Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

口腔鳞状细胞癌的骨侵袭特性及其与牙槽骨细胞的相互作用:体外研究

卷 19, 期 8, 2019

页: [631 - 640] 页: 10

弟呕挨: 10.2174/1568009618666181102144317

价格: $65

摘要

背景:癌细胞与牙槽骨细胞的共培养可以调节骨侵袭和破坏。 然而,口腔鳞状细胞癌(OSCC)与骨细胞之间相互作用的机制仍不清楚。 目的:本研究旨在分析OSCC细胞刺激溶骨活动和骨侵袭的直接和间接影响。 方法:通过用初级牙槽骨细胞系培养OSCC(TCA8113)实现直接共培养。 在间接共培养中,收集TCA8113细胞的上清液以培养牙槽骨细胞。 为了评估骨侵袭特性,进行了体外测定。 结果:与单层对照细胞相比,共培养的癌细胞的增殖显着(p <0.05)更高。 然而,直接和间接共培养细胞的增殖率没有显着差异,间接共培养细胞比直接共培养细胞增殖略多。 与对照单层对应物相比,共培养的OSCC和牙槽骨细胞的侵袭和迁移能力显着增强(p <0.05)。 最重要的是,我们注意到直接与牙槽骨细胞共培养的OSCC细胞刺激了明显的骨胶原破坏。 此外,干细胞和上皮细胞间质转化标志物在共培养细胞中的表达显示出显着变化。 结论:总之,本研究的结果突出了牙槽骨细胞和OSCC细胞在骨侵袭发病机制中共培养环境中相互作用的重要性。 这可能有助于开发未来潜在的OSCC骨侵袭生物疗法。

关键词: 口腔鳞状细胞癌,骨侵袭,共培养,牙槽骨细胞,干细胞标志物,EMT标志物。

图形摘要

[1]
Harper, L.J.; Piper, K.; Common, J.; Fortune, F.; Mackenzie, I.C. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J. Oral Pathol. Med., 2007, 36, 594-603.
[2]
Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol., 2009, 45, 309-316.
[3]
Abdulmajeed, A.A.; Dalley, A.J.; Farah, C.S. Putative cancer stem cell marker expression in oral epithelial dysplasia and squamous cell carcinoma. J. Oral Pathol. Med., 2013, 42, 755-760.
[4]
de Vicente, J.C.; Rodrigo, J.P.; Rodriguez-Santamarta, T.; Lequerica-Fernández, P.; Allonca, E.; García-Pedrero, J.M. Podoplanin expression in oral leukoplakia: Tumorigenic role. Oral Oncol., 2013, 49, 598-603.
[5]
a) Reggiani-Bonetti, L.; Migaldi, M.; Boninsegna, A.; Fanali, C.; Farina, M.; Chiarini, L.; Anesi, A.; Cittadini, A.; Leocata, P.; Maccio, L.; Sgambato, A. Expression of CD133 correlates with tumor stage, lymph node metastasis and recurrence in oral Squamous Cell Carcinoma. J. Cancer Sci. Ther., 2014, 6, 94-98.
b) Prince, M.E.; Sivanandan, R.; Kaczorowski, A.; Wolf, G.T.; Kaplan, M.J.; Dalerba, P.; Weissman, I.L.; Clarke, M.F.; Ailles, L.E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA, 2007, 104, 973-978.
[6]
Marur, S.; Forastiere, A.A. Head and neck cancer: Changing epidemiology, diagnosis, and treatment. Mayo Clin. Proc., 2008, 83, 489-501.
[7]
Mannelli, G.; Gallo, O. Cancer stem cells hypothesis and stem cells in head and neck cancers. Cancer Treat. Rev., 2012, 38, 515-539.
[8]
Pandey, M.; Rao, L.P.; Das, S.R.; Mathews, A.; Chacko, E.M.; Naik, B.R. Patterns of mandibular invasion in oral squamous cell carcinoma of the mandibular region. World J. Surg. Oncol., 2007, 5, 12.
[9]
Chen, Y.L.; Kuo, S.W.; Fang, K.H.; Hao, S.P. Prognostic impact of marginal mandibulectomy in the presence of superficial bone invasion and the nononcologic outcome. Head Neck, 2011, 33, 708-713.
[10]
Ishikuro, M.; Sakamoto, K.; Kayamori, K.; Akashi, T.; Kanda, H.; Izumo, T.; Yamaguchi, A. Significance of the fibrous stroma in bone invasion by human gingival squamous cell carcinomas. Bone, 2008, 43, 621-627.
[11]
Quan, J.; Johnson, N.W.; Zhou, G.; Parsons, P.G.; Boyle, G.M.; Gao, J. Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms. Cancer Metastasis Rev., 2012, 31, 209-219.
[12]
Wu, C.; Alman, B.A. Side population cells in human cancers. Cancer Lett., 2008, 268, 1-9.
[13]
Islam, F.; Gopalan, V.; Wahab, R.; Smith, R.A.; Lam, A.K. Cancer stem cells in oesophageal squamous cell carcinoma: Identification, prognostic and treatment perspectives. Crit. Rev. Oncol. Hematol., 2015, 96, 9-19.
[14]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119, 1420-1428.
[15]
Sethi, S.; Macoska, J.; Chen, W.; Sarkar, F.H. Molecular signature of epithelial mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am. J. Transl. Res., 2010, 3, 90-99.
[16]
Fullár, A.; Kovalszky, I.; Bitsche, M.; Romani, A.; Schartinger, V.H.; Sprinzl, G.M.; Riechelmann, H.; Dudás, J. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp. Cell Res., 2012, 318, 1517-1527.
[17]
Quan, J.; Zhou, C.; Johnson, N.W.; Francis, G.; Dahlstrom, J.E.; Gao, J. Molecular pathways involved in crosstalk between cancer cells, osteoblasts and osteoclasts in the invasion of bone by oral squamous cell carcinoma. Pathology, 2012, 44, 221-227.
[18]
Okamoto, M.; Hiura, K.; Ohe, G.; Ohba, Y.; Terai, K.; Oshikawa, T.; Furuichi, S.; Nishikawa, H.; Moriyama, K.; Yoshida, H.; Sato, M. Mechanism for bone invasion of oral cancer cells mediated by interleukin-6 in vitro and in vivo. Cancer, 2000, 89, 1966-1975.
[19]
Haase, H.R.; Ivanovski, S.; Waters, M.J.; Bartold, P.M. Growth hormone regulates osteogenic marker mRNA expression in human periodontal fibroblasts and alveolar bone-derived cells. J. Periodontal Res., 2003, 38, 366-374.
[20]
Min, R.; Tong, J.; Wenjun, Y.; Wenhu, D.; Xiaojian, Z.; Jiacai, H.; Jian, Z.; Wantao, C.; Chenping, Z. Growth inhibition and induction of apoptosis in human oral squamous cell carcinoma Tca-8113 cell lines by Shikonin was partly through the inactivation of NF-kappa B pathway. Phytother. Res., 2008, 22, 407-415.
[21]
Qian, Y.; Huang, H.Z. The role of RANKL and MMP-9 in the bone resorption caused by ameloblastoma. J. Oral Pathol. Med., 2010, 39, 592-598.
[22]
Kasem, K.; Sullivan, E.; Gopalan, V.; Salajegheh, A.; Smith, R.A.; Lam, A.K. JK1(FAM134B) represses cell migration in colon cancer: a functional study of a novel gene. Exp. Mol. Pathol., 2014, 97, 99-104.
[23]
Islam, F.; Gopalan, V.; Law, S.; Tang, J.C.; Chan, K.W.; Lam, A.K. MiR-498 in esophageal squamous cell carcinoma: Clinicopathological impacts and functional interactions. Hum. Pathol., 2017, 62, 141-151.
[24]
Islam, F.; Gopalan, V.; Wahab, R.; Smith, R.A.; Qiao, B.; Lam, A.K. Stage dependent expression and tumor suppressive function of FAM134B (JK1) in colon cancer. Mol. Carcinog., 2017, 56, 238-249.
[25]
Islam, F.; Gopalan, V.; Vider, J.; Wahab, R. Ebrahimi. F.; Lu, C.T.; Kasem, K.; Lam, A.K.Y. MicroRNA-186-5p overexpression modulates colon cancer growth by repressing the expression of the FAM134B tumour inhibitor. Exp. Cell Res., 2017, 357, 260-270.
[26]
Islam, F.; Khanam, J.A.; Khatun, M.; Zuberi, N.; Khatun, L.; Kabir, S.R.; Reza, M.A.; Ali, M.M.; Rabbi, M.A.; Gopalan, V.; Lam, A.K. p-menth-1-ene-4,7-diol (EC-1) from Eucalyptus camaldulensis Dhnh triggers apoptosis and cell cycle changes in Ehrlich ascites carcinoma cells. Phytother. Res., 2015, 29, 573-581.
[27]
Gopalan, V.; Islam, F.; Pillai, S.; Tang, J.C.; Tong, D.K.; Law, S.; Chan, K.W.; Lam, A.K. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma. Exp. Cell Res., 2016, 348, 146-154.
[28]
Hu, M.; Polyak, K. Microenvironmental regulation of cancer development. Curr. Opin. Genet. Dev., 2008, 18, 27-34.
[29]
Lim, Y.C.; Oh, S.Y.; Kim, H. Cellular characteristics of head and neck cancer stem cells in type IV collagen-coated adherent cultures. Exp. Cell Res., 2012, 318, 1104-1111.
[30]
Sung, S.Y.; Chung, L.W. Prostate tumor-stroma interaction: Molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 2002, 70, 506-521.
[31]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 9, 1423-1437.
[32]
Tada, T.; Jimi, E.; Okamoto, M.; Ozeki, S.; Okabe, K. Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts. Int. J. Cancer, 2005, 116, 253-262.
[33]
Tada, T.; Shin, M.; Fukushima, H.; Okabe, K.; Ozeki, S.; Okamoto, M.; Jimi, E. Oral squamous cell carcinoma cells modulate osteoclast function by RANKL-dependent and independent mechanisms. Cancer Lett., 2009, 274, 126-131.
[34]
Martin, C.K.; Dirksen, W.P.; Shu, S.T.; Werbeck, J.L.; Thudi, N.K.; Yamaguchi, M.; Wolfe, T.D.; Heller, K.N.; Rosol, T.J. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma. Oral Oncol., 2012, 48, 491-499.
[35]
Kim, M.J.; Kim, K.M.; Kim, J.; Kim, K.N. BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release. PLoS One, 2014, 9, e108170.
[36]
Glogauer, J.E.; Sun, C.X.; Bradley, G.; Magalhaes, M.A. Neutrophils increase oral squamous cell carcinoma invasion through an invadopodia-dependent pathway. Cancer Immunol. Res., 2015, 3, 1218-1226.
[37]
Mishra, A.; Shiozawa, Y.; Pienta, K.J.; Taichman, R.S. Homing of cancer cells to the bone. Cancer Microenviron., 2011, 4, 221-235.
[38]
Zhang, X.; Junior, C.R.; Liu, M.; Li, F.; D’Silva, N.J.; Kirkwood, K.L. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncol., 2013, 49, 119-128.
[39]
Shimo, T.; Kubota, S.; Goda, T.; Yoshihama, Y.; Kurio, N.; Nishida, T.; Ng, P.S.; Endo, K.; Takigawa, M.; Sasakii, A. Clinical significance and pathogenic function of connective tissue growth factor (CTGF/CCN2) in osteolytic mandibular squamous cell carcinoma. Anticancer Res., 2008, 28, 2343-2348.
[40]
Sato, K.; Lee, J.W.; Sakamoto, K.; Iimura, T.; Kayamori, K.; Yasuda, H.; Shindoh, M.; Ito, M.; Omura, K.; Yamaguchi, A. RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer. Am. J. Pathol., 2013, 182, 1890-1899.
[41]
Pandruvada, S.N.; Yuvaraj, S.; Liu, X.; Sundaram, K.; Shanmugarajan, S.; Ries, W.L.; Norris, J.S.; London, S.D.; Reddy, S.V. Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. Int. J. Cancer, 2010, 126, 2319-2329.
[42]
Stuelten, C.H.; DaCosta-Byfield, S.; Arany, P.R.; Karpova, T.S.; Stetler-Stevenson, W.G.; Roberts, A.B. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J. Cell Sci., 2005, 118, 2143-2153.
[43]
Kearns, A.E.; Khosla, S.; Kostenuik, P.J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev., 2008, 29, 155-192.
[44]
Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139, 871-890.
[45]
Basu-Roy, U.; Ambrosetti, D.; Favaro, R.; Nicolis, S.K.; Mansukhani, A.; Basilico, C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ., 2010, 17, 1345-1353.
[46]
Jouppila-Mättö, A.; Närkiö-Mäkelä, M.; Soini, Y.; Pukkila, M.; Sironen, R.; Tuhkanen, H.; Mannermaa, A.; Kosma, V.M. Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma is related to cancer progression. BMC Cancer, 2011, 11, 350.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy