Review Article

多发性硬化中的氧化状态和抗氧化剂偏离目标:依达拉奉的情况

卷 27, 期 13, 2020

页: [2095 - 2105] 页: 11

弟呕挨: 10.2174/0929867326666190124122752

价格: $65

conference banner
摘要

背景:MS是导致脱髓鞘和神经退行性变的中枢神经系统慢性炎性疾病,病因复杂且尚待阐明。来自患者样本和动物模型的一些数据表明,氧化状态(OS)在MS发病机理中起重要作用。巨噬细胞/小胶质细胞过度产生反应性氧化物质,可通过氧化基本细胞成分而导致细胞损伤并导致细胞死亡。氧化的分子存在于活跃的MS病变中,并与神经变性相关。 方法:我们对书目数据库进行了结构化搜索,以查找有关MS中OS的同行评审研究文献。所选论文的内容是在概念框架的背景下进行描述的。特别强调了我们在该领域的研究结果。 结果:将我们最近三项研究的结果放在上下文中并进行了讨论,并参考了有关该主题的文献。氧化损伤加剧了多发性硬化和神经退行性疾病(如阿尔茨海默病和帕金森病)共有的失衡。在患有临床孤立综合征(MS早期)的人中,氧化应激被证明有助于疾病的病理生理,并提供可能有助于预测疾病进展的生物标志物。一个基于多种试验的药物筛选平台,用于测试批准的化合物库的髓鞘再生潜力,显示两种抗氧化剂,依达拉奉和5-甲基-7-甲氧基异黄酮为活性药物。此外,对“结构活性关系”的分析显示,这些化合物的脱靶位点说明了其髓鞘再生活性,而与它们的抗氧化作用无关。 结论:总体而言,依达拉奉已成为治疗诸如MS等复杂疾病的候选药物,其中炎症,氧化应激和神经退行性疾病在不同阶段和疾病类型中共同或单独促进疾病进展。此外,基于药物重新定位的方法似乎保留了帮助发现分子靶标很大程度上未知的复杂疾病的新方法的希望。

关键词: 依达拉奉,抗氧化剂,多发性硬化症,氧化状态,髓鞘再生,慢性炎症性疾病。

[1]
Koch, M.; Ramsaransing, G.S.; Arutjunyan, A.V.; Stepanov, M.; Teelken, A.; Heersema, D.J.; De Keyser, J. Oxidative stress in serum and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J. Neurol., 2006, 253(4), 483-487.
[http://dx.doi.org/10.1007/s00415-005-0037-3] [PMID: 16283096]
[2]
Vladimirova, O.; O’Connor, J.; Cahill, A.; Alder, H.; Butunoi, C.; Kalman, B. Oxidative damage to DNA in plaques of MS brains. Mult. Scler., 1998, 4(5), 413-418.
[http://dx.doi.org/10.1177/135245859800400503] [PMID: 9839301]
[3]
Hammann, K.P.; Hopf, H.C. Monocytes constitute the only peripheral blood cell population showing an increased burst activity in multiple sclerosis patients. Int. Arch. Allergy Appl. Immunol., 1986, 81(3), 230-234.
[http://dx.doi.org/10.1159/000234139] [PMID: 3095248]
[4]
Greco, A.; Minghetti, L.; Sette, G.; Fieschi, C.; Levi, G. Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology, 1999, 53(8), 1876-1879.
[http://dx.doi.org/10.1212/WNL.53.8.1876] [PMID: 10563647]
[5]
Nikić, I.; Merkler, D.; Sorbara, C.; Brinkoetter, M.; Kreutzfeldt, M.; Bareyre, F.M.; Brück, W.; Bishop, D.; Misgeld, T.; Kerschensteiner, M. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med., 2011, 17(4), 495-499.
[http://dx.doi.org/10.1038/nm.2324] [PMID: 21441916]
[6]
van Horssen, J.; Witte, M.E.; Schreibelt, G.; de Vries, H.E. Radical changes in multiple sclerosis pathogenesis. Biochim. Biophys. Acta, 2011, 1812(2), 141-150.
[http://dx.doi.org/10.1016/j.bbadis.2010.06.011] [PMID: 20600869]
[7]
Haider, L. Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxid. Med. Cell. Longev., 2015, 2015725370
[http://dx.doi.org/10.1155/2015/725370] [PMID: 26106458]
[8]
Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001, 40(8), 959-975.
[http://dx.doi.org/10.1016/S0028-3908(01)00019-3] [PMID: 11406187]
[9]
van Horssen, J.; Schreibelt, G.; Drexhage, J.; Hazes, T.; Dijkstra, C.D.; van der Valk, P.; de Vries, H.E. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med., 2008, 45(12), 1729-1737.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.09.023] [PMID: 18930811]
[10]
Haider, L.; Fischer, M.T.; Frischer, J.M.; Bauer, J.; Höftberger, R.; Botond, G.; Esterbauer, H.; Binder, C.J.; Witztum, J.L.; Lassmann, H. Oxidative damage in multiple sclerosis lesions. Brain, 2011, 134(Pt 7), 1914-1924.
[http://dx.doi.org/10.1093/brain/awr128] [PMID: 21653539]
[11]
Polman, C.H.; Reingold, S.C.; Edan, G.; Filippi, M.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Metz, L.M.; McFarland, H.F.; O’Connor, P.W.; Sandberg-Wollheim, M.; Thompson, A.J.; Weinshenker, B.G.; Wolinsky, J.S. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol., 2005, 58(6), 840-846.
[http://dx.doi.org/10.1002/ana.20703] [PMID: 16283615]
[12]
Miller, D.; Barkhof, F.; Montalban, X.; Thompson, A.; Filippi, M. Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol., 2005, 4(5), 281-288.
[http://dx.doi.org/10.1016/S1474-4422(05)70071-5] [PMID: 15847841]
[13]
Swanton, J.K.; Rovira, A.; Tintore, M.; Altmann, D.R.; Barkhof, F.; Filippi, M.; Huerga, E.; Miszkiel, K.A.; Plant, G.T.; Polman, C.; Rovaris, M.; Thompson, A.J.; Montalban, X.; Miller, D.H. MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurol., 2007, 6(8), 677-686.
[http://dx.doi.org/10.1016/S1474-4422(07)70176-X] [PMID: 17616439]
[14]
Brex, P.A.; Ciccarelli, O.; O’Riordan, J.I.; Sailer, M.; Thompson, A.J.; Miller, D.H. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N. Engl. J. Med., 2002, 346(3), 158-164.
[http://dx.doi.org/10.1056/NEJMoa011341] [PMID: 11796849]
[15]
Alimonti, A.; Ristori, G.; Giubilei, F.; Stazi, M.A.; Pino, A.; Visconti, A.; Brescianini, S.; Sepe Monti, M.; Forte, G.; Stanzione, P.; Bocca, B.; Bomboi, G.; D’Ippolito, C.; Annibali, V.; Salvetti, M.; Sancesario, G. Serum chemical elements and oxidative status in Alzheimer’s disease, Parkinson disease and multiple sclerosis. Neurotoxicology, 2007, 28(3), 450-456.
[http://dx.doi.org/10.1016/j.neuro.2006.12.001] [PMID: 17267042]
[16]
Ristori, G.; Brescianini, S.; Pino, A.; Visconti, A.; Vittori, D.; Coarelli, G.; Cotichini, R.; Bocca, B.; Forte, G.; Pozzilli, C.; Pestalozza, I.; Stazi, M.A.; Alimonti, A.; Salvetti, M. Serum elements and oxidative status in clinically isolated syndromes: imbalance and predictivity. Neurology, 2011, 76(6), 549-555.
[http://dx.doi.org/10.1212/WNL.0b013e31820af7de] [PMID: 21300970]
[17]
Simpson, E.P.; Henry, Y.K.; Henkel, J.S.; Smith, R.G.; Appel, S.H. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology, 2004, 62(10), 1758-1765.
[http://dx.doi.org/10.1212/WNL.62.10.1758] [PMID: 15159474]
[18]
Watanabe, K.; Tanaka, M.; Yuki, S.; Hirai, M.; Yamamoto, Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J. Clin. Biochem. Nutr., 2018, 62(1), 20-38.
[http://dx.doi.org/10.3164/jcbn.17-62] [PMID: 29371752]
[19]
Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis., 2003, 15(3), 222-229.
[http://dx.doi.org/10.1159/000069318] [PMID: 12715790]
[20]
Ikawa, M.; Okazawa, H.; Tsujikawa, T.; Matsunaga, A.; Yamamura, O.; Mori, T.; Hamano, T.; Kiyono, Y.; Nakamoto, Y.; Yoneda, M. Increased oxidative stress is related to disease severity in the ALS motor cortex: A PET study. Neurology, 2015, 84(20), 2033-2039.
[http://dx.doi.org/10.1212/WNL.0000000000001588] [PMID: 25904686]
[21]
Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362(6415), 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[22]
Mondola, P.; Damiano, S.; Sasso, A.; Santillo, M. The Cu, Zn superoxide dismutase: not only a dismutase enzyme. Front. Physiol., 2016, 7, 594.
[http://dx.doi.org/10.3389/fphys.2016.00594] [PMID: 27965593]
[23]
Yoshino, H.; Kimura, A. Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (Phase II study). Amyotroph. Lateral Scler., 2006, 7(4), 241-245.
[http://dx.doi.org/10.1080/17482960600881870] [PMID: 17127563]
[24]
Writing Group; Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well-defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2017, 16(7), 505-512.
[http://dx.doi.org/10.1016/S1474-4422(17)30115-1] [PMID: 28522181]
[25]
Hauser, D.N.; Hastings, T.G. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol. Dis., 2013, 51, 35-42.
[http://dx.doi.org/10.1016/j.nbd.2012.10.011] [PMID: 23064436]
[26]
Jenner, P. Oxidative stress in Parkinson’s disease. Ann. Neurol., 2003, 53(Suppl. 3), S26-S36.
[http://dx.doi.org/10.1002/ana.10483] [PMID: 12666096]
[27]
Olanow, C.W.; Jenner, P.; Brooks, D. Dopamine agonists and neuroprotection in Parkinson’s disease. Ann. Neurol., 1998, 44(3)(Suppl. 1), S167-S174.
[http://dx.doi.org/10.1002/ana.410440725] [PMID: 9749590]
[28]
Monti, D.A.; Zabrecky, G.; Kremens, D.; Liang, T.W.; Wintering, N.A.; Cai, J.; Wei, X.; Bazzan, A.J.; Zhong, L.; Bowen, B.; Intenzo, C.M.; Iacovitti, L.; Newberg, A.B. N-Acetyl cysteine may support dopamine neurons in parkinson’s disease: preliminary clinical and cell line data. PLoS One, 2016, 11(6)e0157602
[http://dx.doi.org/10.1371/journal.pone.0157602] [PMID: 27309537]
[29]
Zhu, Z.G.; Sun, M.X.; Zhang, W.L.; Wang, W.W.; Jin, Y.M.; Xie, C.L. The efficacy and safety of coenzyme Q10 in Parkinson’s disease: a meta-analysis of randomized controlled trials. Neurol. Sci., 2017, 38(2), 215-224.
[http://dx.doi.org/10.1007/s10072-016-2757-9] [PMID: 27830343]
[30]
Yuan, W.J.; Yasuhara, T.; Shingo, T.; Muraoka, K.; Agari, T.; Kameda, M.; Uozumi, T.; Tajiri, N.; Morimoto, T.; Jing, M.; Baba, T.; Wang, F.; Leung, H.; Matsui, T.; Miyoshi, Y.; Date, I. Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons. BMC Neurosci., 2008, 9, 75.
[http://dx.doi.org/10.1186/1471-2202-9-75] [PMID: 18671880]
[31]
Clark, T.A.; Lee, H.P.; Rolston, R.K.; Zhu, X.; Marlatt, M.W.; Castellani, R.J.; Nunomura, A.; Casadesus, G.; Smith, M.A.; Lee, H.G.; Perry, G. Oxidative stress and its implications for future treatments and management of Alzheimer disease. Int. J. Biomed. Sci., 2010, 6(3), 225-227.
[PMID: 21765811]
[32]
Mattson, M.P. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev., 1997, 77(4), 1081-1132.
[http://dx.doi.org/10.1152/physrev.1997.77.4.1081] [PMID: 9354812]
[33]
Huang, X.; Atwood, C.S.; Hartshorn, M.A.; Multhaup, G.; Goldstein, L.E.; Scarpa, R.C.; Cuajungco, M.P.; Gray, D.N.; Lim, J.; Moir, R.D.; Tanzi, R.E.; Bush, A.I. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry, 1999, 38(24), 7609-7616.
[http://dx.doi.org/10.1021/bi990438f] [PMID: 10386999]
[34]
Feng, Y.; Wang, X. Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2012, 2012472932
[http://dx.doi.org/10.1155/2012/472932] [PMID: 22888398]
[35]
Jiao, S.S.; Yao, X.Q.; Liu, Y.H.; Wang, Q.H.; Zeng, F.; Lu, J.J.; Liu, J.; Zhu, C.; Shen, L.L.; Liu, C.H.; Wang, Y.R.; Zeng, G.H.; Parikh, A.; Chen, J.; Liang, C.R.; Xiang, Y.; Bu, X.L.; Deng, J.; Li, J.; Xu, J.; Zeng, Y.Q.; Xu, X.; Xu, H.W.; Zhong, J.H.; Zhou, H.D.; Zhou, X.F.; Wang, Y.J. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits. Proc. Natl. Acad. Sci. USA, 2015, 112(16), 5225-5230.
[http://dx.doi.org/10.1073/pnas.1422998112] [PMID: 25847999]
[36]
Patani, R.; Balaratnam, M.; Vora, A.; Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol., 2007, 33(3), 277-287.
[http://dx.doi.org/10.1111/j.1365-2990.2007.00805.x] [PMID: 17442065]
[37]
Patrikios, P.; Stadelmann, C.; Kutzelnigg, A.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Brück, W.; Lucchinetti, C.; Lassmann, H. Remyelination is extensive in a subset of multiple sclerosis patients. Brain, 2006, 129(Pt 12), 3165-3172.
[http://dx.doi.org/10.1093/brain/awl217] [PMID: 16921173]
[38]
Goldschmidt, T.; Antel, J.; König, F.B.; Brück, W.; Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology, 2009, 72(22), 1914-1921.
[http://dx.doi.org/10.1212/WNL.0b013e3181a8260a] [PMID: 19487649]
[39]
Piaton, G.; Williams, A.; Seilhean, D.; Lubetzki, C. Remyelination in multiple sclerosis. Prog. Brain Res., 2009, 175, 453-464.
[http://dx.doi.org/10.1016/S0079-6123(09)17530-1] [PMID: 19660673]
[40]
Kuhlmann, T.; Miron, V.; Cui, Q.; Wegner, C.; Antel, J.; Brück, W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain, 2008, 131(Pt 7), 1749-1758.
[http://dx.doi.org/10.1093/brain/awn096] [PMID: 18515322]
[41]
Hagemeier, K.; Brück, W.; Kuhlmann, T. Multiple sclerosis - remyelination failure as a cause of disease progression. Histol. Histopathol., 2012, 27(3), 277-287.
[PMID: 22237705]
[42]
Eleuteri, C.; Olla, S.; Veroni, C.; Umeton, R.; Mechelli, R.; Romano, S.; Buscarinu, M.C.; Ferrari, F.; Calò, G.; Ristori, G.; Salvetti, M.; Agresti, C. A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials. Sci. Rep., 2017, 7, 45780.
[http://dx.doi.org/10.1038/srep45780] [PMID: 28387380]
[43]
Takase, H.; Liang, A.C.; Miyamoto, N.; Hamanaka, G.; Ohtomo, R.; Maki, T.; Pham, L.D.; Lok, J.; Lo, E.H.; Arai, K. Protective effects of a radical scavenger edaravone on oligodendrocyte precursor cells against oxidative stress. Neurosci. Lett., 2018, 668, 120-125.
[http://dx.doi.org/10.1016/j.neulet.2018.01.018] [PMID: 29337010]
[44]
Deshmukh, V.A.; Tardif, V.; Lyssiotis, C.A.; Green, C.C.; Kerman, B.; Kim, H.J.; Padmanabhan, K.; Swoboda, J.G.; Ahmad, I.; Kondo, T.; Gage, F.H.; Theofilopoulos, A.N.; Lawson, B.R.; Schultz, P.G.; Lairson, L.L. A regenerative approach to the treatment of multiple sclerosis. Nature, 2013, 502(7471), 327-332.9.
[http://dx.doi.org/10.1038/nature12647]
[45]
Mei, F.; Fancy, S.P.J.; Shen, Y.A.; Niu, J.; Zhao, C.; Presley, B.; Miao, E.; Lee, S.; Mayoral, S.R.; Redmond, S.A.; Etxeberria, A.; Xiao, L.; Franklin, R.J.M.; Green, A.; Hauser, S.L.; Chan, J.R. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med., 2014, 20(8), 954-960.
[http://dx.doi.org/10.1038/nm.3618] [PMID: 24997607]
[46]
Najm, F.J.; Madhavan, M.; Zaremba, A.; Shick, E.; Karl, R.T.; Factor, D.C.; Miller, T.E.; Nevin, Z.S.; Kantor, C.; Sargent, A.; Quick, K.L.; Schlatzer, D.M.; Tang, H.; Papoian, R.; Brimacombe, K.R.; Shen, M.; Boxer, M.B.; Jadhav, A.; Robinson, A.P.; Podojil, J.R.; Miller, S.D.; Miller, R.H.; Tesar, P.J. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature, 2015, 522(7555), 216-220.
[http://dx.doi.org/10.1038/nature14335] [PMID: 25896324]
[47]
Dolgin, E. Nonprofit disease groups earmark grants for drug repositioning. Nat. Med., 2011, 17(9), 1027.
[http://dx.doi.org/10.1038/nm0911-1027] [PMID: 21900904]
[48]
Reed, J.C.; White, E.L.; Aubé, J.; Lindsley, C.; Li, M.; Sklar, L.; Schreiber, S. The NIH’s role in accelerating translational sciences. Nat. Biotechnol., 2012, 30(1), 16-19.
[http://dx.doi.org/10.1038/nbt.2087] [PMID: 22231085]
[49]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[50]
Medina-Franco, J.L.; Giulianotti, M.A.; Welmaker, G.S.; Houghten, R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 2013, 18(9-10), 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy