[1]
Harper, L.J.; Piper, K.; Common, J.; Fortune, F.; Mackenzie, I.C. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J. Oral Pathol. Med., 2007, 36, 594-603.
[2]
Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol., 2009, 45, 309-316.
[3]
Abdulmajeed, A.A.; Dalley, A.J.; Farah, C.S. Putative cancer stem cell marker expression in oral epithelial dysplasia and squamous cell carcinoma. J. Oral Pathol. Med., 2013, 42, 755-760.
[4]
de Vicente, J.C.; Rodrigo, J.P.; Rodriguez-Santamarta, T.; Lequerica-Fernández, P.; Allonca, E.; García-Pedrero, J.M. Podoplanin expression in oral leukoplakia: Tumorigenic role. Oral Oncol., 2013, 49, 598-603.
[5]
a) Reggiani-Bonetti, L.; Migaldi, M.; Boninsegna, A.; Fanali, C.; Farina, M.; Chiarini, L.; Anesi, A.; Cittadini, A.; Leocata, P.; Maccio, L.; Sgambato, A. Expression of CD133 correlates with tumor stage, lymph node metastasis and recurrence in oral Squamous Cell Carcinoma. J. Cancer Sci. Ther., 2014, 6, 94-98.
b) Prince, M.E.; Sivanandan, R.; Kaczorowski, A.; Wolf, G.T.; Kaplan, M.J.; Dalerba, P.; Weissman, I.L.; Clarke, M.F.; Ailles, L.E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA, 2007, 104, 973-978.
[6]
Marur, S.; Forastiere, A.A. Head and neck cancer: Changing epidemiology, diagnosis, and treatment. Mayo Clin. Proc., 2008, 83, 489-501.
[7]
Mannelli, G.; Gallo, O. Cancer stem cells hypothesis and stem cells in head and neck cancers. Cancer Treat. Rev., 2012, 38, 515-539.
[8]
Pandey, M.; Rao, L.P.; Das, S.R.; Mathews, A.; Chacko, E.M.; Naik, B.R. Patterns of mandibular invasion in oral squamous cell carcinoma of the mandibular region. World J. Surg. Oncol., 2007, 5, 12.
[9]
Chen, Y.L.; Kuo, S.W.; Fang, K.H.; Hao, S.P. Prognostic impact of marginal mandibulectomy in the presence of superficial bone invasion and the nononcologic outcome. Head Neck, 2011, 33, 708-713.
[10]
Ishikuro, M.; Sakamoto, K.; Kayamori, K.; Akashi, T.; Kanda, H.; Izumo, T.; Yamaguchi, A. Significance of the fibrous stroma in bone invasion by human gingival squamous cell carcinomas. Bone, 2008, 43, 621-627.
[11]
Quan, J.; Johnson, N.W.; Zhou, G.; Parsons, P.G.; Boyle, G.M.; Gao, J. Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms. Cancer Metastasis Rev., 2012, 31, 209-219.
[12]
Wu, C.; Alman, B.A. Side population cells in human cancers. Cancer Lett., 2008, 268, 1-9.
[13]
Islam, F.; Gopalan, V.; Wahab, R.; Smith, R.A.; Lam, A.K. Cancer stem cells in oesophageal squamous cell carcinoma: Identification, prognostic and treatment perspectives. Crit. Rev. Oncol. Hematol., 2015, 96, 9-19.
[14]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119, 1420-1428.
[15]
Sethi, S.; Macoska, J.; Chen, W.; Sarkar, F.H. Molecular signature of epithelial mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am. J. Transl. Res., 2010, 3, 90-99.
[16]
Fullár, A.; Kovalszky, I.; Bitsche, M.; Romani, A.; Schartinger, V.H.; Sprinzl, G.M.; Riechelmann, H.; Dudás, J. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp. Cell Res., 2012, 318, 1517-1527.
[17]
Quan, J.; Zhou, C.; Johnson, N.W.; Francis, G.; Dahlstrom, J.E.; Gao, J. Molecular pathways involved in crosstalk between cancer cells, osteoblasts and osteoclasts in the invasion of bone by oral squamous cell carcinoma. Pathology, 2012, 44, 221-227.
[18]
Okamoto, M.; Hiura, K.; Ohe, G.; Ohba, Y.; Terai, K.; Oshikawa, T.; Furuichi, S.; Nishikawa, H.; Moriyama, K.; Yoshida, H.; Sato, M. Mechanism for bone invasion of oral cancer cells mediated by interleukin-6 in vitro and in vivo. Cancer, 2000, 89, 1966-1975.
[19]
Haase, H.R.; Ivanovski, S.; Waters, M.J.; Bartold, P.M. Growth hormone regulates osteogenic marker mRNA expression in human periodontal fibroblasts and alveolar bone-derived cells. J. Periodontal Res., 2003, 38, 366-374.
[20]
Min, R.; Tong, J.; Wenjun, Y.; Wenhu, D.; Xiaojian, Z.; Jiacai, H.; Jian, Z.; Wantao, C.; Chenping, Z. Growth inhibition and induction of apoptosis in human oral squamous cell carcinoma Tca-8113 cell lines by Shikonin was partly through the inactivation of NF-kappa B pathway. Phytother. Res., 2008, 22, 407-415.
[21]
Qian, Y.; Huang, H.Z. The role of RANKL and MMP-9 in the bone resorption caused by ameloblastoma. J. Oral Pathol. Med., 2010, 39, 592-598.
[22]
Kasem, K.; Sullivan, E.; Gopalan, V.; Salajegheh, A.; Smith, R.A.; Lam, A.K. JK1(FAM134B) represses cell migration in colon cancer: a functional study of a novel gene. Exp. Mol. Pathol., 2014, 97, 99-104.
[23]
Islam, F.; Gopalan, V.; Law, S.; Tang, J.C.; Chan, K.W.; Lam, A.K. MiR-498 in esophageal squamous cell carcinoma: Clinicopathological impacts and functional interactions. Hum. Pathol., 2017, 62, 141-151.
[24]
Islam, F.; Gopalan, V.; Wahab, R.; Smith, R.A.; Qiao, B.; Lam, A.K. Stage dependent expression and tumor suppressive function of FAM134B (JK1) in colon cancer. Mol. Carcinog., 2017, 56, 238-249.
[25]
Islam, F.; Gopalan, V.; Vider, J.; Wahab, R. Ebrahimi. F.; Lu, C.T.; Kasem, K.; Lam, A.K.Y. MicroRNA-186-5p overexpression modulates colon cancer growth by repressing the expression of the FAM134B tumour inhibitor. Exp. Cell Res., 2017, 357, 260-270.
[26]
Islam, F.; Khanam, J.A.; Khatun, M.; Zuberi, N.; Khatun, L.; Kabir, S.R.; Reza, M.A.; Ali, M.M.; Rabbi, M.A.; Gopalan, V.; Lam, A.K. p-menth-1-ene-4,7-diol (EC-1) from Eucalyptus camaldulensis Dhnh triggers apoptosis and cell cycle changes in Ehrlich ascites carcinoma cells. Phytother. Res., 2015, 29, 573-581.
[27]
Gopalan, V.; Islam, F.; Pillai, S.; Tang, J.C.; Tong, D.K.; Law, S.; Chan, K.W.; Lam, A.K. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma. Exp. Cell Res., 2016, 348, 146-154.
[28]
Hu, M.; Polyak, K. Microenvironmental regulation of cancer development. Curr. Opin. Genet. Dev., 2008, 18, 27-34.
[29]
Lim, Y.C.; Oh, S.Y.; Kim, H. Cellular characteristics of head and neck cancer stem cells in type IV collagen-coated adherent cultures. Exp. Cell Res., 2012, 318, 1104-1111.
[30]
Sung, S.Y.; Chung, L.W. Prostate tumor-stroma interaction: Molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 2002, 70, 506-521.
[31]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 9, 1423-1437.
[32]
Tada, T.; Jimi, E.; Okamoto, M.; Ozeki, S.; Okabe, K. Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts. Int. J. Cancer, 2005, 116, 253-262.
[33]
Tada, T.; Shin, M.; Fukushima, H.; Okabe, K.; Ozeki, S.; Okamoto, M.; Jimi, E. Oral squamous cell carcinoma cells modulate osteoclast function by RANKL-dependent and independent mechanisms. Cancer Lett., 2009, 274, 126-131.
[34]
Martin, C.K.; Dirksen, W.P.; Shu, S.T.; Werbeck, J.L.; Thudi, N.K.; Yamaguchi, M.; Wolfe, T.D.; Heller, K.N.; Rosol, T.J. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma. Oral Oncol., 2012, 48, 491-499.
[35]
Kim, M.J.; Kim, K.M.; Kim, J.; Kim, K.N. BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release. PLoS One, 2014, 9, e108170.
[36]
Glogauer, J.E.; Sun, C.X.; Bradley, G.; Magalhaes, M.A. Neutrophils increase oral squamous cell carcinoma invasion through an invadopodia-dependent pathway. Cancer Immunol. Res., 2015, 3, 1218-1226.
[37]
Mishra, A.; Shiozawa, Y.; Pienta, K.J.; Taichman, R.S. Homing of cancer cells to the bone. Cancer Microenviron., 2011, 4, 221-235.
[38]
Zhang, X.; Junior, C.R.; Liu, M.; Li, F.; D’Silva, N.J.; Kirkwood, K.L. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncol., 2013, 49, 119-128.
[39]
Shimo, T.; Kubota, S.; Goda, T.; Yoshihama, Y.; Kurio, N.; Nishida, T.; Ng, P.S.; Endo, K.; Takigawa, M.; Sasakii, A. Clinical significance and pathogenic function of connective tissue growth factor (CTGF/CCN2) in osteolytic mandibular squamous cell carcinoma. Anticancer Res., 2008, 28, 2343-2348.
[40]
Sato, K.; Lee, J.W.; Sakamoto, K.; Iimura, T.; Kayamori, K.; Yasuda, H.; Shindoh, M.; Ito, M.; Omura, K.; Yamaguchi, A. RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer. Am. J. Pathol., 2013, 182, 1890-1899.
[41]
Pandruvada, S.N.; Yuvaraj, S.; Liu, X.; Sundaram, K.; Shanmugarajan, S.; Ries, W.L.; Norris, J.S.; London, S.D.; Reddy, S.V. Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. Int. J. Cancer, 2010, 126, 2319-2329.
[42]
Stuelten, C.H.; DaCosta-Byfield, S.; Arany, P.R.; Karpova, T.S.; Stetler-Stevenson, W.G.; Roberts, A.B. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J. Cell Sci., 2005, 118, 2143-2153.
[43]
Kearns, A.E.; Khosla, S.; Kostenuik, P.J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev., 2008, 29, 155-192.
[44]
Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139, 871-890.
[45]
Basu-Roy, U.; Ambrosetti, D.; Favaro, R.; Nicolis, S.K.; Mansukhani, A.; Basilico, C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ., 2010, 17, 1345-1353.
[46]
Jouppila-Mättö, A.; Närkiö-Mäkelä, M.; Soini, Y.; Pukkila, M.; Sironen, R.; Tuhkanen, H.; Mannermaa, A.; Kosma, V.M. Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma is related to cancer progression. BMC Cancer, 2011, 11, 350.