Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Healthy Gut, Healthy Brain: The Gut Microbiome in Neurodegenerative Disorders

Author(s): Sreyashi Chandra, Md. Tanjim Alam, Jhilik Dey, Baby C. Pulikkaparambil Sasidharan, Upasana Ray, Amit K. Srivastava, Sonu Gandhi and Prem P. Tripathi*

Volume 20, Issue 13, 2020

Page: [1142 - 1153] Pages: 12

DOI: 10.2174/1568026620666200413091101

Price: $65

Abstract

Background: The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington’s disease (HD).

Objective: We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD.

Methods: In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them.

Results: In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction.

Conclusion: We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.

Keywords: Gut microbiota, Gut-brain axis, CNS, Neurodegenerative disorders, Peripheral nervous system, Short-chain fatty acids.

Graphical Abstract

[1]
Mulak, A.; Bonaz, B. Brain-gut-microbiota axis in Parkinson’s disease. World J. Gastroenterol., 2015, 21(37), 10609-10620.
[http://dx.doi.org/10.3748/wjg.v21.i37.10609] [PMID: 26457021]
[2]
Houser, M.C.; Tansey, M.G. The Gut-Brain axis: is intestinal inflammation a silent driver of Park disease pathogenesis? NPJ Parkinsons Dis., 2017, 3, 3.
[3]
Bostanciklioğlu, M. The role of gut microbiota in pathogenesis of Alzheimer’s disease. J. Appl. Microbiol., 2019, 127(4), 954-967.
[http://dx.doi.org/10.1111/jam.14264] [PMID: 30920075]
[4]
Winner, B.; Kohl, Z.; Gage, F.H. Neurodegenerative disease and adult neurogenesis. Eur. J. Neurosci., 2011, 33(6), 1139-1151.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07613.x] [PMID: 21395858]
[5]
Endres, K.; Schäfer, K.H. Influence of commensal microbiota on the enteric nervous system and its role in neurodegenerative diseases. J. Innate Immun., 2018, 10(3), 172-180.
[http://dx.doi.org/10.1159/000488629] [PMID: 29742516]
[6]
McCombe, P.A.; Henderson, R.D.; Lee, A.; Lee, J.D.; Woodruff, T.M.; Restuadi, R.; McRae, A.; Wray, N.R.; Ngo, S.; Steyn, F.J. Gut microbiota in ALS: possible role in pathogenesis? Expert Rev. Neurother., 2019, 19(9), 785-805.
[http://dx.doi.org/10.1080/14737175.2019.1623026] [PMID: 31122082]
[7]
Roy Sarkar, S.; Banerjee, S. Gut microbiota in neurodegenerative disorders. J. Neuroimmunol., 2019, 328, 98-104.
[http://dx.doi.org/10.1016/j.jneuroim.2019.01.004] [PMID: 30658292]
[8]
Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2016, 90(3), 859-904.
[9]
Wall, R.; Cryan, J.F.; Ross, R.P.; Fitzgerald, G.F.; Dinan, T.G.; Stanton, C. Bacterial neuroactive compounds produced by psychobiotics. Adv. Exp. Med. Biol., 2014, 817, 221-239.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_10] [PMID: 24997036]
[10]
Ambrosini, Y.M.; Borcherding, D.; Kanthasamy, A.; Kim, H.J.; Willette, A.A.; Jergens, A.; Allenspach, K.; Mochel, J.P. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review. Front. Aging Neurosci., 2019, 11, 130.
[http://dx.doi.org/10.3389/fnagi.2019.00130] [PMID: 31275138]
[11]
Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2018, 10(4), 10.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[12]
Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the human microbiome. Nutr. Rev., 2012, 70(Suppl. 1), S38-S44.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00493.x] [PMID: 22861806]
[13]
Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet, 2003, 361(9356), 512-519.
[http://dx.doi.org/10.1016/S0140-6736(03)12489-0] [PMID: 12583961]
[14]
Quigley, E.M.M. Gut bacteria in health and disease. Gastroenterol. Hepatol. (N. Y.), 2013, 9(9), 560-569.
[PMID: 24729765]
[15]
Hirschberg, S.; Gisevius, B.; Duscha, A.; Haghikia, A. Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12), 20.
[http://dx.doi.org/10.3390/ijms20123109] [PMID: 31242699]
[16]
Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA, 2011, 108(19), 8030-8035.
[http://dx.doi.org/10.1073/pnas.1016088108] [PMID: 21518883]
[17]
Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; Giglio, M.G.; Hallsworth-Pepin, K.; Lobos, E.A.; Madupu, R.; Magrini, V.; Martin, J.C.; Mitreva, M.; Muzny, D.M.; Sodergren, E.J.; Versalovic, J.; Wollam, A.M.; Worley, K.C.; Wortman, J.R.; Young, S.K.; Zeng, Q.; Aagaard, K.M.; Abolude, O.O.; Allen-Vercoe, E.; Alm, E.J.; Alvarado, L.; Andersen, G.L.; Anderson, S.; Appelbaum, E.; Arachchi, H.M.; Armitage, G.; Arze, C.A.; Ayvaz, T.; Baker, C.C.; Begg, L.; Belachew, T.; Bhonagiri, V.; Bihan, M.; Blaser, M.J.; Bloom, T.; Bonazzi, V.; Paul Brooks, J.; Buck, G.A.; Buhay, C.J.; Busam, D.A.; Campbell, J.L.; Canon, S.R.; Cantarel, B.L.; Chain, P.S.G.; Chen, I.M.A.; Chen, L.; Chhibba, S.; Chu, K.; Ciulla, D.M.; Clemente, J.C.; Clifton, S.W.; Conlan, S.; Crabtree, J.; Cutting, M.A.; Davidovics, N.J.; Davis, C.C.; Desantis, T.Z.; Deal, C.; Delehaunty, K.D.; Dewhirst, F.E.; Deych, E.; Ding, Y.; Dooling, D.J.; Dugan, S.P.; Michael Dunne, W.; Scott Durkin, A.; Edgar, R.C.; Erlich, R.L.; Farmer, C.N.; Farrell, R.M.; Faust, K.; Feldgarden, M.; Felix, V.M.; Fisher, S.; Fodor, A.A.; Forney, L.J.; Foster, L.; Di Francesco, V.; Friedman, J.; Friedrich, D.C.; Fronick, C.C.; Fulton, L.L.; Gao, H.; Garcia, N.; Giannoukos, G.; Giblin, C.; Giovanni, M.Y.; Goldberg, J.M.; Goll, J.; Gonzalez, A.; Griggs, A.; Gujja, S.; Kinder Haake, S.; Haas, B.J.; Hamilton, H.A.; Harris, E.L.; Hepburn, T.A.; Herter, B.; Hoffmann, D.E.; Holder, M.E.; Howarth, C.; Huang, K.H.; Huse, S.M.; Izard, J.; Jansson, J.K.; Jiang, H.; Jordan, C.; Joshi, V.; Katancik, J.A.; Keitel, W.A.; Kelley, S.T.; Kells, C.; King, N.B.; Knights, D.; Kong, H.H.; Koren, O.; Koren, S.; Kota, K.C.; Kovar, C.L.; Kyrpides, N.C.; La Rosa, P.S.; Lee, S.L.; Lemon, K.P.; Lennon, N.; Lewis, C.M.; Lewis, L.; Ley, R.E.; Li, K.; Liolios, K.; Liu, B.; Liu, Y.; Lo, C.C.; Lozupone, C.A.; Dwayne Lunsford, R.; Madden, T.; Mahurkar, A.A.; Mannon, P.J.; Mardis, E.R.; Markowitz, V.M.; Mavromatis, K.; McCorrison, J.M.; McDonald, D.; McEwen, J.; McGuire, A.L.; McInnes, P.; Mehta, T.; Mihindukulasuriya, K.A.; Miller, J.R.; Minx, P.J.; Newsham, I.; Nusbaum, C.; Oglaughlin, M.; Orvis, J.; Pagani, I.; Palaniappan, K.; Patel, S.M.; Pearson, M.; Peterson, J.; Podar, M.; Pohl, C.; Pollard, K.S.; Pop, M.; Priest, M.E.; Proctor, L.M.; Qin, X.; Raes, J.; Ravel, J.; Reid, J.G.; Rho, M.; Rhodes, R.; Riehle, K.P.; Rivera, M.C.; Rodriguez-Mueller, B.; Rogers, Y.H.; Ross, M.C.; Russ, C.; Sanka, R.K.; Sankar, P.; Fah Sathirapongsasuti, J.; Schloss, J.A.; Schloss, P.D.; Schmidt, T.M.; Scholz, M.; Schriml, L.; Schubert, A.M.; Segata, N.; Segre, J.A.; Shannon, W.D.; Sharp, R.R.; Sharpton, T.J.; Shenoy, N.; Sheth, N.U.; Simone, G.A.; Singh, I.; Smillie, C.S.; Sobel, J.D.; Sommer, D.D.; Spicer, P.; Sutton, G.G.; Sykes, S.M.; Tabbaa, D.G.; Thiagarajan, M.; Tomlinson, C.M.; Torralba, M.; Treangen, T.J.; Truty, R.M.; Vishnivetskaya, T.A.; Walker, J.; Wang, L.; Wang, Z.; Ward, D.V.; Warren, W.; Watson, M.A.; Wellington, C.; Wetterstrand, K.A.; White, J.R.; Wilczek-Boney, K.; Wu, Y.; Wylie, K.M.; Wylie, T.; Yandava, C.; Ye, L.; Ye, Y.; Yooseph, S.; Youmans, B.P.; Zhang, L.; Zhou, Y.; Zhu, Y.; Zoloth, L.; Zucker, J.D.; Birren, B.W.; Gibbs, R.A.; Highlander, S.K.; Methé, B.A.; Nelson, K.E.; Petrosino, J.F.; Weinstock, G.M.; Wilson, R.K.; White, O. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[18]
Boulos, C.; Yaghi, N.; El Hayeck, R.; Heraoui, G.N.; Fakhoury-Sayegh, N. Nutritional risk factors, microbiota and parkinson’s disease: what is the current evidence? Nutrients, 2019, 11(8), 1896.
[http://dx.doi.org/10.3390/nu11081896] [PMID: 31416163]
[19]
Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 1995, 125(6), 1401-1412.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[20]
Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 108.
[http://dx.doi.org/10.1186/s12974-019-1494-4] [PMID: 31118068]
[21]
De La Cochetière, M.F.; Durand, T.; Lepage, P.; Bourreille, A.; Galmiche, J.P.; Doré, J. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol., 2005, 43(11), 5588-5592.
[http://dx.doi.org/10.1128/JCM.43.11.5588-5592.2005] [PMID: 16272491]
[22]
Bartosch, S.; Fite, A.; Macfarlane, G.T.; McMurdo, M.E.T. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol., 2004, 70(6), 3575-3581.
[http://dx.doi.org/10.1128/AEM.70.6.3575-3581.2004] [PMID: 15184159]
[23]
Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J., 2007, 1(1), 56-66.
[http://dx.doi.org/10.1038/ismej.2007.3] [PMID: 18043614]
[24]
Fouhy, F.; Guinane, C.M.; Hussey, S.; Wall, R.; Ryan, C.A.; Dempsey, E.M.; Murphy, B.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C.; Cotter, P.D. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob. Agents Chemother., 2012, 56(11), 5811-5820.
[http://dx.doi.org/10.1128/AAC.00789-12] [PMID: 22948872]
[25]
Boehme, M.; van de Wouw, M.; Bastiaanssen, T.F.S.; Olavarría-Ramírez, L.; Lyons, K.; Fouhy, F.; Golubeva, A.V.; Moloney, G.M.; Minuto, C.; Sandhu, K.V.; Scott, K.A.; Clarke, G.; Stanton, C.; Dinan, T.G.; Schellekens, H.; Cryan, J.F. Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Mol. Psychiatry, 2019.
[http://dx.doi.org/10.1038/s41380-019-0425-1] [PMID: 31092898]
[26]
Thomas, C.M.; Hong, T.; van Pijkeren, J.P.; Hemarajata, P.; Trinh, D.V.; Hu, W.; Britton, R.A.; Kalkum, M.; Versalovic, J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One, 2012, 7(2), e31951
[http://dx.doi.org/10.1371/journal.pone.0031951] [PMID: 22384111]
[27]
Rhee, S.H.; Pothoulakis, C.; Mayer, E.A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(5), 306-314.
[http://dx.doi.org/10.1038/nrgastro.2009.35] [PMID: 19404271]
[28]
Collins, S.M.; Bercik, P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 2009, 136(6), 2003-2014.
[http://dx.doi.org/10.1053/j.gastro.2009.01.075] [PMID: 19457424]
[29]
Dinan, T.G.; Cryan, J.F. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol., 2017, 595(2), 489-503.
[http://dx.doi.org/10.1113/JP273106] [PMID: 27641441]
[30]
Cryan, J.F.; O’Mahony, S.M. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motil., 2011, 23(3), 187-192.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01664.x] [PMID: 21303428]
[31]
Forsythe, P.; Bienenstock, J.; Kunze, W.A. Vagal pathways for microbiome-brain-gut axis communication. Adv. Exp. Med. Biol., 2014, 817, 115-133.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_5] [PMID: 24997031]
[32]
Fülling, C.; Dinan, T.G.; Cryan, J.F. Gut microbe to brain signaling: what happens in vagus…. Neuron, 2019, 101(6), 998-1002.
[http://dx.doi.org/10.1016/j.neuron.2019.02.008] [PMID: 30897366]
[33]
Kaelberer, M.M.; Buchanan, K.L.; Klein, M.E.; Barth, B.B.; Montoya, M.M.; Shen, X.; Bohórquez, D.V. A gut-brain neural circuit for nutrient sensory transduction. Science, 2018, 361(6408),pii: eaat5236
[34]
Forsythe, P.; Sudo, N.; Dinan, T.; Taylor, V.H.; Bienenstock, J. Mood and gut feelings. Brain Behav. Immun., 2010, 24(1), 9-16.
[http://dx.doi.org/10.1016/j.bbi.2009.05.058] [PMID: 19481599]
[35]
Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; Patterson, P.H.; Mazmanian, S.K. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013, 155(7), 1451-1463.
[http://dx.doi.org/10.1016/j.cell.2013.11.024] [PMID: 24315484]
[36]
Kihara, N.; Fujimura, M.; Yamamoto, I.; Itoh, E.; Inui, A.; Fujimiya, M. Effects of central and peripheral urocortin on fed and fasted gastroduodenal motor activity in conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280(3), G406-G419.
[http://dx.doi.org/10.1152/ajpgi.2001.280.3.G406] [PMID: 11171623]
[37]
Zheng, G.; Wu, S-P.; Hu, Y.; Smith, D.E.; Wiley, J.W.; Hong, S. Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner. Neurogastroenterol. Motil., 2013, 25(2), e127-e139.
[http://dx.doi.org/10.1111/nmo.12066] [PMID: 23336591]
[38]
Dinan, T.G.; Quigley, E.M.M.; Ahmed, S.M.M.; Scully, P.; O’Brien, S.; O’Mahony, L.; O’Mahony, S.; Shanahan, F.; Keeling, P.W.N. Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology, 2006, 130(2), 304-311.
[http://dx.doi.org/10.1053/j.gastro.2005.11.033] [PMID: 16472586]
[39]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Elaine, Y. HHS Public Access., 2016, 161, 264-276.
[40]
Shishov, V.A.; Kirovskaia, T.A.; Kudrin, V.S.; Oleskin, A.V. [Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12]. Prikl. Biokhim. Mikrobiol., 2009, 45(5), 550-554.
[PMID: 19845286]
[41]
Iyer, L.M.; Aravind, L.; Coon, S.L.; Klein, D.C.; Koonin, E.V. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet., 2004, 20(7), 292-299.
[http://dx.doi.org/10.1016/j.tig.2004.05.007] [PMID: 15219393]
[42]
Barrett, E.; Ross, R.P.; O’Toole, P.W.; Fitzgerald, G.F.; Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol., 2012, 113(2), 411-417.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05344.x] [PMID: 22612585]
[43]
Kawashima, K.; Misawa, H.; Moriwaki, Y.; Fujii, Y.X.; Fujii, T.; Horiuchi, Y.; Yamada, T.; Imanaka, T.; Kamekura, M. Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci., 2007, 80(24-25), 2206-2209.
[http://dx.doi.org/10.1016/j.lfs.2007.01.059] [PMID: 17363003]
[44]
Gareau, M.G.; Wine, E.; Rodrigues, D.M.; Cho, J.H.; Whary, M.T.; Philpott, D.J.; Macqueen, G.; Sherman, P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60(3), 307-317.
[http://dx.doi.org/10.1136/gut.2009.202515] [PMID: 20966022]
[45]
Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[46]
Novotný, M.; Klimova, B.; Valis, M. Microbiome and cognitive impairment: can any diets influence learning processes in a positive way? Front. Aging Neurosci., 2019, 11, 170.
[http://dx.doi.org/10.3389/fnagi.2019.00170] [PMID: 31316375]
[47]
Dinan, T.G.; Stilling, R.M.; Stanton, C.; Cryan, J.F. Collective unconscious: how gut microbes shape human behavior. J. Psychiatr. Res., 2015, 63, 1-9.
[http://dx.doi.org/10.1016/j.jpsychires.2015.02.021] [PMID: 25772005]
[48]
Klingelhoefer, L.; Reichmann, H. Pathogenesis of Parkinson disease--the gut-brain axis and environmental factors. Nat. Rev. Neurol., 2015, 11(11), 625-636.
[http://dx.doi.org/10.1038/nrneurol.2015.197] [PMID: 26503923]
[49]
Scheperjans, F.; Aho, V.; Pereira, P.A.B.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; Kinnunen, E.; Murros, K.; Auvinen, P. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord., 2015, 30(3), 350-358.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[50]
Klingelhoefer, L.; Reichmann, H. Pathogenesis of Parkinson disease--the gut-brain axis and environmental factors. Nat. Publ. Gr, 2015, 11(11), 625-636.
[51]
Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[52]
Caputi, V.; Giron, M.C. Microbiome-gut-brain axis and toll-like receptors in parkinson’s disease. Int. J. Mol. Sci., 2018, 19(6), 19.
[http://dx.doi.org/10.3390/ijms19061689] [PMID: 29882798]
[53]
Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord., 2015, 30(10), 1351-1360.
[http://dx.doi.org/10.1002/mds.26307] [PMID: 26179554]
[54]
Bedarf, J.R.; Hildebrand, F.; Coelho, L.P.; Sunagawa, S.; Bahram, M.; Goeser, F.; Bork, P.; Wüllner, U. Functional implications of microbial and viral gut metagenome changes in early stage l-dopanaïve parkinson’s disease patients. Genome Med., 2017, 9(1), 39.
[55]
Campos-Acuña, J.; Elgueta, D.; Pacheco, R. T-cell-driven inflammation as a mediator of the gut-brain axis involved in parkinson’s disease. Front. Immunol., 2019, 10, 239.
[http://dx.doi.org/10.3389/fimmu.2019.00239] [PMID: 30828335]
[56]
Çamcı, G.; Oğuz, S. Association between parkinson’s disease and helicobacter pylori. J. Clin. Neurol., 2016, 12(2), 147-150.
[http://dx.doi.org/10.3988/jcn.2016.12.2.147] [PMID: 26932258]
[57]
Dardiotis, E.; Tsouris, Z.; Mentis, A.A.; Siokas, V.; Michalopoulou, A.; Sokratous, M.; Dastamani, M.; Bogdanos, D.P.; Deretzi, G.; Kountouras, J. H. pylori and Parkinson’s disease: Meta-analyses including clinical severity. Clin. Neurol. Neurosurg., 2018, 175, 16-24.
[http://dx.doi.org/10.1016/j.clineuro.2018.09.039] [PMID: 30308319]
[58]
Huang, H.K.; Wang, J.H.; Lei, W.Y.; Chen, C.L.; Chang, C.Y.; Liou, L.S. Helicobacter pylori infection is associated with an increased risk of Parkinson’s disease: A population-based retrospective cohort study. Parkinsonism Relat. Disord., 2018, 47, 26-31.
[http://dx.doi.org/10.1016/j.parkreldis.2017.11.331] [PMID: 29174171]
[59]
Holmqvist, S.; Chutna, O.; Bousset, L.; Aldrin-Kirk, P.; Li, W.; Björklund, T.; Wang, Z.Y.; Roybon, L.; Melki, R.; Li, J.Y. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol., 2014, 128(6), 805-820.
[http://dx.doi.org/10.1007/s00401-014-1343-6] [PMID: 25296989]
[60]
Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[61]
Chen, S.G.; Stribinskis, V.; Rane, M.J.; Demuth, D.R.; Gozal, E.; Roberts, A.M.; Jagadapillai, R.; Liu, R.; Choe, K.; Shivakumar, B.; Son, F.; Jin, S.; Kerber, R.; Adame, A.; Masliah, E.; Friedland, R.P. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and caenorhabditis elegans. Sci. Rep., 2016, 6, 34477.
[http://dx.doi.org/10.1038/srep34477] [PMID: 27708338]
[62]
Matheoud, D.; Cannon, T.; Voisin, A.; Penttinen, A-M.; Ramet, L.; Fahmy, A.M.; Ducrot, C.; Laplante, A.; Bourque, M-J.; Zhu, L.; Cayrol, R.; Le Campion, A.; McBride, H.M.; Gruenheid, S.; Trudeau, L-E.; Desjardins, M. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1-/- mice. Nature, 2019, 571(7766), 565-569.
[http://dx.doi.org/10.1038/s41586-019-1405-y] [PMID: 31316206]
[63]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[64]
Oakley, H.; Cole, S.L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Van Eldik, L.; Berry, R.; Vassar, R. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci., 2006, 26(40), 10129-10140.
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[65]
Brandscheid, C.; Schuck, F.; Reinhardt, S.; Schäfer, K.H.; Pietrzik, C.U.; Grimm, M.; Hartmann, T.; Schwiertz, A.; Endres, K. Altered gut microbiome composition and tryptic activity of the 5xfad alzheimer’s mouse model. J. Alzheimers Dis., 2017, 56(2), 775-788.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[66]
Jankowsky, J.L.; Fadale, D.J.; Anderson, J.; Xu, G.M.; Gonzales, V.; Jenkins, N.A.; Copeland, N.G.; Lee, M.K.; Younkin, L.H.; Wagner, S.L.; Younkin, S.G.; Borchelt, D.R. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet., 2004, 13(2), 159-170.
[http://dx.doi.org/10.1093/hmg/ddh019] [PMID: 14645205]
[67]
Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fåk, F.; Jucker, M.; Lasser, T.; Bolmont, T. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep., 2017, 7, 41802.
[http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[68]
Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; Bianchetti, A.; Volta, G.D.; Turla, M.; Cotelli, M.S.; Gennuso, M.; Prelle, A.; Zanetti, O.; Lussignoli, G.; Mirabile, D.; Bellandi, D.; Gentile, S.; Belotti, G.; Villani, D.; Harach, T.; Bolmont, T.; Padovani, A.; Boccardi, M.; Frisoni, G.B. INDIA-FBP Group. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, 49, 60-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[69]
Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[70]
Roubaud-Baudron, C.; Krolak-Salmon, P.; Quadrio, I.; Mégraud, F.; Salles, N. Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol. Aging, 2012, 33(5), 1009.e11-1009.e19.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.10.021] [PMID: 22133280]
[71]
Wu, S.C.; Cao, Z.S.; Chang, K.M.; Juang, J.L. Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila. Nat. Commun., 2017, 8(1), 24.
[http://dx.doi.org/10.1038/s41467-017-00040-6] [PMID: 28634323]
[72]
Spielman, L.J.; Gibson, D.L.; Klegeris, A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem. Int., 2018, 120, 149-163.
[http://dx.doi.org/10.1016/j.neuint.2018.08.005] [PMID: 30114473]
[73]
Sochocka, M.; Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The gut microbiome alterations and inflammation-driven pathogenesis of alzheimer’s disease-a critical review. Mol. Neurobiol., 2019, 56(3), 1841-1851.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[74]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2), 264-276.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[75]
Watts, C.R.; Vanryckeghem, M. Laryngeal dysfunction in Amyotrophic Lateral Sclerosis: a review and case report. BMC Ear Nose Throat Disord., 2001, 1(1), 1-5.
[http://dx.doi.org/10.1186/1472-6815-1-1] [PMID: 11722802]
[76]
Swarup, V.; Phaneuf, D.; Bareil, C.; Robertson, J.; Rouleau, G.A.; Kriz, J.; Julien, J.P. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain, 2011, 134(Pt 9), 2610-2626.
[http://dx.doi.org/10.1093/brain/awr159] [PMID: 21752789]
[77]
Fang, X.; Wang, X.; Yang, S.; Meng, F.; Wang, X.; Wei, H.; Chen, T. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol., 2016, 7, 1479.
[http://dx.doi.org/10.3389/fmicb.2016.01479] [PMID: 27703453]
[78]
Toepfer, M.; Folwaczny, C.; Klauser, A.; Riepl, R.L.; Müller-Felber, W.; Pongratz, D. Gastrointestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 1999, 1(1), 15-19.
[http://dx.doi.org/10.1080/146608299300079484] [PMID: 12365061]
[79]
Rowin, J.; Xia, Y.; Jung, B.; Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep., 2017, 5(18), 5.
[http://dx.doi.org/10.14814/phy2.13443] [PMID: 28947596]
[80]
Brenner, D.; Yilmaz, R.; Müller, K.; Grehl, T.; Petri, S.; Meyer, T.; Grosskreutz, J.; Weydt, P.; Ruf, W.; Neuwirth, C.; Weber, M.; Pinto, S.; Claeys, K.G.; Schrank, B.; Jordan, B.; Knehr, A.; Günther, K.; Hübers, A.; Zeller, D.; Kubisch, C.; Jablonka, S.; Sendtner, M.; Klopstock, T.; de Carvalho, M.; Sperfeld, A.; Borck, G.; Volk, A.E.; Dorst, J.; Weis, J.; Otto, M.; Schuster, J.; Del Tredici, K.; Braak, H.; Danzer, K.M.; Freischmidt, A.; Meitinger, T.; Strom, T.M.; Ludolph, A.C.; Andersen, P.M.; Weishaupt, J.H.; Weyen, U.; Hermann, A.; Hagenacker, T.; Koch, J.C.; Lingor, P.; Göricke, B.; Zierz, S.; Baum, P.; Wolf, J.; Winkler, A.; Young, P.; Bogdahn, U.; Prudlo, J.; Kassubek, J. German ALS network MND-NET. Hot-spot KIF5A mutations cause familial ALS. Brain, 2018, 141(3), 688-697.
[http://dx.doi.org/10.1093/brain/awx370] [PMID: 29342275]
[81]
Mazzini, L.; Ferrari, D.; Andjus, P.R.; Buzanska, L.; Cantello, R.; De Marchi, F.; Gelati, M.; Giniatullin, R.; Glover, J.C.; Grilli, M.; Kozlova, E.N.; Maioli, M.; Mitrečić, D.; Pivoriunas, A.; Sanchez-Pernaute, R.; Sarnowska, A.; Vescovi, A.L. BIONECA COST ACTION WG Neurology. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin. Biol. Ther., 2018, 18(8), 865-881.
[http://dx.doi.org/10.1080/14712598.2018.1503248] [PMID: 30025485]
[82]
Love, S. Demyelinating diseases. J. Clin. Pathol., 2006, 59(11), 1151-1159.
[http://dx.doi.org/10.1136/jcp.2005.031195] [PMID: 17071802]
[83]
Dos Passos, G.R.; Sato, D.K.; Becker, J.; Fujihara, K. Th17 Cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: pathophysiological and therapeutic implications. Mediators of Inflammation, 2016, 2016, 5314541 [ePub Ahead of Print].
[84]
Cekanaviciute, E.; Yoo, B.B.; Runia, T.F.; Debelius, J.W.; Singh, S.; Nelson, C.A.; Kanner, R.; Bencosme, Y.; Lee, Y.K.; Hauser, S.L.; Crabtree-Hartman, E.; Sand, I.K.; Gacias, M.; Zhu, Y.; Casaccia, P.; Cree, B.A.C.; Knight, R.; Mazmanian, S.K.; Baranzini, S.E. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. USA, 2017, 114(40), 10713-10718.
[http://dx.doi.org/10.1073/pnas.1711235114] [PMID: 28893978]
[85]
Tremlett, H.; Waubant, E. Gut microbiome and pediatric multiple sclerosis. Mult. Scler., 2018, 24(1), 64-68.
[http://dx.doi.org/10.1177/1352458517737369] [PMID: 29307301]
[86]
Tremlett, H.; Fadrosh, D.W.; Faruqi, A.A.; Zhu, F.; Hart, J.; Roalstad, S.; Graves, J.; Lynch, S.; Waubant, E. US Network of Pediatric MS Centers. Gut microbiota in early pediatric multiple sclerosis: a case-control study. Eur. J. Neurol., 2016, 23(8), 1308-1321.
[http://dx.doi.org/10.1111/ene.13026] [PMID: 27176462]
[87]
Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.F. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J. Neuroinflammation, 2019, 16(1), 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[88]
Kong, G.; Cao, K.A.L.; Judd, L.M.; Li, S.S.; Renoir, T.; Hannan, A.J. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis., 2020, 135, 104268
[PMID: 30194046]
[89]
Radulescu, C.I.; Garcia-Miralles, M.; Sidik, H.; Bardile, C.F.; Yusof, N.A.B.M.; Lee, H.U.; Ho, E.X.P.; Chu, C.W.; Layton, E.; Low, D.; De Sessions, P.F.; Pettersson, S.; Ginhoux, F.; Pouladi, M.A. Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiol. Dis., 2019, 127, 65-75.
[http://dx.doi.org/10.1016/j.nbd.2019.02.011] [PMID: 30802499]
[90]
Foster, J.A.; McVey Neufeld, K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci., 2013, 36(5), 305-312.
[http://dx.doi.org/10.1016/j.tins.2013.01.005] [PMID: 23384445]
[91]
Li, S.; Hua, D.; Wang, Q.; Yang, L.; Wang, X.; Luo, A.; Yang, C. The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress. Int. J. Neuropsychopharmacol., 2019, 23(1), 26-41.
[PMID: 31760425]
[92]
Russo, R.; Cristiano, C.; Avagliano, C.; De Caro, C.; La Rana, G.; Raso, G.M.; Canani, R.B.; Meli, R.; Calignano, A. Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr. Med. Chem., 2018, 25(32), 3930-3952.
[http://dx.doi.org/10.2174/0929867324666170216113756] [PMID: 28215162]
[93]
Mayer, E.A.; Tillisch, K. The brain-gut axis in abdominal pain syndromes. Annu. Rev. Med., 2011, 62, 381-396.
[http://dx.doi.org/10.1146/annurev-med-012309-103958] [PMID: 21090962]
[94]
Carlessi, A.S.; Borba, L.A.; Zugno, A.I.; Quevedo, J.; Réus, G.Z. Gut microbiota-brain axis in depression: The role of neuroinflammation. Eur. J. Neurosci., 2019. [Online ahead of Print].
[95]
Vuong, H.E.; Hsiao, E.Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry, 2017, 81(5), 411-423.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.024] [PMID: 27773355]
[96]
Tomova, A.; Soltys, K.; Repiska, G.; Palkova, L.; Filcikova, D.; Minarik, G.; Turna, J.; Prochotska, K.; Babinska, K.; Ostatnikova, D. Specificity of gut microbiota in children with autism spectrum disorder in Slovakia and its correlation with astrocytes activity marker and specific behavioural patterns. Physiol. Behav., 2020, 214, 112745
[http://dx.doi.org/10.1016/j.physbeh.2019.112745] [PMID: 31765662]
[97]
Gabriel, T.; Paul, S.; Berger, A.; Massoubre, C. Anorexia nervosa and autism spectrum disorders: future hopes linked to mucosal immunity. Neuroimmunomodulation, 2019, 26(6), 265-275.
[http://dx.doi.org/10.1159/000502997] [PMID: 31715599]
[98]
Flowers, S.A.; Ward, K.M.; Clark, C.T. The gut microbiome in bipolar disorder and pharmacotherapy management. Neuropsychobiology, 2019, 79(1), 43-49.
[PMID: 31722343]
[99]
Bull-Larsen, S.; Mohajeri, M.H. The potential influence of the bacterial microbiome on the development and progression of ADHD. Nutrients, 2019, 11(11), 2805.
[http://dx.doi.org/10.3390/nu11112805]
[100]
Borghi, E.; Vignoli, A. Rett syndrome and other neurodevelopmental disorders share common changes in gut microbial community: a descriptive review. Int. J. Mol. Sci., 2019, 20(17), 4160.
[http://dx.doi.org/10.3390/ijms20174160] [PMID: 31454888]
[101]
Zhang, Z.; Tang, H.; Chen, P.; Xie, H.; Tao, Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct. Target. Ther., 2019, 4, 41.
[102]
Horvath, K.; Perman, J.A. Autism and gastrointestinal symptoms. Curr. Gastroenterol. Rep., 2002, 4(3), 251-258.
[http://dx.doi.org/10.1007/s11894-002-0071-6] [PMID: 12010627]
[103]
Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol., 2011, 11, 22.
[http://dx.doi.org/10.1186/1471-230X-11-22] [PMID: 21410934]
[104]
Bharwani, A.; Mian, M.F.; Foster, J.A.; Surette, M.G.; Bienenstock, J.; Forsythe, P. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology, 2016, 63, 217-227.
[http://dx.doi.org/10.1016/j.psyneuen.2015.10.001] [PMID: 26479188]
[105]
Rea, K.; Dinan, T.G.; Cryan, J.F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress, 2016, 4, 23-33.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.001] [PMID: 27981187]
[106]
Rea, K.; Dinan, T.G.; Cryan, J.F. Gut microbiota: a perspective for psychiatrists. Neuropsychobiol, 2020, 79, 50-62.
[PMID: 31726457]
[107]
Bailey, M.T. Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. Adv. Exp. Med. Biol., 2014, 817, 255-276.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_12] [PMID: 24997038]
[108]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(Pt 1), 263-275.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[109]
Yang, C.; Gao, J.; Zhang, J.; Luo, A.L. Enterochromaffin cells in the gut: a distant regulator of brain function? Gut, 2018, 67(8), 1557-1558.
[http://dx.doi.org/10.1136/gutjnl-2017-315406] [PMID: 29080857]
[110]
Yang, C.; Fujita, Y.; Ren, Q.; Ma, M.; Dong, C.; Hashimoto, K. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci. Rep., 2017, 7, 45942.
[http://dx.doi.org/10.1038/srep45942] [PMID: 28368029]
[111]
Bercik, P.; Park, A.J.; Sinclair, D.; Khoshdel, A.; Lu, J.; Huang, X.; Deng, Y.; Blennerhassett, P.A.; Fahnestock, M.; Moine, D.; Berger, B.; Huizinga, J.D.; Kunze, W.; McLean, P.G.; Bergonzelli, G.E.; Collins, S.M.; Verdu, E.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil., 2011, 23(12), 1132-1139.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x] [PMID: 21988661]
[112]
Coury, D.L.; Ashwood, P.; Fasano, A.; Fuchs, G.; Geraghty, M.; Kaul, A.; Mawe, G.; Patterson, P.; Jones, N.E. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics, 2012, 130(Suppl. 2), S160-S168.
[http://dx.doi.org/10.1542/peds.2012-0900N] [PMID: 23118247]
[113]
Hsiao, E.Y.; Mcbride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; Mccue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; Patterson, P.H.; Mazmanian, S.K. Autism spectrum disorder fact sheet. Abnormalities Associated with Autism., 2014, 155, 1451-1463.
[114]
Rose, D.R.; Yang, H.; Serena, G.; Sturgeon, C.; Ma, B.; Careaga, M.; Hughes, H.K.; Angkustsiri, K.; Rose, M.; Hertz-Picciotto, I.; Van de Water, J.; Hansen, R.L.; Ravel, J.; Fasano, A.; Ashwood, P. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav. Immun., 2018, 70, 354-368.
[http://dx.doi.org/10.1016/j.bbi.2018.03.025] [PMID: 29571898]
[115]
Li, N.; Yang, J.; Zhang, J.; Liang, C.; Wang, Y.; Chen, B.; Zhao, C.; Wang, J.; Zhang, G.; Zhao, D.; Liu, Y.; Zhang, L.; Yang, J.; Li, G.; Gai, Z.; Zhang, L.; Zhao, G. Correlation of Gut Microbiome Between ASD Children and Mothers and Potential Biomarkers for Risk Assessment. GBP, 2019, 17(1), 26-38.
[http://dx.doi.org/10.1016/j.gpb.2019.01.002] [PMID: 31026579]
[116]
Sgritta, M.; Dooling, S.W.; Buffington, S.A.; Momin, E.N.; Francis, M.B.; Britton, R.A.; Costa-Mattioli, M.; Dooling, S.W.; Buffington, S.A.; Momin, E.N.; Francis, M.B.; Britton, R.A. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron, 2019, 101(2), 246-259.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.11.018] [PMID: 30522820]
[117]
Stobernack, T.; De Vries, S.P.W.; Pereira, R.R. Biomarker research in adhd: the impact of nutrition (brain) - study protocol of an openlabel trial to investigate the mechanisms underlying the effects of a few-foods diet on adhd symptoms in children. BMJ Open, 2019, 9(11), e029422
[118]
Borghi, E.; Borgo, F.; Severgnini, M.; Savini, M.N.; Casiraghi, M.C.; Vignoli, A. Rett Syndrome: A Focus on Gut Microbiota. Int. J. Mol. Sci., 2017, 18(2), 344.
[http://dx.doi.org/10.3390/ijms18020344] [PMID: 28178201]
[119]
Blaser, M.J. Fecal Microbiota transplantation for dysbiosis - predictable risks. N. Engl. J. Med., 2019, 381(21), 2064-2066.
[http://dx.doi.org/10.1056/NEJMe1913807] [PMID: 31665573]
[120]
Aho, V.T.E.; Pereira, P.A.B.; Voutilainen, S.; Paulin, L.; Pekkonen, E.; Auvinen, P.; Scheperjans, F. Gut microbiota in Parkinson’s disease: Temporal stability and relations to disease progression. EBioMedicine, 2019, 44, 691-707.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.064] [PMID: 31221587]
[121]
Boertien, J.M.; Pereira, P.A.B.; Aho, V.T.E.; Scheperjans, F. Increasing comparability and utility of gut microbiome studies in parkinson’s disease: A systematic review. J. Parkinsons Dis., 2019, 9(s2), S297-S312.
[http://dx.doi.org/10.3233/JPD-191711] [PMID: 31498131]
[122]
Liu, B.; Pedersen, N.L.; Tillander, A.; Ludvigsson, J.F.; Ekbom, A.; Svenningsson, P.; Chen, H.; Wirdefeldt, K. Vagotomy and Parkinson disease: A Swedish register-based matched-cohort study. Neurology, 2017, 88(21), 1996-2002.
[123]
Mulik, C.; Scott, H.; Inglis, D.; Montina, T.; Metz, G. Transgenerational effects of ancestral prenatal stress on the gut-brain axis. Alberta Acad. Rev., 2019, 2, 18.
[http://dx.doi.org/10.29173/aar109]
[124]
Manouthakis, E. Bioengineered in vitro enteric nervous system. J. Tissue Eng. Regen. Med., 2019, 13(9), 1712-1723.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy