy and cancer development. Cell Rep., 2016, 16(9), 2415-2427.
[http://dx.doi.org/10.1016/j.celrep.2016.07.082] [PMID: 27545895]
[57]
Marchi, S.; Giorgi, C.; Oparka, M.; Duszynski, J.; Wieckowski, M.R.; Pinton, P. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes. Mol. Cell. Oncol., 2014, 1(2)e956469
[http://dx.doi.org/10.4161/23723548.2014.956469] [PMID: 27308328]
[58]
Bravo-Sagua, R.; Torrealba, N.; Paredes, F.; Morales, P.E.; Pennanen, C.; López-Crisosto, C.; Troncoso, R.; Criollo, A.; Chiong, M.; Hill, J.A.; Simmen, T.; Quest, A.F.; Lavandero, S. Organelle communication: signaling crossroads between homeostasis and disease. Int. J. Biochem. Cell Biol., 2014, 50, 55-59.
[http://dx.doi.org/10.1016/j.biocel.2014.01.019] [PMID: 24534274]
[59]
Marchi, S.; Patergnani, S.; Pinton, P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim. Biophys. Acta, 2014, 1837(4), 461-469.
[http://dx.doi.org/10.1016/j.bbabio.2013.10.015] [PMID: 24211533]
[60]
Harbauer, A.B.; Zahedi, R.P.; Sickmann, A.; Pfanner, N.; Meisinger, C. The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab., 2014, 19(3), 357-372.
[http://dx.doi.org/10.1016/j.cmet.2014.01.010] [PMID: 24561263]
[61]
Baker, M.J.; Frazier, A.E.; Gulbis, J.M.; Ryan, M.T. Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol., 2007, 17(9), 456-464.
[http://dx.doi.org/10.1016/j.tcb.2007.07.010] [PMID: 17825565]
[62]
Vance, J.E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta, 2014, 1841(4), 595-609.
[http://dx.doi.org/10.1016/j.bbalip.2013.11.014] [PMID: 24316057]
[63]
Rowland, A.A.; Voeltz, G.K. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol., 2012, 13(10), 607-625.
[http://dx.doi.org/10.1038/nrm3440] [PMID: 22992592]
[64]
de Brito, O.M.; Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008, 456(7222), 605-610.
[http://dx.doi.org/10.1038/nature07534] [PMID: 19052620]
[65]
Sugiura, A.; Nagashima, S.; Tokuyama, T.; Amo, T.; Matsuki, Y.; Ishido, S.; Kudo, Y.; McBride, H.M.; Fukuda, T.; Matsushita, N.; Inatome, R.; Yanagi, S. MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol. Cell, 2013, 51(1), 20-34.
[http://dx.doi.org/10.1016/j.molcel.2013.04.023] [PMID: 23727017]
[66]
Szabadkai, G.; Bianchi, K.; Várnai, P.; De Stefani, D.; Wieckowski, M.R.; Cavagna, D.; Nagy, A.I.; Balla, T.; Rizzuto, R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol., 2006, 175(6), 901-911.
[http://dx.doi.org/10.1083/jcb.200608073] [PMID: 17178908]
[67]
Naon, D.; Scorrano, L. At the right distance: ER-mitochondria juxtaposition in cell life and death. Biochim. Biophys. Acta, 2014, 1843(10), 2184-2194.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.011] [PMID: 24875902]
[68]
Li, Z.; Agellon, L.B.; Allen, T.M.; Umeda, M.; Jewell, L.; Mason, A.; Vance, D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab., 2006, 3(5), 321-331.
[http://dx.doi.org/10.1016/j.cmet.2006.03.007] [PMID: 16679290]
[69]
Fu, S.; Yang, L.; Li, P.; Hofmann, O.; Dicker, L.; Hide, W.; Lin, X.; Watkins, S.M.; Ivanov, A.R.; Hotamisligil, G.S. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature, 2011, 473(7348), 528-531.
[http://dx.doi.org/10.1038/nature09968] [PMID: 21532591]
[70]
Hayashi, T.; Fujimoto, M. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol. Pharmacol., 2010, 77(4), 517-528.
[http://dx.doi.org/10.1124/mol.109.062539] [PMID: 20053954]
[71]
Theurey, P.; Rieusset, J. Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases. Trends Endocrinol. Metab., 2017, 28(1), 32-45.
[http://dx.doi.org/10.1016/j.tem.2016.09.002] [PMID: 27670636]
[72]
Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol., 2012, 13(9), 566-578.
[http://dx.doi.org/10.1038/nrm3412] [PMID: 22850819]
[73]
Hurst, S.; Hoek, J.; Sheu, S.S. Mitochondrial Ca2+ and regulation of the permeability transition pore. J. Bioenerg. Biomembr., 2017, 49(1), 27-47.
[http://dx.doi.org/10.1007/s10863-016-9672-x] [PMID: 27497945]
[74]
Booth, D.M.; Enyedi, B.; Geiszt, M.; Várnai, P.; Hajnóczky, G. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell, 2016, 63(2), 240-248.
[http://dx.doi.org/10.1016/j.molcel.2016.05.040] [PMID: 27397688]
[75]
Vervliet, T.; Parys, J.B.; Bultynck, G. Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene, 2016, 35(39), 5079-5092.
[http://dx.doi.org/10.1038/onc.2016.31] [PMID: 26973249]
[76]
Hu, J.; Prinz, W.A.; Rapoport, T.A. Weaving the web of ER tubules. Cell, 2011, 147(6), 1226-1231.
[http://dx.doi.org/10.1016/j.cell.2011.11.022] [PMID: 22153070]
[77]
Scorrano, L. Keeping mitochondria in shape: a matter of life and death. Eur. J. Clin. Invest., 2013, 43(8), 886-893.
[http://dx.doi.org/10.1111/eci.12135] [PMID: 23869410]
[78]
Pizzo, P.; Drago, I.; Filadi, R.; Pozzan, T. Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch., 2012, 464(1), 3-17.
[http://dx.doi.org/10.1007/s00424-012-1122-y] [PMID: 22706634]
[79]
Saotome, M.; Safiulina, D.; Szabadkai, G.; Das, S.; Fransson, A.; Aspenstrom, P.; Rizzuto, R.; Hajnóczky, G. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20728-20733.
[http://dx.doi.org/10.1073/pnas.0808953105] [PMID: 19098100]
[80]
Dickey, A.S.; Strack, S. PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J. Neurosci., 2011, 31(44), 15716-15726.
[http://dx.doi.org/10.1523/JNEUROSCI.3159-11.2011] [PMID: 22049414]
[81]
Kopec, K.O.; Alva, V.; Lupas, A.N. Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics, 2010, 26(16), 1927-1931.
[http://dx.doi.org/10.1093/bioinformatics/btq326] [PMID: 20554689]
[82]
Cárdenas, C.; Miller, R.A.; Smith, I.; Bui, T.; Molgó, J.; Müller, M.; Vais, H.; Cheung, K.H.; Yang, J.; Parker, I.; Thompson, C.B.; Birnbaum, M.J.; Hallows, K.R.; Foskett, J.K. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 2010, 142(2), 270-283.
[http://dx.doi.org/10.1016/j.cell.2010.06.007] [PMID: 20655468]
[83]
Balaban, R.S. The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim. Biophys. Acta, 2009, 1787(11), 1334-1341.
[http://dx.doi.org/10.1016/j.bbabio.2009.05.011] [PMID: 19481532]
[84]
Tarasov, A.I.; Griffiths, E.J.; Rutter, G.A. Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium, 2012, 52(1), 28-35.
[http://dx.doi.org/10.1016/j.ceca.2012.03.003] [PMID: 22502861]
[85]
Territo, P.R.; Mootha, V.K.; French, S.A.; Balaban, R.S. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am. J. Physiol. Cell Physiol., 2000, 278(2), C423-C435.
[http://dx.doi.org/10.1152/ajpcell.2000.278.2.C423] [PMID: 10666039]
[86]
Tubbs, E.; Theurey, P.; Vial, G.; Bendridi, N.; Bravard, A.; Chauvin, M-A.; Ji-Cao, J.; Zoulim, F.; Bartosch, B.; Ovize, M.; Vidal, H.; Rieusset, J. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes, 2014, 63(10), 3279-3294.
[http://dx.doi.org/10.2337/db13-1751] [PMID: 24947355]
[87]
Gutiérrez, T.; Parra, V.; Troncoso, R.; Pennanen, C.; Contreras-Ferrat, A.; Vasquez-Trincado, C.; Morales, P.E.; Lopez-Crisosto, C.; Sotomayor-Flores, C.; Chiong, M.; Rothermel, B.A.; Lavandero, S. Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Commun. Signal., 2014, 12, 68.
[http://dx.doi.org/10.1186/PREACCEPT-1950166084128344] [PMID: 25376904]
[88]
del Campo, A.; Parra, V.; Vásquez-Trincado, C.; Gutiérrez, T.; Morales, P.E.; López-Crisosto, C.; Bravo-Sagua, R.; Navarro-Marquez, M.F.; Verdejo, H.E.; Contreras-Ferrat, A.; Troncoso, R.; Chiong, M.; Lavandero, S. Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake. Am. J. Physiol. Endocrinol. Metab., 2014, 306(1), E1-E13.
[http://dx.doi.org/10.1152/ajpendo.00146.2013] [PMID: 24085037]
[89]
Marchi, S.; Rimessi, A.; Giorgi, C.; Baldini, C.; Ferroni, L.; Rizzuto, R.; Pinton, P. Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochem. Biophys. Res. Commun., 2008, 375(4), 501-505.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.153] [PMID: 18723000]
[90]
Giorgi, C.; Ito, K.; Lin, H-K.; Santangelo, C.; Wieckowski, M.R.; Lebiedzinska, M.; Bononi, A.; Bonora, M.; Duszynski, J.; Bernardi, R.; Rizzuto, R.; Tacchetti, C.; Pinton, P.; Pandolfi, P.P. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science, 2010, 330(6008), 1247-1251.
[http://dx.doi.org/10.1126/science.1189157] [PMID: 21030605]
[91]
Boulbés, D.R.; Shaiken, T.; Sarbassov, D. Endoplasmic reticulum is a main localization site of mTORC2. Biochem. Biophys. Res. Commun., 2011, 413(1), 46-52.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.034] [PMID: 21867682]
[92]
Desai, B.N.; Myers, B.R.; Schreiber, S.L. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA, 2002, 99(7), 4319-4324.
[http://dx.doi.org/10.1073/pnas.261702698] [PMID: 11930000]
[93]
Wijesekara, N.; Konrad, D.; Eweida, M.; Jefferies, C.; Liadis, N.; Giacca, A.; Crackower, M.; Suzuki, A.; Mak, T.W.; Kahn, C.R.; Klip, A.; Woo, M. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol. Cell. Biol., 2005, 25(3), 1135-1145.
[http://dx.doi.org/10.1128/MCB.25.3.1135-1145.2005] [PMID: 15657439]
[94]
Bononi, A.; Bonora, M.; Marchi, S.; Missiroli, S.; Poletti, F.; Giorgi, C.; Pandolfi, P.P.; Pinton, P. Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ., 2013, 20(12), 1631-1643.
[http://dx.doi.org/10.1038/cdd.2013.77] [PMID: 23811847]
[95]
Szado, T.; Vanderheyden, V.; Parys, J.B.; De Smedt, H.; Rietdorf, K.; Kotelevets, L.; Chastre, E.; Khan, F.; Landegren, U.; Söderberg, O.; Bootman, M.D.; Roderick, H.L. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2427-2432.
[http://dx.doi.org/10.1073/pnas.0711324105] [PMID: 18250332]
[96]
Gomez, L.; Thiebaut, P.A.; Paillard, M.; Ducreux, S.; Abrial, M.; Crola Da Silva, C.; Durand, A.; Alam, M.R.; Van Coppenolle, F.; Sheu, S.S.; Ovize, M. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ., 2016, 23(2), 313-322.
[http://dx.doi.org/10.1038/cdd.2015.101] [PMID: 26206086]
[97]
Tubbs, E.; Chanon, S.; Robert, M.; Bendridi, N.; Bidaux, G.; Chauvin, M.A.; Ji-Cao, J.; Durand, C.; Gauvrit-Ramette, D.; Vidal, H.; Lefai, E.; Rieusset, J. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes, 2018, 67(4), 636-650.
[http://dx.doi.org/10.2337/db17-0316] [PMID: 29326365]
[98]
Theurey, P.; Tubbs, E.; Vial, G.; Jacquemetton, J.; Bendridi, N.; Chauvin, M.A.; Alam, M.R.; Le Romancer, M.; Vidal, H.; Rieusset, J. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol., 2016, 8(2), 129-143.
[http://dx.doi.org/10.1093/jmcb/mjw004] [PMID: 26892023]
[99]
Shibutani, S.T.; Yoshimori, T. A current perspective of autophagosome biogenesis. Cell Res., 2014, 24(1), 58-68.
[http://dx.doi.org/10.1038/cr.2013.159] [PMID: 24296784]
[100]
Hamasaki, M.; Furuta, N.; Matsuda, A.; Nezu, A.; Yamamoto, A.; Fujita, N.; Oomori, H.; Noda, T.; Haraguchi, T.; Hiraoka, Y.; Amano, A.; Yoshimori, T. Autophagosomes form at ER-mitochondria contact sites. Nature, 2013, 495(7441), 389-393.
[http://dx.doi.org/10.1038/nature11910] [PMID: 23455425]
[101]
Gomez-Suaga, P.; Paillusson, S.; Stoica, R.; Noble, W.; Hanger, D.P.; Miller, C.C.J. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol., 2017, 27(3), 371-385.
[http://dx.doi.org/10.1016/j.cub.2016.12.038] [PMID: 28132811]
[102]
Pedro, J.M.; Wei, Y.; Sica, V.; Maiuri, M.C.; Zou, Z.; Kroemer, G.; Levine, B. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy, 2015, 11(3), 452-459.
[http://dx.doi.org/10.1080/15548627.2015.1017191] [PMID: 25715028]
[103]
Gelmetti, V.; De Rosa, P.; Torosantucci, L.; Marini, E.S.; Romagnoli, A.; Di Rienzo, M.; Arena, G.; Vignone, D.; Fimia, G.M.; Valente, E.M. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy, 2017, 13(4), 654-669.
[http://dx.doi.org/10.1080/15548627.2016.1277309] [PMID: 28368777]
[104]
Wu, W.; Lin, C.; Wu, K.; Jiang, L.; Wang, X.; Li, W.; Zhuang, H.; Zhang, X.; Chen, H.; Li, S.; Yang, Y.; Lu, Y.; Wang, J.; Zhu, R.; Zhang, L.; Sui, S.; Tan, N.; Zhao, B.; Zhang, J.; Li, L.; Feng, D. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J., 2016, 35(13), 1368-1384.
[http://dx.doi.org/10.15252/embj.201593102] [PMID: 27145933]
[105]
Rathinam, V.A.K.; Vanaja, S.K.; Fitzgerald, K.A. Regulation of inflammasome signaling. Nat. Immunol., 2012, 13(4), 333-342.
[http://dx.doi.org/10.1038/ni.2237] [PMID: 22430786]
[106]
Stienstra, R.; van Diepen, J.A.; Tack, C.J.; Zaki, M.H.; van de Veerdonk, F.L.; Perera, D.; Neale, G.A.; Hooiveld, G.J.; Hijmans, A.; Vroegrijk, I.; van den Berg, S.; Romijn, J.; Rensen, P.C.; Joosten, L.A.; Netea, M.G.; Kanneganti, T.D. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. USA, 2011, 108(37), 15324-15329.
[http://dx.doi.org/10.1073/pnas.1100255108] [PMID: 21876127]
[107]
Guardia-Laguarta, C.; Area-Gomez, E.; Rüb, C.; Liu, Y.; Magrané, J.; Becker, D.; Voos, W.; Schon, E.A.; Przedborski, S. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci., 2014, 34(1), 249-259.
[http://dx.doi.org/10.1523/JNEUROSCI.2507-13.2014] [PMID: 24381286]
[108]
Bravo, R.; Gutierrez, T.; Paredes, F.; Gatica, D.; Rodriguez, A.E.; Pedrozo, Z.; Chiong, M.; Parra, V.; Quest, A.F.; Rothermel, B.A.; Lavandero, S. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int. J. Biochem. Cell Biol., 2012, 44(1), 16-20.
[http://dx.doi.org/10.1016/j.biocel.2011.10.012] [PMID: 22064245]
[109]
Wang, J.; Takeuchi, T.; Tanaka, S.; Kubo, S.K.; Kayo, T.; Lu, D.; Takata, K.; Koizumi, A.; Izumi, T. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J. Clin. Invest., 1999, 103(1), 27-37.
[http://dx.doi.org/10.1172/JCI4431] [PMID: 9884331]
[110]
Shioda, N.; Ishikawa, K.; Tagashira, H.; Ishizuka, T.; Yawo, H.; Fukunaga, K. Expression of a truncated form of the endoplasmic reticulum chaperone protein, σ1 receptor, promotes mitochondrial energy depletion and apoptosis. J. Biol. Chem., 2012, 287(28), 23318-23331.
[http://dx.doi.org/10.1074/jbc.M112.349142] [PMID: 22619170]
[111]
Mori, T.; Hayashi, T.; Hayashi, E.; Su, T-P. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One, 2013, 8(10)e76941
[http://dx.doi.org/10.1371/journal.pone.0076941] [PMID: 24204710]
[112]
Bravo, R.; Vicencio, J.M.; Parra, V.; Troncoso, R.; Munoz, J.P.; Bui, M.; Quiroga, C.; Rodriguez, A.E.; Verdejo, H.E.; Ferreira, J.; Iglewski, M.; Chiong, M.; Simmen, T.; Zorzano, A.; Hill, J.A.; Rothermel, B.A.; Szabadkai, G.; Lavandero, S. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci., 2011, 124(Pt 13), 2143-2152.
[http://dx.doi.org/10.1242/jcs.080762] [PMID: 21628424]
[113]
Ngoh, G.A.; Papanicolaou, K.N.; Walsh, K. Loss of mitofusin 2 promotes endoplasmic reticulum stress. J. Biol. Chem., 2012, 287(24), 20321-20332.
[http://dx.doi.org/10.1074/jbc.M112.359174] [PMID: 22511781]
[114]
Sebastián, D.; Hernández-Alvarez, M.I.; Segalés, J.; Sorianello, E.; Muñoz, J.P.; Sala, D.; Waget, A.; Liesa, M.; Paz, J.C.; Gopalacharyulu, P.; Orešič, M.; Pich, S.; Burcelin, R.; Palacín, M.; Zorzano, A. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5523-5528.
[http://dx.doi.org/10.1073/pnas.1108220109] [PMID: 22427360]
[115]
Horner, S.M.; Liu, H.M.; Park, H.S.; Briley, J.; Gale, M., Jr Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl. Acad. Sci. USA, 2011, 108(35), 14590-14595.
[http://dx.doi.org/10.1073/pnas.1110133108] [PMID: 21844353]
[116]
Naon, D.; Zaninello, M.; Giacomello, M.; Varanita, T.; Grespi, F.; Lakshminaranayan, S.; Serafini, A.; Semenzato, M.; Herkenne, S.; Hernández-Alvarez, M.I.; Zorzano, A.; De Stefani, D.; Dorn, G.W., II; Scorrano, L. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. Natl. Acad. Sci. USA, 2016, 113(40), 11249-11254.
[http://dx.doi.org/10.1073/pnas.1606786113] [PMID: 27647893]
[117]
Barlan, K.; Gelfand, V.I. Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb. Perspect. Biol., 2017, 9(5)a025817
[http://dx.doi.org/10.1101/cshperspect.a025817] [PMID: 28461574]
[118]
Galmes, R.; Houcine, A.; van Vliet, A.R.; Agostinis, P.; Jackson, C.L.; Giordano, F. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep., 2016, 17(6), 800-810.
[http://dx.doi.org/10.15252/embr.201541108] [PMID: 27113756]
[119]
Horibata, Y.; Sugimoto, H. StarD7 mediates the intracellular trafficking of phosphatidylcholine to mitochondria. J. Biol. Chem., 2010, 285(10), 7358-7365.
[http://dx.doi.org/10.1074/jbc.M109.056960] [PMID: 20042613]
[120]
Anelli, T.; Bergamelli, L.; Margittai, E.; Rimessi, A.; Fagioli, C.; Malgaroli, A.; Pinton, P.; Ripamonti, M.; Rizzuto, R.; Sitia, R. Ero1α regulates Ca(2+) fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid. Redox Signal., 2012, 16(10), 1077-1087.
[http://dx.doi.org/10.1089/ars.2011.4004] [PMID: 21854214]
[121]
Lee, S.; Min, K.T. The interface between ER and Mitochondria: Molecular compositions and functions. Mol. Cells, 2018, 41(12), 1000-1007.
[http://dx.doi.org/10.14348/molcells.2018.0438] [PMID: 30590907]
[122]
Hsieh, Y.S.; Yang, S.F.; Chen, P.N.; Chu, S.C.; Chen, C.H.; Kuo, D.Y. Knocking down the transcript of protein kinase C-lambda modulates hypothalamic glutathione peroxidase, melanocortin receptor and neuropeptide Y gene expression in amphetamine-treated rats. J. Psychopharmacol. (Oxford), 2011, 25(7), 982-994.
[http://dx.doi.org/10.1177/0269881110376692] [PMID: 20817751]
[123]
Treves, S.; Jungbluth, H.; Muntoni, F.; Zorzato, F. Congenital muscle disorders with cores: the ryanodine receptor calcium channel paradigm. Curr. Opin. Pharmacol., 2008, 8(3), 319-326.
[http://dx.doi.org/10.1016/j.coph.2008.01.005] [PMID: 18313359]
[124]
Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[125]
Simmen, T.; Aslan, J.E.; Blagoveshchenskaya, A.D.; Thomas, L.; Wan, L.; Xiang, Y.; Feliciangeli, S.F.; Hung, C.H.; Crump, C.M.; Thomas, G. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J., 2005, 24(4), 717-729.
[http://dx.doi.org/10.1038/sj.emboj.7600559] [PMID: 15692567]
[126]
Su, T.P.; Su, T.C.; Nakamura, Y.; Tsai, S.Y. The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol. Sci., 2016, 37(4), 262-278.
[http://dx.doi.org/10.1016/j.tips.2016.01.003] [PMID: 26869505]
[127]
Seth, R.B.; Sun, L.; Ea, C.K.; Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005, 122(5), 669-682.
[http://dx.doi.org/10.1016/j.cell.2005.08.012] [PMID: 16125763]
[128]
Annunziata, I.; Sano, R.; d’Azzo, A. Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death Dis., 2018, 9(3), 328.
[http://dx.doi.org/10.1038/s41419-017-0025-4] [PMID: 29491402]
[129]
Missiroli, S.; Danese, A.; Iannitti, T.; Patergnani, S.; Perrone, M.; Previati, M.; Giorgi, C.; Pinton, P. Endoplasmic reticulum-mitochondria Ca2+ crosstalk in the control of the tumor cell fate. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(6), 858-864.
[http://dx.doi.org/10.1016/j.bbamcr.2016.12.024] [PMID: 28064002]
[130]
Thivolet, C.; Vial, G.; Cassel, R.; Rieusset, J.; Madec, A.M. Reduction of endoplasmic reticulum- mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS One, 2017, 12(7)e0182027
[http://dx.doi.org/10.1371/journal.pone.0182027] [PMID: 28742858]
[131]
Lim, J.H.; Lee, H.J.; Ho Jung, M.; Song, J. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell. Signal., 2009, 21(1), 169-177.
[http://dx.doi.org/10.1016/j.cellsig.2008.10.004] [PMID: 18950706]
[132]
Rieusset, J.; Fauconnier, J.; Paillard, M.; Belaidi, E.; Tubbs, E.; Chauvin, M.A.; Durand, A.; Bravard, A.; Teixeira, G.; Bartosch, B.; Michelet, M.; Theurey, P.; Vial, G.; Demion, M.; Blond, E.; Zoulim, F.; Gomez, L.; Vidal, H.; Lacampagne, A.; Ovize, M. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia, 2016, 59(3), 614-623.
[http://dx.doi.org/10.1007/s00125-015-3829-8] [PMID: 26660890]
[133]
Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Rüegg, M.A.; Hall, M.N. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab., 2012, 15(5), 725-738.
[http://dx.doi.org/10.1016/j.cmet.2012.03.015] [PMID: 22521878]
[134]
Gan, K.X.; Wang, C.; Chen, J.H.; Zhu, C.J.; Song, G.Y. Mitofusin-2 ameliorates high-fat diet-induced insulin resistance in liver of rats. World J. Gastroenterol., 2013, 19(10), 1572-1581.
[http://dx.doi.org/10.3748/wjg.v19.i10.1572] [PMID: 23538485]
[135]
Wang, C.H.; Chen, Y.F.; Wu, C.Y.; Wu, P.C.; Huang, Y.L.; Kao, C.H.; Lin, C.H.; Kao, L.S.; Tsai, T.F.; Wei, Y.H. Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis. Hum. Mol. Genet., 2014, 23(18), 4770-4785.
[http://dx.doi.org/10.1093/hmg/ddu193] [PMID: 24833725]
[136]
Arruda, A.P.; Pers, B.M.; Parlakgül, G.; Güney, E.; Inouye, K.; Hotamisligil, G.S. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med., 2014, 20(12), 1427-1435.
[http://dx.doi.org/10.1038/nm.3735] [PMID: 25419710]
[137]
Schneeberger, M.; Dietrich, M.O.; Sebastián, D.; Imbernón, M.; Castaño, C.; Garcia, A.; Esteban, Y.; Gonzalez-Franquesa, A.; Rodríguez, I.C.; Bortolozzi, A.; Garcia-Roves, P.M.; Gomis, R.; Nogueiras, R.; Horvath, T.L.; Zorzano, A.; Claret, M. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell, 2013, 155(1), 172-187.
[http://dx.doi.org/10.1016/j.cell.2013.09.003] [PMID: 24074867]
[138]
Eisner, V.; Csordás, G.; Hajnóczky, G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca2+ and reactive oxygen species signaling. J. Cell Sci., 2013, 126(Pt 14), 2965-2978.
[http://dx.doi.org/10.1242/jcs.093609] [PMID: 23843617]
[139]
Ma, J.H.; Wang, J.J.; Li, J.; Pfeffer, B.A.; Zhong, Y.; Zhang, S.X. The Role of IRE-XBP1 pathway in regulation of retinal pigment epithelium tight junctions. Invest. Ophthalmol. Vis. Sci., 2016, 57(13), 5244-5252.
[http://dx.doi.org/10.1167/iovs.16-19232] [PMID: 27701635]
[140]
Dou, G.; Sreekumar, P.G.; Spee, C.; He, S.; Ryan, S.J.; Kannan, R.; Hinton, D.R. Deficiency of αB crystallin augments ER stress-induced apoptosis by enhancing mitochondrial dysfunction. Free Radic. Biol. Med., 2012, 53(5), 1111-1122.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.042] [PMID: 22781655]
[141]
Ma, J.H.; Shen, S.; Wang, J.J.; He, Z.; Poon, A.; Li, J.; Qu, J.; Zhang, S.X. Comparative proteomic analysis of the mitochondria-associated ER Membrane (MAM) in a long-term type 2 diabetic rodent model. Sci. Rep., 2017, 7(1), 2062.
[http://dx.doi.org/10.1038/s41598-017-02213-1] [PMID: 28522876]
[142]
Maghbooli, Z.; Hossein-nezhad, A.; Larijani, B.; Amini, M.; Keshtkar, A. Global DNA methylation as a possible biomarker for diabetic retinopathy. Diabetes Metab. Res. Rev., 2015, 31(2), 183-189.
[http://dx.doi.org/10.1002/dmrr.2584] [PMID: 25069700]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy