[1]
Podlaha, O.; Riester, M.; De, S.; Michor, F. Evolution of the cancer genome. Trends Genet., 2012, 28, 155-163.
[2]
Yang, Y.; Han, L.; Yuan, Y.; Li, J.; Hei, N.; Liang, H. Gene co-expression network analysis reveals common system level properties of prognostic genes across cancer types. Nat. Commun., 2014, 5, 3231.
[3]
International Cancer Genome Consortium; Hudson, T.J.; Anderson,
W.; Artez, A.; Barker, A.D.; Bell, C.; Bernabé, R.R.; Bhan, M.K.;
Calvo, F.; Eerola, I.; Gerhard, D.S.; Guttmacher, A.; Guyer, M.;
Hemsley, F.M.; Jennings, J.L.; Kerr, D.; Klatt, P.; Kolar, P.;
Kusada, J.; Lane, D.P.; Laplace, F.; Youyong, L.; Nettekoven, G.;
Ozenberger, B.; Peterson, J.; Rao, T.S.; Remacle, J.; Schafer, A.J.;
Shibata, T.; Stratton, M.R.; Vockley, J.G.; Watanabe, K.; Yang, H.;
Yuen, M.M.; Knoppers, B.M.; Bobrow, M.; Cambon-Thomsen, A.;
Dressler, L.G.; Dyke, S.O.; Joly, Y.; Kato, K.; Kennedy, K.L.;
Nicolás, P.; Parker, M.J.; Rial-Sebbag, E.; Romeo-Casabona, C.M.;
Shaw, K.M.; Wallace, S.; Wiesner, G.L.; Zeps, N.; Lichter, P.;
Biankin, A.V.; Chabannon, C.; Chin, L.; Clément, B.; de Alava, E.;
Degos, F.; Ferguson, ML.; Geary, P.; Hayes, D.N.; Hudson, T.J.;
Johns, A.L.; Kasprzyk, A.; Nakagawa, H.; Penny, R.; Piris, M.A.;
Sarin, R.; Scarpa, A.; Shibata, T.; van de Vijver, M.; Futreal, P.A.;
Aburatani, H.; Bayés, M.; Botwell, D.D.; Campbell, P.J.; Estivill,
X.; Gerhard, D.S.; Grimmond, S.M.; Gut, I.; Hirst, M.; López-Otín,
C.; Majumder, P.; Marra, M.; McPherson, J.D.; Nakagawa, H.;
Ning, Z.; Puente, X.S.; Ruan, Y.; Shibata, T.; Stratton, M.R.;
Stunnenberg, H.G.; Swerdlow, H.; Velculescu, V.E.; Wilson, R.K.;
Xue, H.H.; Yang, L.; Spellman, P.T.; Bader, G.D.; Boutros, P.C.;
Campbell, P.J.; Flicek, P.; Getz, G.; Guigó, R.; Guo, G.; Haussler,
D.; Heath, S.; Hubbard, T.J.; Jiang, T.; Jones, S.M.; Li, Q.; López-
Bigas, N.; Luo, R.; Muthuswamy, L.; Ouellette, B.F.; Pearson, J.V.;
Puente, X.S.; Quesada, V.; Raphael, B.J.; Sander, C.; Shibata, T.;
Speed, T.P.; Stein, L.D.; Stuart, J.M.; Teague, J.W.; Totoki, Y.;
Tsunoda, T.; Valencia, A.; Wheeler, D.A.; Wu, H.; Zhao, S.; Zhou,
G.; Stein, L.D.; Guigó, R.; Hubbard, T.J.; Joly, Y.; Jones, S.M.;
Kasprzyk, A.; Lathrop, M.; López-Bigas, N.; Ouellette, B.F.;
Spellman, P.T.; Teague, J.W.; Thomas, G.; Valencia, A.; Yoshida,
T.; Kennedy, K.L.; Axton, M.; Dyke, S.O.; Futreal, P.A.; Gerhard,
D.S.; Gunter, C.; Guyer, M.; Hudson, T.J.; McPherson, J.D.; Miller,
L.J.; Ozenberger, B.; Shaw, K.M.; Kasprzyk, A.; Stein, L.D.;
Zhang, J.; Haider, S.A.; Wang, J.; Yung, C.K.; Cros, A.; Liang, Y.;
Gnaneshan, S.; Guberman, J.; Hsu, J.; Bobrow, M.; Chalmers, D.R.;
Hasel, K.W.; Joly, Y.; Kaan, T.S.; Kennedy, K.L.; Knoppers, B.M.;
Lowrance, W.W.; Masui, T.; Nicolás, P.; Rial-Sebbag, E.;
Rodriguez, L.L.; Vergely, C.; Yoshida, T.; Grimmond, S.M.;
Biankin, A.V.; Bowtell, D.D.; Cloonan, N.; DeFazio, A.; Eshleman,
J.R.; Etemadmoghadam, D.; Gardiner, B.B.; Kench, J.G.; Scarpa,
A.; Sutherland, R.L.; Tempero, M.A.; Waddell, N.J.; Wilson, P.J.;
McPherson, J.D.; Gallinger, S.; Tsao, M.S.; Shaw, P.A.; Petersen,
G.M.; Mukhopadhyay, D.; Chin, L.; DePinho, R.A.; Thayer, S.;
Muthuswamy, L.; Shazand, K.; Beck, T.; Sam, M.; Timms, L.;
Ballin, V.; Lu, Y.; Ji, J.; Zhang, X.; Chen, F.; Hu, X.; Zhou, G.;
Yang, Q.; Tian, G.; Zhang, L.; Xing, X.; Li, X.; Zhu, Z.; Yu, Y.;
Yu, J.; Yang, H.; Lathrop, M.; Tost, J.; Brennan, P.; Holcatova, I.;
Zaridze, D.; Brazma, A.; Egevard, L.; Prokhortchouk, E.; Banks,
R.E.; Uhlén, M.; Cambon-Thomsen, A.; Viksna, J.; Ponten, F.;
Skryabin, K.; Stratton, M.R.; Futreal, P.A.; Birney, E.; Borg, A.;
Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Martin, S.; Reis-
Filho, J.S.; Richardson, A.L.; Sotiriou, C.; Stunnenberg, H.G.;
Thoms, G.; van de Vijver, M.; van't Veer, L.; Calvo, F.; Birnbaum,
D.; Blanche, H.; Boucher, P.; Boyault, S.; Chabannon, C.; Gut, I.;
Masson-Jacquemier, J.D.; Lathrop, M.; Pauporté, I.; Pivot, X.;
Vincent-Salomon, A.; Tabone, E.; Theillet, C.; Thomas, G.; Tost,
J.; Treilleux, I.; Calvo, F.; Bioulac-Sage, P.; Clément, B.; Decaens,
T.; Degos, F.; Franco, D.; Gut, I.; Gut, M.; Heath, S.; Lathrop, M.;
Samuel, D.; Thomas, G.; Zucman-Rossi, J.; Lichter, P.; Eils, R.;
Brors, B.; Korbel, J.O.; Korshunov, A.; Landgraf, P.; Lehrach, H.;
Pfister, S.; Radlwimmer, B.; Reifenberger, G.; Taylor, M.D.; von
Kalle, C.; Majumder, P.P.; Sarin, R.; Rao, T.S.; Bhan, M.K.;
Scarpa, A.; Pederzoli, P.; Lawlor, R.A.; Delledonne, M.; Bardelli,
A.; Biankin, A.V.; Grimmond, S.M.; Gress, T.; Klimstra, D.;
Zamboni, G.; Shibata, T.; Nakamura, Y.; Nakagawa, H.; Kusada, J.;
Tsunoda, T.; Miyano, S.; Aburatani, H.; Kato, K.; Fujimoto, A.;
Yoshida, T.; Campo, E.; López-Otín, C.; Estivill, X.; Guigó, R.; de
Sanjosé, S.; Piris, M.A.; Montserrat, E.; González-Díaz, M.; Puente,
X.S.; Jares, P.; Valencia, A.; Himmelbauer, H.; Quesada, V.; Bea,
S.; Stratton, M.R.; Futreal, P.A.; Campbell, P.J.; Vincent-Salomon,
A.; Richardson, A.L.; Reis-Filho, J.S.; van de Vijver, M.; Thomas,
G.; Masson-Jacquemier, J.D.; Aparicio, S.; Borg, A.; Børresen-
Dale, A.L.; Caldas, C.; Foekens, J.A.; Stunnenberg, H.G.; van't
Veer, L.; Easton, D.F.; Spellman, P.T.; Martin, S.; Barker, A.D.;
Chin, L.; Collins, F.S.; Compton, C.C.; Ferguson, M.L.; Gerhard,
D.S.; Getz, G.; Gunter, C.; Guttmacher, A.; Guyer, M.; Hayes,
D.N.; Lander, E.S.; Ozenberger, B.; Penny, R.; Peterson, J.; Sander,
C.; Shaw, K.M.; Speed, T.P.; Spellman, P.T.; Vockley, J.G.;
Wheeler, D.A.; Wilson, R.K.; Hudson, T.J.; Chin, L.; Knoppers,
B.M.; Lander, E.S.; Lichter, P.; Stein, L.D.; Stratton, M.R.;
Anderson, W.; Barker, A.D.; Bell, C.; Bobrow, M.; Burke, W.;
Collins, F.S.; Compton, C.C.; DePinho, R.A.; Easton, D.F.; Futreal,
P.A.; Gerhard, D.S.; Green, A.R.; Guyer, M.; Hamilton, S.R.;
Hubbard, T.J.; Kallioniemi, O.P.; Kennedy, K.L.; Ley, T.J.; Liu,
E.T.; Lu, Y.; Majumder, P.; Marra, M.; Ozenberger, B.; Peterson,
J.; Schafer, A.J.; Spellman, P.T.; Stunnenberg, H.G.; Wainwright,
B.J.; Wilson, R.K.; Yang, H. International network of cancer
genome projects. Nature, 2010. 464(7291), 993-998
[4]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A. Jr, Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339, 1546-1558.
[5]
De la Fuente, A. From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in diseases. Trends Genet., 2010, 26(7), 326-333.
[6]
Brown, C.D.; Mangravite, L.M.; Engelhardt, B.E. Integrative modeling of eQTLs and Cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet., 2013, 9(8), e1003649.
[7]
Cho, D-Y.; Kim, Y-A.; Przytycka, T.M. Chapter 5: Network Biology Approach to Complex Diseases. PLOS Comput. Biol., 2012, 8(12), e1002820.
[8]
Liu, Z.; Zhang, S. Toward a systematic understanding of cancers: A survey of the pan-cancer study. Front. Genet., 2014, 5, 194.
[9]
Peng, L.; Bian, X.W.; Li, D.K.; Xu, C.; Wang, G.M.; Xia, Q.Y.; Xiong, Q. Large-scale RNA-Seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 TCGA cancer types. Sci. Rep., 2015, 5, 13413.
[10]
Ung, M.H.; Liu, C.C.; Cheng, C. Integrative analysis of cancer genes in a functional interactome. Sci. Rep., 2016, 6, 29228.
[11]
Ali, I.; Haque, A.; Saleem, K.; Hsieh, M.F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[12]
Ali, I.; Lone, M.N.; Alothman, Z.A.; Alwarthan, A. Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. J. Mol. Liq., 2017, 234, 391-402.
[13]
Basheer, A.A. Chemical chiral pollution: Impact on the society and
science and need of the regulations in the 21st century. Chirality,20B18, 30(4), 402-406.
[14]
Foloppe, N.; Chen, I-J. Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding. Bioorg. Med. Chem., 2016, 24(10), 2159-2189.
[15]
Liu, Z.P.; Wang, Y.; Wen, T.; Zhang, X-S.; Xia, W.; Chen, L. Dynamically Dysfunctional Protein Interactions in the Development of Alzheimer’s Disease. San Antonio, TX, USA11-14 Oct. 2009IEEE International Conference on Systems, Man and Cybernetics, 2009.
[16]
Hwang, D.; Rust, A.G.; Ramsey, S.; Smith, J.J.; Leslie, D.M.; Weston, A.D.; de Atauri, P.; Aitchison, J.D.; Hood, L.; Siegel, A.F.; Bolouri, H. A data integration methodologyfor systems biology. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17296-17301.
[17]
Ruan, J.; Dean, A.K.; Zhang, W. A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst. Biol., 2014, 4, 8.
[18]
Cheng, W.; Zhang, X.; Guo, Z.; Shi, Y.; Wang, W. Graph-regularized dual Lasso for robust eQTL mapping. Bioinformatics, 2014, 30(12), i139-i148.
[19]
Bashashati, A.; Haffari, G.; Ding, J.; Ha, G.; Lui, K.; Rosner, J.; Huntsman, D.G.; Caldas, C.; Aparicio, S.A.; Shah, S.P. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol., 2012, 13, R124.
[20]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[21]
Gasper, G.; Rahman, M.
Basic Hypergeometric Series., Cambridge,
UK; New York: Cambridge University Press. xxvi, p. 428.
[22]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc., 1995, 57, 289-300.
[23]
Marsaglia, G.; Tsang, W.; Wang, J. Evaluating Kolmogorov’s Distribution. J. Stat. Softw., 2003, 8.
[24]
Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z.T.; Han, B.; Zhou, Y.; Wishart, D.S. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res., 2014, 42(1), D1091-D1097.
[25]
Cheng, F.; Liu, C.; Lin, C.C.; Zhao, J.; Jia, P.; Li, W.H.; Zhao, Z. A gene gravity model for the evolution of cancer genomes: A study of 3,000 cancer genomes across 9 cancer types. PLOS Comput. Biol., 2015, 11(9), e1004497.
[26]
Golubovskaya, V.M. Focal adhesion kinase as a cancer therapy target. Anticancer. Agents Med. Chem., 2010, 10(10), 735-741.
[27]
Multhaupt, H.A.; Leitinger, B.; Gullberg, D.; Couchman, J.R. Extracellular matrix component signaling in cancer. Adv. Drug Deliv. Rev., 2016, 97, 28-40.
[28]
Schreiber, G.; Walter, M.R. Cytokine receptor interactions as drug targets. Curr. Opin. Chem. Biol., 2010, 14(4), 511-519.
[29]
Abraham, J.; Balbo, S.; Crabb, D.; Brooks, P.J. Alcohol Metabolism in Human Cells Causes DNA Damage and Activates the Fanconi Anemia-Breast Cancer Susceptibility (FA-BRCA) DNA Damage Response Network. Alcohol. Clin. Exp. Res., 2011, 35(12), 2113-2120.
[30]
Lockhart, A.C.; Tirona, R.G.; Kim, R.B. Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol. Cancer Ther., 2003, 2(7), 685-698.
[31]
Badawy, A.A. Tryptophan Metabolism and the Hepatic Kynurenine Pathway in Health and Disease. In:Targeting the Broadly Pathogenic Kynurenine Pathway; Mittal, S., Ed.; Springer International Publishing, 2015, pp. 11-30.
[32]
Klement, R.J.; Kämmerer, U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr. Metab. (Lond.), 2011, 8, 75.
[33]
Hur, H.; Paik, M.J.; Xuan, Y.; Nguyen, D.T.; Ham, I.H.; Yun, J.; Cho, Y.K.; Lee, G.; Han, S.U. Quantitative measurement of organic acids in tissues from gastric cancer patients indicates increased glucose metabolism in gastric cancer. PLoS One, 2014, 9(6), e98581.
[34]
Locasale, J.W. Serine, glycine and one-carbon units: cancer metabolism in full. Nat. Rev. Cancer, 2013, 13, 572-583.
[35]
Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V. Jr. Cellular fatty acid metabolism and cancer. Cell Metab., 2013, 18(2), 153-161.
[36]
Ibrahim-Hashim, A.; Wojtkowiak, J.W.; de Lourdes Coelho Ribeiro, M.; Estrella, V.; Bailey, K.M.; Cornnell, H.H.; Gatenby, R.A.; Gillies, R.J. Free base lysine increases survival and reduces metastasis in prostate cancer model. J. Cancer Sci. Ther., 2011. Suppl 1(4), JCST-S1-004.
[37]
Simpson, W.G. The calcium channel blocker verapamil and cancer chemotherapy. Cell Calcium, 1985, 6(6), 449-467.
[38]
Stuart, J.M.; Segal, E.; Koller, D.; Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science, 2003, 302, 249-255.