Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Letter Article

Cholinesterase Inhibitory Activities of Selected Halogenated Thiophene Chalcones

Author(s): Della G.T. Parambi, Fakhrya Aljoufi, Vikneswaran Murugaiyah, Githa E. Mathew, Sanal Dev, Balasubramanain Lakshminarayanan, Omnia M. Hendawy and Bijo Mathew*

Volume 19, Issue 1, 2019

Page: [67 - 71] Pages: 5

DOI: 10.2174/1871524918666181119114016

Price: $65

Abstract

Background: Dual-acting human monoamine oxidase B (hMAO-B) and cholinesterase (ChE) inhibitors are more effective than the classic one-drug one-target therapy for Alzheimer’s disease (AD).

Methods: The ChE inhibitory ability of some halogenated thiophene chalcone-based molecules known to be selective hMAO-B inhibitors was evaluated.

Results: Based on the IC50 values, the selected compounds were found to moderately inhibit ChE, with IC50 values in the range of 14-70 µM. Among the synthesised molecules, T8 and T6 showed the most potent inhibitory activity against AChE and BChE, respectively.

Conclusion: Taken together, the data revealed that T8 could be further optimized to enhance its AChE inhibitory activity.

Keywords: Acetylcholinesterase, butyrylcholinesterase, chalcone, docking, monoamine oxidase-B, thiophene.

« Previous
Graphical Abstract

[1]
Blennow, K.; De Leon, M.; Zetterberg, H. Alzheimer's disease Lancet, 2006, 368, 387-403.
[2]
Henry, W.Q.; Frank, M.L. Alzheimer’s disease. N. Engl. J. Med., 2010, 362, 329-344.
[3]
Eckenstein, F.; Sofroniew, M.V. Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J. Neurosci., 1983, 3, 2286-2291.
[4]
Pisani, L.; Leonetti, C.F.; Nicolotti, O.; Campagna, S.F.; Carotti, A. Targeting monoamine oxidases with multipotent ligands: An emerging strategy in the search of new drugs against neurodegenerative diseases. Curr. Med. Chem., 2011, 18, 4568-4587.
[5]
Gupta, S.; Fallarero, A.; Jarvinen, P.; Karlsson, D.; Johnson, M.S.; Vuorela, P.M.; Mohan, C.G. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques. Bioorg. Med. Chem. Lett., 2011, 21, 1105-1112.
[6]
Mathew, B.; Mathew, G.E.; Suresh, J.; Ucar, G.; Sasidharan, R.; Vilapurathu, J.K.; Anbazhagan, S.; Jayaprakash, V. Monoamine oxidase inhibitors: Perspective design for the treatment of depression and neurological disorders. Curr. Enzym. Inhib., 2016, 12, 115-122.
[7]
Sterling, J.; Herzig, Y.; Goren, T.; Finkelstein, N.; Lerner, D.; Goldenberg, W.; Miskolczi, I.; Molnar, S.; Rantal, F.; Tamas, T.; Toth, G.; Zagyva, A.; Zekany, A.; Finberg, J. Lavian. G.; Gross, A.; Friedman, R.; Razin, M.; Huang, W.; Krais, B.; Chorev, M.; Youdim, M.B.; Weinstock, M. Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J. Med. Chem., 2002, 45, 5260-5279.
[8]
Carradori, S.; Silvestri, R. New frontiers in selective human MAO-B Inhibitors. J. Med. Chem., 2015, 58, 6717-6732.
[9]
Mathew, B.; Mathew, G.E.; Ucar, G.; Baysal, I.; Suresh, J.; Vilapurathu, J.K.; Prakasan, A.; Suresh, J.K.; Thomas, A. Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg. Chem., 2015, 62, 22-29.
[10]
Mathew, B.; Mathew, G.E.; Ucar, G.; Baysal, I.; Suresh, J.; Mathew, S.; Haridas, A.; Jayaprakash, V. Potent and selective monoamine oxidase-B inhibitory activity: Fluoro- vs. trifluoromethyl-4-hydroxylated chalcone derivatives. Chem. Biodivers., 2016, 13, 1046-1052.
[11]
Mathew, B.; Ucar, G.; Mathew, G.E.; Mathew, S.; Purapurath, P.K.; Moolayil, F.; Mohan, S.; Gupta, V.S. Monoamine oxidase inhibitory activity: Methyl- versus chloro-chalcone derivatives. ChemMedChem, 2016, 11, 2649-2655.
[12]
Sasidharan, R.; Manju, S.L.; Ucar, G.; Baysal, I.; Mathew, B. Identification of Indole based chalcones: Discovery of a potent, selective and reversible class of MAO-B inhibitors. Arch. Pharm, 2016, 349, 627-637.
[13]
Mathew, B.; Haridas, A.; Suresh, J.; Mathew, G.E.; Ucar, G.; Jayaprakash, V. Monoamine oxidase inhibitory actions of chalcones. A mini review. Cent. Nerv. Syst. Agents Med. Chem., 2016, 16, 120-136.
[14]
Mathew, B.; Dev, S.; Suresh, J.; Mathew, G.E.; Lakshmanan, B.; Haridas, A.; Fathima, F.; Krishnan, G.K. Pharmacophore modeling, 3D-QSAR and molecular docking of furanochalcones as inhibitors of monoamine oxidase-B. Cent. Nerv. Syst. Agents Med. Chem., 2016, 16, 105-111.
[15]
Mathew, B.; Mathew, G.E.; Ucar, G.; Joy, M.; Nafna, E.K.; Lohidakhan, K.L. Monoamine oxidase inhibitory activity of methoxy-substituted chalcones. Int. J. Biol. Macromol., 2017, 104, 1321-1329.
[16]
Mathew, B.; Ucar, G.; Rapheal, C.; Mathew, G.E.; Joy, M.; Machaba, K.E. Characterisation of thienyl chalcones as hMAO-B inhibitors: Synthesis, Biochemistry and molecular dynamics study. ChemistrySelect, 2017, 2, 11113-11119.
[17]
Sasidharan, R.; Baek, S.C.; Manju, S.L.; Kim, H.; Mathew, B. Imidazole based chalcones as new monoamine oxidase inhibitors. Biomed. Pharmacother., 2018, 106, 8-13.
[18]
Mathew, B.; Ucar, G.; Yabanoglu-Ciftci, S.; Baysal, I.; Suresh, J.; Mathew, G.E.; Vilapurathu, J.K.; Nadeena, A.M.; Nabeela, P.; Lakshmi, V.; Haridas, A.; Fathima, F. Development of fluorinated thienylchalcones as monoamine oxidase-b inhibitors: Design, synthesis, biological evaluation and molecular docking studies. Lett. Org. Chem., 2015, 12, 605-613.
[19]
Mathew, B.; Haridas, A.; Ucar, G.; Baysal, I.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: A new class of reversible MAO-B inhibitors. ChemMedChem, 2016, 11, 1161-1171.
[20]
Mathew, B.; Haridas, A.; Ucar, G.; Baysal, I.; Adeniyi, A.A.; Soliman, M.E.S.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Exploration of chlorinated thienyl chalcones: A new class of monoamine oxidase-B inhibitors. Int. J. Biol. Macromol., 2016, 91, 680-695.
[21]
Mathew, B.; Adeniyi, A.A.; Dev, S.; Joy, M.; Ucar, G.; Mathew, G.E.; Singh-Pillay, A.; Soliman, M.E. Pharmacophore based 3D-QSAR of thienyl chalcones as new class of human MAO-B inhibitors: Investigation of combined quantum chemical and molecular dynamics approach. J. Phys. Chem. B, 2017, 121, 1186-1203.
[22]
Chaves, O.A.; Mathew, B.; Cesarin-Sobrinho, D.; Lakshminarayanan, B.; Joy, M.; Mathew, G.E. Spectroscopic, zeta potential and molecular docking analysis on the interaction between human serum albumin and halogenated thienyl chalcones. J. Mol. Liq., 2017, 242, 1016-1026.
[23]
Khaw, K.Y.; Choi, S.B.; Tan, S.C.; Wahab, H.A.; Chan, K.L.; Murugaiyah, V. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies. Phytomedicine, 2014, 21, 1303-1309.
[24]
Dev, S.; Dhaneshwar, S.R.; Mathew, B. Discovery of camptothecin based topoisomerase I Inhibitors: Identification using an atom based 3D-QSAR, pharmacophore modeling, virtual screening and molecular docking approach. Comb. Chem. High Throughput Screen., 2016, 9, 752-763.
[25]
Andersson, C.D.; Forsgren, N.; Akfur, C.; Allgardsson, A.; Berg, L.; Engdahl, C.; Qian, W.; Ekström, F.; Linusson, A. Divergent structure-activity relationships of structurally similar acetylcholinesterase inhibitors. J. Med. Chem., 2013, 56, 7615-7624.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy