[1]
a) Nonappa, Maitra, U. Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Org. Biomol. Chem., 2008, 6, 657-669.
(b) Virtanen, E.; Koleh-mainen, E. Use of bile acids in pharmacological and supramole-cular applications. Eur. J. Org. Chem., 2004,, 2004,, 3385-3399.
[2]
Stamp, D.; Jenkins, G. Bile Acids: Toxicology and Bioactivity; Royal Society of Chemistry: Cambridge, 2008, pp. 1-13.
[3]
Li, C.; Peters, A.S.; Meredith, E.L.; Allman, G.W.; Savage, P.B. Design and synthesis of potent sensitizers of gram-negative bacteria based on a cholic acid scaffolding. J. Am. Chem. Soc., 1998, 120(12), 2961-296.
[4]
Sharma, R.; Long, A.; Gilmer, J.F. Advances in bile acid medicinal chemistry. Curr. Med. Chem., 2011, 18, 4029-4052.
[5]
Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci., 2004, 87(12), 1666-1683.
[6]
Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med., 1999, 159, 2647-2658.
[7]
Sievänen, E. Exploitation of bile acid transport systems in prodrug design. Molecules, 2007, 12(8), 1859-1889.
[8]
Tsukamoto, S.; Matsunaga, S.; Fusetani, N.; van Soest, R.W. Acanthosterol sulfates A–J: ten new antifungal steroidal sulfates from a marine sponge. Acanthodendrilla sp. J. Nat. Prod., 1998, 61, 1374-1378.
[9]
Mohamed, N.R.; Elmegeed, G.A.; Abd-ElMalek, H.A.; Younis, M. Synthesis of biologically active steroid derivatives by the utility of Lawesson’s reagent. Steroids, 2005, 70, 131-136.
[10]
Jean, M.B.; Céline, L.; Nicolas, V.; Michel, D.; Yves, L. Synthesis and antifungal activity of oxygenated cholesterol derivatives. Steroids, 2005, 70, 907-912.
[11]
Zhang, Y.L.; Li, H.Z.; Zhang, Y.J.; Jacob, M.R.; Khan, S.I.; Li, X.C.; Yang, C.R. Atropurosides A–G, newsteroidal saponins from Smilacina atropurpurea. Steroids, 2006, 71, 712-719.
[12]
Eko, W.S.; Carla, S.; Joseph, O.F.; Richard, D.G. Synthesis and antimicrobial evaluation of water-soluble, dendritic derivatives of epimeric 5α-cholestan-3-aminesand 5α-cholestan-3-yl aminoethanoates. Steroids, 2007, 72, 615-626.
[13]
Salunke, D.B.; Hazra, B.G.; Pore, V.S.; Bhat, M.K.; Nahar, P.B.; Deshpande, M.V. New steroidal dimers with antifungal and antiproliferative activity. J. Med. Chem., 2004, 47, 1591-1594.
[14]
Visbal, G.; San-Blas, G.; Maldonado, A.; Álvarez-Aular, Á.; Capparelli, M.V.; Murgich, J. Synthesis, in vitro antifungal activity and mechanism of action of four sterol hydrazone analogues against the dimorphic fungus Paracoccidioides brasiliensis. Steroids, 2011, 76, 1069-1081.
[15]
Brossard, D.; El, L.; Sebbahi, W.; Khalid, M.; Roussakis, C.; Rault, S. Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic Carcinoma (HCT-116) human cell lines. Eur. J. Med. Chem., 2010, 45, 2912-2918.
[16]
Mrózek, L.; Dvořáková, L.; Mandelová, Z.; Rárov, L.; Řezáčová, A.; Plaček, L.; Opatřilová, R.; Dohnal, J.; Paleta, O.; Král, V.; Drašar, P.; Jampílek, J. Investigation of new acyloxy derivatives of cholic acid and their esters as drug absorption modifiers. Steroids, 2011, 76, 1082-1097.
[17]
Dong, Z.; Li, Q.; Guo, D.; Shu, Y.; Polli, J.E. Pharmaceutics, drug delivery and pharmaceutical technology synthesis and evaluation of Bile Acid-Ribavirin conjugates asprodrugs to target the liver. J. Pharm. Sci., 2015, 104, 2864-2876.
[18]
Ðanić, M.; Stanimirov, B.; Pavlović, N.; Goločorbin-Kon, S.; Al-Salami, H.; Stankov, K.; Mikov, M. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front. Pharmacol., 2018, 9, 1382.
[19]
Popadyuk, I.I.; Salomatina, O.V.; Salakhutdinov, N.F. Modern approaches to bile acids modifications for the synthesis of compounds possessing valuable physicochemical and biological properties. Russ. Chem. Rev., 2017, 86, 388-443.
[20]
Li, C.; Peters, A.S.; Meridith, E.L.; Allman, G.W.; Savage, P.B. Incremental conversion of outer-membrane permeabilizers into potent antibiotics for gram-negative bacteria. J. Am. Chem. Soc., 1998, 120, 2961-2962.
[21]
Bavikar, S.N.; Salunke, D.B.; Hazra, B.G.; Pore, V.S.; Dodd, R.H.; Thierry, J.; Shirazi, F.; Deshpande, M.V.; Kadreppa, S.; Chattopadhyay, S. Synthesis of chimeric tetrapeptide-linked cholic acid derivatives: impending synergistic agents. Bioorg. Med. Chem. Lett., 2008, 18, 5512-5517.
[22]
Rasras, A.J.M.; Al-Tel, T.H.; Al-Aboudi, A.F.; Al-Qawasmeh, R.A. Synthesis and antimicrobial activity of cholic acid hydrazone analogues. Eur. J. Med. Chem., 2010, 45, 2307-2313.
[23]
Guan, Q.; Li, C.; Schmidt, E.J.; Boswell, J.S.; Walsh, J.P.; Allman, G.W.; Savage, P.B. Preparation and characterization of cholic acid-derived antimicrobial agents with controlled stabilities. Org. Lett., 2000, 18(2), 2837-2840.
[24]
Agarwal, D.S.; Singh, R.P.; Lohitesh, K.; Jha, P.N.; Chowdhury, R.; Sakhuja, R. Synthesis and evaluation of bile acid amides of α-cyanostilbenes as anticancer agents. Mol. Divers., 2018, 22(2), 305-321.
[25]
Hazra, B.G.; Pore, V.S.; Dey, S.K.; Datta, S.; Darokar, P.M.; Saikia, D.; Khanuja, S.P.S.; Thakur, A.P. Bile acid amides derived from chiral amino alcohols: novel antimicrobials and antifungals. Bioorg. Med. Chem. Lett., 2004, 14, 773-777.