[1]
Gerber, D.E. Targeted therapies: A New generation of cancer treatments. Am. Family . Physician, 2008, 77(3), 311-319.
[2]
Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J-L.; Peltola, K.; Roth, B.J.; Bjarnason, G.A.; Géczi, L.; Keam, B.; Maroto, P.; Heng, D.Y.; Schmidinger, M.; Kantoff, P.W.; Borgman-Hagey, A.; Hessel, C.; Scheffold, C.; Schwab, G.M.; Tannir, N.M.; Motzer, R.J. METEOR Investigators. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med., 2015, 373(19), 1814-1823.
[3]
Dervisis, N.; Klahn, S. Therapeutic innovations: Tyrosine kinase inhibitors in cancer. Vet. Sci., 2016, 3(1), 4.
[4]
Baudino, T.A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20.
[5]
Lugo, T.G.; Pendergast, A-M.; Muller, A.J.; Witte, O.N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science, 1990, 247(4946), 1079-1082.
[6]
Bartram, C.R.; de Klein, A.; Hagemeijer, A.; van Agthoven, T.; van Kessel, A.G.; Bootsma, D.; Grosveld, G.; Ferguson-Smith, M.A.; Davies, T.; Stone, M. Translocation of C-Abl oncogene correlates with the presence of a philadelphia chromosome in chronic myelocytic leukaemia. Nature, 1983, 306(5940), 277-280.
[7]
Rowley, J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature, 1973, 243(5405), 290-293.
[8]
Jørgensen, H.G.; Holyoake, T.L. A comparison of normal and leukemic stem cell biology in chronic myeloid leukemia. Hematol. Oncol., 2001, 19(3), 89-106.
[9]
Kantarjian, H.M.; Dixon, D.; Keating, M.J.; Talpaz, M.; Walters, R.S.; McCredie, K.B.; Freireich, E.J. Characteristics of accelerated disease in chronic myelogenous leukemia. Cancer, 1988, 61(7), 1441-1446.
[10]
Wong, S.; Witte, O.N. Modeling philadelphia chromosome positive leukemias. Oncogene, 2001, 20(40), 5644-5659.
[11]
Smith, D.L.; Burthem, J.; Whetton, A.D. Molecular pathogenesis of chronic myeloid leukaemia. Expert Rev. Mol. Med., 2003, 5(27), 1-27.
[12]
Deininger, M.W.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3356.
[13]
Kantarjian, H.M.; Talpaz, M.; Giles, F.; O’Brien, S.; Cortes, J. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann. Intern. Med., 2006, 145(12), 913-923.
[14]
Liu, Y.; Shah, K.; Yang, F.; Witucki, L.; Shokat, K.M. A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase V-Src. Bioorg. Med. Chem., 1998, 6(8), 1219-1226.
[15]
Jabbour, E.; Deininger, M. Hochhaus, a. Management of adverse events associated with tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leuk. Off. J. Leuk. Soc. Am. Leuk. Res. Fund UK, 2011, 25(2), 201-210.
[16]
Bhamidipati, P.K.; Kantarjian, H.; Cortes, J.; Cornelison, A.M.; Jabbour, E. Management of imatinib-resistant patients with chronic myeloid leukemia. Ther. Adv. Hematol., 2013, 4(2), 103-117.
[17]
Graham, S.M.; Jørgensen, H.G.; Allan, E.; Pearson, C.; Alcorn, M.J.; Richmond, L.; Holyoake, T.L. Primitive, quiescent, philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in Vitro. Blood, 2002, 99(1), 319-325.
[18]
Gaiger, a; Henn, T.; Horth, E.; Geissler, K.; Mitterbauer, G.; Maier-Dobersberger, T. Increase of Bcr-Abl chimeric MRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood, 1995, 86(6), 2371-2378.
[19]
Le Coutre, P.; Tassi, E.; Varella-Garcia, M.; Barni, R.; Mologni, L.; Cabrita, G.; Marchesi, E.; Supino, R.; Gambacorti-Passerini, C. Induction of Resistance to the Abelson Inhibitor STI571 in human leukemic cells through gene amplification. Blood, 2000, 95(5), 1758-1766.
[20]
Gorre, M.E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P.N.; Sawyers, C.L. Clinical Resistance to STI-571 cancer therapy caused by bcr-abl gene mutation or amplification. Science, 2001, 293(5531), 876-880.
[21]
Barnes, D.J.; Palaiologou, D.; Panousopoulou, E.; Schultheis, B.; Yong, A.S.M.; Wong, A.; Pattacini, L.; Goldman, J.M.; Melo, J.V. Bcr-Abl Expression Levels Determine the Rate of Development of Resistance to Imatinib Mesylate in Chronic Myeloid Leukemia. Cancer Res., 2005, 65(19), 8912-8919.
[22]
Mahon, F.X.; Deininger, M.W.; Schultheis, B.; Chabrol, J.; Reiffers, J.; Goldman, J.M.; Melo, J.V. Selection and Characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: Diverse mechanisms of resistance. Blood, 2000, 96(3), 1070-1079.
[23]
Barnes, D.J.; Schultheis, B.; Adedeji, S.; Melo, J.V. Dose-dependent effects of Bcr-Abl in cell line models of different stages of chronic myeloid leukemia. Oncogene, 2005, 24(42), 6432-6440.
[24]
Hochhaus, a; Kreil, S.; Corbin, a S.; La Rosée, P.; Müller, M.C.; Lahaye, T.; Hanfstein, B.; Schoch, C.; Cross, N.C.P.; Berger, U.; Gschaidmeier, H.; Druker, B.J.; Hehlmann, R. Molecular and Chromosomal Mechanisms of Resistance to Imatinib (STI571) Therapy. Leukemia, 2002, 16(11), 2190-2196.
[25]
Judson, I. Imatinib Mesylate. Drugs, 2003, 63(5), 523-524.
[26]
Redaelli, S.; Piazza, R.; Rostagno, R.; Magistroni, V.; Perini, P.; Marega, M.; Gambacorti-Passerini, C.; Boschelli, F. activity of bosutinib, dasatinib, and nilotinib against 18 Imatinib-Resistant BCR/ABL mutants. J. Clin. Oncol., 2009, 27(3), 469-471.
[27]
Soverini, S.; Colarossi, S.; Gnani, A.; Rosti, G.; Castagnetti, F.; Poerio, A.; Iacobucci, I.; Amabile, M.; Abruzzese, E.; Orlandi, E.; Radaelli, F.; Ciccone, F.; Tiribelli, M.; di Lorenzo, R.; Caracciolo, C.; Izzo, B.; Pane, F.; Saglio, G.; Baccarani, M.; Martinelli, G. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of philadelphia-positive patients: by the gimema working party on chronic myeloid leukemia. Clin. Cancer Res., 2006, 12(24), 7374-7379.
[28]
Premkumar Reddy, E.; Aggarwal, A.K. The ins and outs of bcr-abl inhibition. Genes Cancer, 2012, 3(5-6), 447-454.
[29]
Von Bubnoff, N.; Schneller, F.; Peschel, C.; Duyster, J. BCR-ABL gene mutations in relation to clinical resistance of philadelphia-chromosome-Positive leukaemia to STI571: A prospective study. Lancet, 2002, 359(9305), 487-491.
[30]
Gambacorti-Passerini, C.B.; Gunby, R.H.; Piazza, R.; Galietta, A.; Rostagno, R.; Scapozza, L. Molecular mechanisms of resistance to imatinib in philadelphia-chromosome-positive leukaemias. Lancet Oncol., 2003, 4(2), 75-85.
[31]
Azam, M.; Latek, R.R.; Daley, G.Q. Mechanisms of autoinhibition and sti-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell, 2003, 112(6), 831-843.
[32]
Peng, B.; Hayes, M.; Resta, D.; Racine-Poon, A.; Druker, B.J.; Talpaz, M.; Sawyers, C.L.; Rosamilia, M.; Ford, J.; Lloyd, P.; Capdeville, R. Pharmacokinetics and Pharmacodynamics of Imatinib in a Phase I Trial with Chronic Myeloid Leukemia Patients. J. Clin. Oncol., 2004, 22(5), 935-942.
[33]
Picard, S.; Titier, K.; Etienne, G.; Teilhet, E.; Ducint, D.; Bernard, M.A.; Lassalle, R.; Marit, G.; Reiffers, J.; Begaud, B.; Nicholas, M.; Mathieu, M.; Francois-Xavier, M. Trough Imatinib Plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood, 2007, 109(8), 3496-3499.
[34]
Jabbour, E.J.; Cortes, J.E.; Kantarjian, H.M. Resistance to tyrosine kinase inhibition therapy for chronic myelogenous leukemia: A clinical perspective and emerging treatment options. Clin. Lymphoma Myeloma Leuk., 2013, 13(5), 515-529.
[35]
Quints-Cardama, A.; Kantarjian, H.M.; Cortes, J.E. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control., 2009, 16(2), 122-131.
[36]
Apperley, J.F.; Part, I. Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol., 2007, 8(11), 1018-1029.
[37]
Ferrao, P.T.; Frost, M.J.; Siah, S.P.; Ashman, L.K. Overexpression of P-Glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in Vitro. Blood, 2003, 102(13), 4499-4503.
[38]
Galimberti, S.; Cervetti, G.; Guerrini, F.; Testi, R.; Pacini, S.; Fazzi, R.; Simi, P.; Petrini, M. Quantitative molecular monitoring of bcr-abl and mdr1 transcripts in patients with chronic myeloid leukemia during imatinib treatment. Cancer Genet. Cytogenet., 2005, 162(1), 57-62.
[39]
Donato, N.J.; Wu, J.Y.; Stapley, J.; Gallick, G.; Lin, H.; Arlinghaus, R.; Talpaz, M. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood, 2003, 101(2), 690-698.
[40]
Burchert, a; Wang, Y.; Cai, D.; von Bubnoff, N.; Paschka, P.; Müller-Brüsselbach, S.; Ottmann, O.G.; Duyster, J.; Hochhaus, a; Neubauer, a. compensatory PI3-Kinase/Akt/MTor activation regulates imatinib resistance development. Leuk. Off. J. Leuk. Soc. Am. Leuk. Res. Fund UK, 2005, 19(10), 1774-1782.
[41]
Agarwal, A.; Eide, C.A.; Harlow, A.; Corbin, A.S.; Mauro, M.J.; Druker, B.J.; Corless, C.L.; Heinrich, M.C.; Deininger, M.W. An activating KRAS mutation in imatinib-resistant chronic myeloid leukemia. Leukemia, 2008, 22(12), 2269-2272.
[42]
Wang, Y.; Cai, D.; Brendel, C.; Barett, C.; Erben, P.; Manley, P.W.; Hochhaus, A.; Neubauer, A.; Burchert, A. Adaptive secretion of Granulocyte-Macrophage Colony-Stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 Pathway Activation. Blood, 2007, 109(5), 2147-2155.
[43]
Jiang, B.H.; Liu, L.Z. Chapter 2 PI3K/PTEN Signaling in angiogenesis and tumorigenesis; Adv. Cancer Res, 2009, pp. 19-65.
[44]
Danial, N.N. Pernis, a; Rothman, P. B. Jak-STAT signaling induced by the v-Abl oncogene. Science, 1995, 269(5232), 1875-1877.
[45]
Xie, S.; Wang, Y.; Liu, J.; Sun, T.; Wilson, M.B.; Smithgall, T.E.; Arlinghaus, R.B. involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation. Oncogene, 2001, 20(43), 6188-6195.
[46]
Hehlmann, R.; Berger, U.; Hochhaus, A. chronic myeloid leukemia: A model for oncology. Ann. Hematol., 2005, 487-497.
[47]
Hehlmann, R.; Hochhaus, A.; Baccarani, M. Chronic myeloid leukaemia. Lancet, 2007, 342-350.
[48]
Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653.
[49]
Druker, B.J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G.M.; Fanning, S.; Zimmermann, J.; Lydon, N.B. Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of Bcr–Abl positive cells. Nat. Med., 1996, 2(5), 561-566.
[50]
Talpaz, M.; Silver, R.T.; Druker, B.J.; Goldman, J.M.; Gambacorti-Passerini, C.; Guilhot, F.; Schiffer, C.A.; Fischer, T.; Deininger, M.W.N.; Lennard, A.L.; Andreas, H.; Oliver, G.O.; Alois, G.; Michele, B.; Richard, S.; Sante, T.; Francois, X.M.; Sofia, F-R.; Insa, G. Renaud, Capdeville. imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: Results of a phase 2 study. Blood, 2002, 99(6), 1928-1937.
[51]
Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W.T.; Clarkson, B.; Kuriyan, J. structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 2000, 289(5486), 1938-1942.
[52]
Shah, N.P.; Talpaz, M.; Kantarjian, H.M.; Donato, N.; Nicoll, J.; Cortes, J.E.; Paquette, R.; O’brien, S.; Nicaise, C.; Bleickardt, E. dasatinib in imatinib-resistant philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2006, 354(24), 2531-2541.
[53]
Irvine, E.; Williams, C. Treatment-, Patient-, and disease-related factors and the emergence of adverse events with tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia. Pharmacotherapy, 2013, 33(8), 868-881.
[54]
Tokarski, J.S.; Newitt, J.A.; Chang, C.Y.J.; Cheng, J.D.; Wittekind, M.; Kiefer, S.E.; Kish, K.; Lee, F.Y.F.; Borzillerri, R.; Lombardo, L.J.; Xie, D.; Zhang, Y.; Klei, H.E. The Structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res., 2006, 66(11), 5790-5797.
[55]
Shah, N.P.; Tran, C.; Lee, F.Y.; Chen, P.; Norris, D.; Sawyers, C.L. overriding imatinib resistance with a Novel ABL kinase inhibitor. Science, 2004, 305(5682), 399-401.
[56]
Cowan-Jacob, S.W.; Fendrich, G.; Floersheimer, A.; Furet, P.; Liebetanz, J.; Rummel, G.; Rheinberger, P.; Centeleghe, M.; Fabbro, D.; Manley, P.W. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. acta crystallog. D. Biol. Crystallog., 2007, 63(Pt 1), 80-93.
[57]
Weisberg, E.; Manley, P.W.; Breitenstein, W.; Brggen, J.; Cowan-Jacob, S.W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; Kung, A.L.; Mestan, J.; Daley, G.Q.; Callahan, L.; Catley, L.; Cavazza, C.; Azam, M.; Neuberg, D.; Wright, R.D.; Gilliland, D.G.; Griffin, J.D. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7(2), 129-141.
[58]
Bose, P.; Park, H.; Al-Khafaji, J.; Grant, S. Strategies to circumvent the T315I gatekeeper mutation in the Bcr-Abl tyrosine kinase. Leuk. Res. Reports., 2013, 2(1), 18-20.
[59]
Golas, J.M.; Lucas, J.; Etienne, C.; Golas, J.; Discafani, C.; Sridharan, L.; Boghaert, E.; Arndt, K.; Ye, F.; Boschelli, D.H.; Li, F.; Titsch, C.; Huselton, C.; Chaudhary, I.; Boschelli, F. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models. Cancer Res., 2005, 65(12), 5358-5364.
[60]
Doan, V.; Wang, A.; Prescott, H. Bosutinib for the treatment of chronic myeloid leukemia. Am. J. Heal. Pharm., 2015, 72(6), 439-447.
[61]
Moslehi, J.J.; Deininger, M. Tyrosine kinase inhibitor-Associated cardiovascular toxicity in chronic myeloid leukemia. J. Clin. Oncol., 2015, 33(35), 4210-4218.
[62]
Levinson, N.M.; Boxer, S.G. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the abl tyrosine kinase domain. PLoS One, 2012, 7(4), e29828.
[63]
Cortes, J.E.; Kantarjian, H.; Shah, N.P.; Bixby, D.; Mauro, M.J.; Flinn, I.; O’Hare, T.; Hu, S.; Narasimhan, N.I.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Druker, B.J.; Deininger, M.W.; Talpaz, M. Ponatinib in refractory philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2012, 367(22), 2075-2088.
[64]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A.; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.; Druker, B.J.; Clackson, T. AP24534, a Pan-BCR-ABL Inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[65]
Chan, W.W.; Wise, S.C.; Kaufman, M.D.; Ahn, Y.M.; Ensinger, C.L.; Haack, T.; Hood, M.M.; Jones, J.; Lord, J.W.; Lu, W.P.; Miller, D.; Patt, W.C.; Smith, B.D.; Petillo, P.A.; Rutkoski, T.J.; Telikepalli, H.; Vogeti, L.; Yao, T.; Chun, L.; Clark, R.; Evangelista, P.; Gavrilescu, L.C.; Lazarides, K.; Zaleskas, V.M.; Stewart, L.J.; Van Etten, R.A.; Flynn, D.L. Conformational CONtrol INHibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper t315i mutant, by the switch-control inhibitor DCC-2036. Cancer Cell, 2011, 19(4), 556-568.
[66]
Liu, F.; Wang, B.; Wang, Q.; Qi, Z.; Chen, C.; Kong, L-L.; Chen, J-Y.; Liu, X.; Wang, A.; Hu, C.; Wang, W.; Wang, H.; Wu, F.; Ruan, Y.; Qi, S.; Liu, J.; Zou, F.; Hu, Z.; Wang, W.; Wang, L.; Zhang, S.; Yun, C.H.; Zhai, Z.; Liu, J.; Liu, Q. Discovery and characterization of a novel potent Type II native and mutant BCR-ABL Inhibitor (CHMFL-074) for chronic myeloid leukemia (CML). Oncotarget, 2016, 7(29), 45562-45574.
[67]
Zhang, J.; Adrián, F.J.; Jahnke, W.; Cowan-Jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Powers, J.; Dierks, C.; Sun, F.; Guo, G.R.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. targeting Bcr-Abl by combining allosteric with ATP-Binding-Site inhibitors. Nature, 2010, 463(7280), 501-506.
[68]
Hantschel, O.; Superti-Furga, G. Regulation of the C-Abl and Bcr-Abl tyrosine kinases. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 33-44.
[69]
Zhang, J.; Adrian, F.J.; Jahnke, W.; Cowan-jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Powers, J.; Dierks, C.; Guo, G.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. Targeting wild-type and T315I Bcr-Abl by combining allosteric with ATP-Site inhibitors. Nature, 2010, 463(7280), 501-506.
[70]
Yang, J.; Campobasso, N.; Biju, M.P.; Fisher, K.; Pan, X.Q.; Cottom, J.; Galbraith, S.; Ho, T.; Zhang, H.; Hong, X.; Ward, P.; Hofmann, G.; Siegfried, B.; Zappacosta, F.; Washio, Y.; Cao, P.; Qu, J.; Bertrand, S.; Wang, D.Y.; Head, M.S.; Li, H.; Moores, S.; Lai, Z.; Johanson, K.; Burton, G.; Erickson-Miller, C.; Simpson, G.; Tummino, P.; Copeland, R.A.; Oliff, A. Discovery and characterization of a cell-permeable, small-Molecule c-Abl Kinase Activator That Binds to the myristoyl binding site. Chem. Biol., 2011, 18(2), 177-186.
[71]
Jahnke, W.; Grotzfeld, R.M.; Pell, X.; Strauss, A.; Fendrich, G.; Cowan-Jacob, S.W.; Cotesta, S.; Fabbro, D.; Furet, P.; Mestan, J.; Marzinzik, A.L. Binding or bending: Distinction of allosteric abl kinase agonists from antagonists by an nmr-based conformational assay. J. Am. Chem. Soc., 2010, 132(20), 7043-7048.
[72]
Hantschel, O. Allosteric BCR-ABL inhibitors in philadelphia chromosome-positive acute lymphoblastic leukemia: Novel opportunities for drug combinations to overcome resistance. Haematologica, 2012, 97(2), 157-159.
[73]
Crespan, E.; Radi, M.; Zanoli, S.; Schenone, S.; Botta, M.; Maga, G. Dual Src and Abl inhibitors target wild type abl and the ablt315i imatinib-resistant mutant with different mechanisms. Bioorg. Med. Chem., 2010, 18(11), 3999-4008.
[74]
Fallacara, A.L.; Tintori, C.; Radi, M.; Schenone, S.; Botta, M. Insight into the allosteric inhibition of Abl kinase. J. Chem. Inf. Model., 2014, 54(5), 1325-1338.
[75]
Wu, L.; Wu, Y.; Chen, R.; Liu, Y.; Huang, L.; Lou, L.; Zheng, Z.; Chen, Y.; Xu, J. Curcumin derivative C817 inhibits proliferation of imatinib-resistant chronic myeloid leukemia cells with wild-type or mutant Bcr-Abl in Vitro. Acta Pharmacol. Sin., 2014, 35(3), 401-409.
[76]
Carter, B.Z.; Mak, P.Y.; Mu, H.; Zhou, H.; Mak, D.H.; Schober, W.; Leverson, J.D.; Zhang, B.; Bhatia, R.; Huang, X.; Cortes, J.; Kantarjian, H.; Konopleva, M.; Andreeff, M. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci. Transl. Med., 2016, 8(355), 355ra117.
[77]
Pemovska, T.; Johnson, E.; Kontro, M.; Repasky, G.A.; Chen, J.; Wells, P.; Cronin, C.N.; McTigue, M.; Kallioniemi, O.; Porkka, K.; Murray, B.W.; Wennerberg, K. Axitinib effectively inhibits Bcr-Abl1(T315i) with a distinct binding conformation. Nature, 2015, 519(7541), 102-105.
[78]
Massimino, M.; Stella, S.; Tirrò, E.; Romano, C.; Pennisi, M.S.; Puma, A.; Manzella, L.; Zanghì, A.; Stagno, F.; Di Raimondo, F.; Vigneri, P. Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol. Cancer, 2018, 17(1), 1-15.
[79]
Cayssials, E.; Guilhot, F. Beyond tyrosine kinase inhibitors: combinations and other agents. Best Pract. Res. Clin. Haematol., 2016, 29(3), 271-283.
[80]
Lucansky, V.; Sobotkova, E.; Tachezy, R.; Duskova, M.; Vonka, V. DNA Vaccination against Bcr-Abl-Positive Cells In Mice. Int. J. Oncol., 2009, 35(4), 941-951.
[81]
Pinilla-Ibarz, J.; Cathcart, K.; Korontsvit, T.; Soignet, S.; Bocchia, M.; Caggiano, J.; Lai, L.; Jimenez, J.; Kolitz, J.; Scheinberg, D.a. vaccination of patients with chronic myelogenous leukemia with Bcr-Abl oncogene breakpoint fusion peptides generates specific immune responses. Blood, 2000, 95(5), 1781-1787.
[82]
Vaidya, S.; Ghosh, K.; Vundinti, B.R. Recent developments in drug resistance mechanism in chronic myeloid leukemia: A review. Europ. J. Haematol., 2011, 87(5), 381-393.
[83]
Saikia, T. The cure of chronic myeloid leukemia: Are we there yet? Curr. Oncol. Rep., 2018, 20(2), 12.
[84]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of BCR-ABL inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84.
[85]
Singh, V.K.; Chang, H-H.; Kuo, C-C.; Shiao, H-Y.; Hsieh, H-P.; Coumar, M.S. Drug repurposing for chronic myeloid leukemia: in silico and in vitro investigation of drugbank database for allosteric BCR-ABL inhibitors. J. Biomol. Struct. Dyn., 2017, 35(8), 1833-1848.
[86]
P, P.K.; Khajapeer, K.V.; Balakrishnan, A.P.; Rajasekaran, B. Multi-Targeted approach to treat drug resistant CML using natural compounds : A double edged sword. Signif. Bioeng. Biosci, 2018, 2(2), SBB-000531.
[87]
Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep., 2015, 32(8), 1249-1266.
[88]
Ho, T.T.; Tran, Q.T.; Chai, C.L. The polypharmacology of natural products. Future Med. Chem., 2018, 10(11), 1361-1368.
[89]
Manley, P.W.; Cowan-Jacob, S.W.; Mestan, J. Advances in the structural biology, design and clinical development of bcr-abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim. Biophys. Acta, 2005, 1754(1-2), 3-13.
[90]
Roskoski, R. A Historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res., 2015, 100, 1-23.