Abstract
Cancer is caused by the spatial and temporal accumulation of alterations in the genome of a given cell. This leads to the deregulation of key signalling pathways that play a pivotal role in the control of cell proliferation and cell fate. The p53 tumor suppressor gene is the most frequent target in genetic alterations in human cancers. The primary selective advantage of such mutations is the elimination of cellular wild type p53 activity. In addition, many evidences in vitro and in vivo have demonstrated that at least certain mutant forms of p53 may possess a gain of function, whereby they contribute positively to cancer progression. The fine mapping and deciphering of specific cancer phenotypes is taking advantage of molecular-profiling studies based on genome-wide approaches. Currently, high-throughput methods such as arraybased comparative genomic hybridization (CGH array), single nucleotide polymorphism array (SNP array), expression arrays and ChIP-on-chip arrays are available to study mutant p53-associated alterations in human cancers. Here we will mainly focus on the integration of the results raised through oncogenomic platforms that aim to shed light on the molecular mechanisms underlying mutant p53 gain of function activities and to provide useful information on the molecular stratification of tumor patients.
Current Genomics
Title: Oncogenomic Approaches in Exploring Gain of Function of Mutant p53
Volume: 9 Issue: 3
Author(s): Sara Donzelli, Francesca Biagioni, Francesca Fausti, Sabrina Strano, Giulia Fontemaggi and Giovanni Blandino
Affiliation:
Abstract: Cancer is caused by the spatial and temporal accumulation of alterations in the genome of a given cell. This leads to the deregulation of key signalling pathways that play a pivotal role in the control of cell proliferation and cell fate. The p53 tumor suppressor gene is the most frequent target in genetic alterations in human cancers. The primary selective advantage of such mutations is the elimination of cellular wild type p53 activity. In addition, many evidences in vitro and in vivo have demonstrated that at least certain mutant forms of p53 may possess a gain of function, whereby they contribute positively to cancer progression. The fine mapping and deciphering of specific cancer phenotypes is taking advantage of molecular-profiling studies based on genome-wide approaches. Currently, high-throughput methods such as arraybased comparative genomic hybridization (CGH array), single nucleotide polymorphism array (SNP array), expression arrays and ChIP-on-chip arrays are available to study mutant p53-associated alterations in human cancers. Here we will mainly focus on the integration of the results raised through oncogenomic platforms that aim to shed light on the molecular mechanisms underlying mutant p53 gain of function activities and to provide useful information on the molecular stratification of tumor patients.
Export Options
About this article
Cite this article as:
Donzelli Sara, Biagioni Francesca, Fausti Francesca, Strano Sabrina, Fontemaggi Giulia and Blandino Giovanni, Oncogenomic Approaches in Exploring Gain of Function of Mutant p53, Current Genomics 2008; 9 (3) . https://dx.doi.org/10.2174/138920208784340713
DOI https://dx.doi.org/10.2174/138920208784340713 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Roles of Medicinal Plants and Constituents in Gynecological Cancer Therapy: Current Literature and Future Directions
Current Topics in Medicinal Chemistry Osteoblast Differentiation and Control by Vitamin D and Vitamin D Metabolites
Current Pharmaceutical Design Adenoviral Vectors for Cancer Gene Therapy
Current Genomics Novel Biomarkers of microRNAs in Gastric Cancer: An Overview from Diagnosis to Treatment
MicroRNA LHON: Mitochondrial Mutations and More
Current Genomics Baculovirus Gene Delivery: A Flexible Assay Development Tool
Current Gene Therapy Towards Understanding the Roles of Prohibitins, Multi-Functional Regulator Proteins
Current Chemical Biology Assessment of Gene Transfer Using Imaging Methodology
Current Genomics Viral Vectors for Gene-Directed Enzyme Prodrug Therapy
Current Gene Therapy Nanocarriers Based Anticancer Drugs: Current Scenario and Future Perceptions
Current Drug Targets Novel Strategies in Cancer Therapeutics: Targeting Enzymes Involved in Cell Cycle Regulation and Cellular Proliferation
Current Cancer Drug Targets MiR-134, Mediated by IRF1, Suppresses Tumorigenesis and Progression by Targeting VEGFA and MYCN in Osteosarcoma
Anti-Cancer Agents in Medicinal Chemistry Non-Viral Gene Delivery to the Lungs
Current Gene Therapy The Ubiquitin-Proteasome System (UPS) and the Mechanism of Action of Bortezomib
Current Pharmaceutical Design Meet Our Editorial Board Member
Letters in Drug Design & Discovery Is it Possible to Treat Osteosarcoma Using Oligonucleotides Confined into Controlled Release Drug Delivery Systems?
Current Pharmaceutical Biotechnology Therapeutics Based on microRNA: A New Approach for Liver Cancer
Current Genomics The mTOR Signaling Pathway is an Emerging Therapeutic Target in Multiple Myeloma
Current Pharmaceutical Design Molecular Mechanisms of PPAR-γ Governing MSC Osteogenic and Adipogenic Differentiation
Current Stem Cell Research & Therapy The Promise of miRNA Replacement Therapy for Hepatocellular Carcinoma
Current Gene Therapy