Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies

Author(s): Alan Talevi, Carolina Carrillo and Marcelo Comini*

Volume 26, Issue 36, 2019

Page: [6614 - 6635] Pages: 22

DOI: 10.2174/0929867325666180926151059

Price: $65

Abstract

Chagas´ disease continues to be a challenging and neglected public health problem in many American countries. The etiologic agent, Trypanosoma cruzi, develops intracellularly in the mammalian host, which hinders treatment efficacy. Progress in the knowledge of parasite biology and host-pathogen interaction has not been paralleled by the development of novel, safe and effective therapeutic options. It is then urgent to seek for novel therapeutic candidates and to implement drug discovery strategies that may accelerate the discovery process. The most appealing targets for pharmacological intervention are those essential for the pathogen and, whenever possible, absent or significantly different from the host homolog. The thiol-polyamine metabolism of T. cruzi offers interesting candidates for a rational design of selective drugs. In this respect, here we critically review the state of the art of the thiolpolyamine metabolism of T. cruzi and the pharmacological potential of its components. On the other hand, drug repurposing emerged as a valid strategy to identify new biological activities for drugs in clinical use, while significantly shortening the long time and high cost associated with de novo drug discovery approaches. Thus, we also discuss the different drug repurposing strategies available with a special emphasis in their applications to the identification of drug candidates targeting essential components of the thiol-polyamine metabolism of T. cruzi.

Keywords: Therapy, trypanothione, spermidine, polyamines, Chagas´ disease, bioinformatics, screening, approved drugs, drug repositioning, drug repurposing.

[1]
Browne, A.J.; Guerra, C.A.; Alves, R.V.; da Costa, V.M.; Wilson, A.L.; Pigott, D.M.; Hay, S.I.; Lindsay, S.W.; Golding, N.; Moyes, C.L. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci. Data, 2017, 4170050
[http://dx.doi.org/10.1038/sdata.2017.50] [PMID: 28398292]
[2]
World Health Organization. Chagas disease in latin america: an epidemiological update based on 2010 estimates. Weekly epidemiological record - WHO, 2015, 90(6), 33-44.
[PMID: 25671846]
[3]
Coura, J.R.; Viñas, P.A. Chagas disease: a new worldwide challenge. Nature, 2010, 465(7301), S6-S7.
[http://dx.doi.org/10.1038/nature09221] [PMID: 20571554]
[4]
Jimenez, V. Dealing with environmental challenges: mechanisms of adaptation in Trypanosoma cruzi. Res. Microbiol., 2014, 165(3), 155-165.
[http://dx.doi.org/10.1016/j.resmic.2014.01.006] [PMID: 24508488]
[5]
Barrett, M.P.; Gilbert, I.H. Targeting of toxic compounds to the trypanosome’s interior. Adv. Parasitol., 2006, 63, 125-183.
[http://dx.doi.org/10.1016/S0065-308X(06)63002-9] [PMID: 17134653]
[6]
Pereira, C.A.; Carrillo, C. Transport of essential metabolites in trypanosomatids.In: Parasites: Ecology, Management and Diseases; Nova Science Publishers, I; Erzinger, G.S., Ed.; New York, 2013, pp. 43-60.
[7]
Rassi, A., Jr; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet, 2010, 375(9723), 1388-1402.
[http://dx.doi.org/10.1016/S0140-6736(10)60061-X] [PMID: 20399979]
[8]
Coura, J.R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions--a comprehensive review. Mem. Inst. Oswaldo Cruz, 2015, 110(3), 277-282.
[http://dx.doi.org/10.1590/0074-0276140362] [PMID: 25466622]
[9]
Chatelain, E. Chagas disease research and development: Is there light at the end of the tunnel? Comput. Struct. Biotechnol. J., 2016, 15, 98-103.
[http://dx.doi.org/10.1016/j.csbj.2016.12.002] [PMID: 28066534]
[10]
Molina, I.; Salvador, F.; Sánchez-Montalvá, A.; Treviño, B.; Serre, N.; Sao Avilés, A.; Almirante, B. Toxic profile of benznidazole in patients with chronic chagas disease: risk factors and comparison of the product from two different manufacturers. Antimicrob. Agents Chemother., 2015, 59(10), 6125-6131.
[http://dx.doi.org/10.1128/AAC.04660-14] [PMID: 26195525]
[11]
Olivera, M.J.; Cucunubá, Z.M.; Álvarez, C.A.; Nicholls, R.S. Safety profile of nifurtimox and treatment interruption for chronic chagas disease in colombian adults. Am. J. Trop. Med. Hyg., 2015, 93(6), 1224-1230.
[http://dx.doi.org/10.4269/ajtmh.15-0256] [PMID: 26392162]
[12]
Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; Guhl, F.; Velazquez, E.; Bonilla, L.; Meeks, B.; Rao-Melacini, P.; Pogue, J.; Mattos, A.; Lazdins, J.; Rassi, A.; Connolly, S.J.; Yusuf, S. BENEFIT investigators. randomized trial of benznidazole for chronic chagas’ cardiomyopathy. N. Engl. J. Med., 2015, 373(14), 1295-1306.
[http://dx.doi.org/10.1056/NEJMoa1507574] [PMID: 26323937]
[13]
Sánchez-Valdéz, F.J.; Padilla, A.; Wang, W.; Orr, D.; Tarleton, R.L. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. eLife, 2018, 7pii: e34039
[http://dx.doi.org/10.7554/eLife.34039] [PMID: 29578409]
[14]
Ariyanayagam, M.R.; Tetaud, E.; Fairlamb, A.H. Diamine auxotrophy in a eukaryotic parasite. Biochem. Soc. Trans., 1998, 26(4), 606-609.
[http://dx.doi.org/10.1042/bst0260606] [PMID: 10047791]
[15]
Comini, M.A.; Flohé, L. Trypanothione-based redox metabolism of trypanosomatids.In: Trypanosomatids diseases, molecular routes to drug discovery; Jäger, T.; Koch, O.; Flohé, L., Eds.; Wiley-Blackwell: Weinheim, 2013, pp. 167-199.
[http://dx.doi.org/10.1002/9783527670383.ch9]
[16]
Tabor, C.W.; Tabor, H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu. Rev. Biochem., 1976, 45, 285-306.
[http://dx.doi.org/10.1146/annurev.bi.45.070176.001441] [PMID: 786151]
[17]
Tabor, C.W.; Tabor, H. Polyamines. Annu. Rev. Biochem., 1984, 53, 749-790.
[http://dx.doi.org/10.1146/annurev.bi.53.070184.003533] [PMID: 6206782]
[18]
Pegg, A.E. Functions of polyamines in mammals. J. Biol. Chem., 2016, 291(29), 14904-14912.
[http://dx.doi.org/10.1074/jbc.R116.731661] [PMID: 27268251]
[19]
Goldemberg, S.H.; Algranati, I.D. Polyamines and protein synthesis: studies in various polyamine-requiring mutants of Escherichia coli. Mol. Cell. Biochem., 1977, 16(2), 71-77.
[http://dx.doi.org/10.1007/BF01732046] [PMID: 329122]
[20]
Bacchi, C.J.; Vergara, C.; Garofalo, J.; Lipschik, G.Y.; Hutner, S.H. Synthesis and content of polyamines in bloodstream Trypanosma brucei. J. Protozool., 1979, 26(3), 484-488.
[http://dx.doi.org/10.1111/j.1550-7408.1979.tb04658.x] [PMID: 536937]
[21]
Igarashi, K.; Sugawara, K.; Izumi, I.; Nagayama, C.; Hirose, S. Effect of polyamines of polyphenylalanine synthesis by Escherichia coli and rat-liver ribosomes. Eur. J. Biochem., 1974, 48(2), 495-502.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03790.x] [PMID: 4614977]
[22]
Marton, L.J.; Pegg, A.E. Polyamines as targets for therapeutic intervention. Annu. Rev. Pharmacol. Toxicol., 1995, 35, 55-91.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.000415] [PMID: 7598507]
[23]
Vanrell, M.C.; Cueto, J.A.; Barclay, J.J.; Carrillo, C.; Colombo, M.I.; Gottlieb, R.A.; Romano, P.S. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity. Autophagy, 2013, 9(7), 1080-1093.
[http://dx.doi.org/10.4161/auto.24709] [PMID: 23697944]
[24]
Miller-Fleming, L.; Olin-Sandoval, V.; Campbell, K.; Ralser, M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J. Mol. Biol., 2015, 427(21), 3389-3406.
[http://dx.doi.org/10.1016/j.jmb.2015.06.020] [PMID: 26156863]
[25]
Gevrekci, A.Ö. The roles of polyamines in microorganisms. World J. Microbiol. Biotechnol., 2017, 33(11), 204.
[http://dx.doi.org/10.1007/s11274-017-2370-y] [PMID: 29080149]
[26]
Handa, A.K.; Fatima, T.; Mattoo, A.K. Polyamines: Bio-molecules with diverse functions in plant and human health and disease. Front Chem., 2018, 6, 10.
[http://dx.doi.org/10.3389/fchem.2018.00010] [PMID: 29468148]
[27]
Flohé, L. Glutathione, 1st ed; CRC Press: Boca Raton, 2018.
[http://dx.doi.org/10.1201/9781351261760]
[28]
Fairlamb, A.H.; Blackburn, P.; Ulrich, P.; Chait, B.T.; Cerami, A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science, 1985, 227(4693), 1485-1487.
[http://dx.doi.org/10.1126/science.3883489] [PMID: 3883489]
[29]
Fairlamb, A.H.; Cerami, A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol., 1992, 46, 695-729.
[http://dx.doi.org/10.1146/annurev.mi.46.100192.003403] [PMID: 1444271]
[30]
Boveris, A.; Sies, H.; Martino, E.E.; Docampo, R.; Turrens, J.F.; Stoppani, A.O. Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem. J., 1980, 188(3), 643-648.
[http://dx.doi.org/10.1042/bj1880643] [PMID: 7008779]
[31]
Hall, B.S.; Bot, C.; Wilkinson, S.R. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J. Biol. Chem., 2011, 286(15), 13088-13095.
[http://dx.doi.org/10.1074/jbc.M111.230847] [PMID: 21345801]
[32]
Maya, J.D.; Repetto, Y.; Agosín, M.; Ojeda, J.M.; Tellez, R.; Gaule, C.; Morello, A. Effects of nifurtimox and benznidazole upon glutathione and trypanothione content in epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi. Mol. Biochem. Parasitol., 1997, 86(1), 101-106.
[http://dx.doi.org/10.1016/S0166-6851(96)02837-X] [PMID: 9178272]
[33]
Trochine, A.; Creek, D.J.; Faral-Tello, P.; Barrett, M.P.; Robello, C. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl. Trop. Dis., 2014, 8(5)e2844
[http://dx.doi.org/10.1371/journal.pntd.0002844] [PMID: 24853684]
[34]
Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5022-5027.
[http://dx.doi.org/10.1073/pnas.0711014105] [PMID: 18367671]
[35]
Hall, B.S.; Meredith, E.L.; Wilkinson, S.R. Targeting the substrate preference of a type I nitroreductase to develop antitrypanosomal quinone-based prodrugs. Antimicrob. Agents Chemother., 2012, 56(11), 5821-5830.
[http://dx.doi.org/10.1128/AAC.01227-12] [PMID: 22948871]
[36]
Campos, M.C.; Phelan, J.; Francisco, A.F.; Taylor, M.C.; Lewis, M.D.; Pain, A.; Clark, T.G.; Kelly, J.M. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Sci. Rep., 2017, 7(1), 14407.
[http://dx.doi.org/10.1038/s41598-017-14986-6] [PMID: 29089615]
[37]
Mesías, A.C.; Sasoni, N.; Arias, D.G.; Pérez Brandán, C.; Orban, O.C.F.; Kunick, C.; Robello, C.; Comini, M.A.; Garg, N.J.; Zago, P.M. Trypanothione synthetase confers growth, survival advantage, and resistance to anti-protozoal drugs in Trypanosoma cruzi. Free Radic. Biol. Med., 2019, 130, 23-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.436] [PMID: 30359758]
[38]
Faundez, M.; Pino, L.; Letelier, P.; Ortiz, C.; López, R.; Seguel, C.; Ferreira, J.; Pavani, M.; Morello, A.; Maya, J.D. Buthionine sulfoximine increases the toxicity of nifurtimox and benznidazole to Trypanosoma cruzi. Antimicrob. Agents Chemother., 2005, 49(1), 126-130.
[http://dx.doi.org/10.1128/AAC.49.1.126-130.2005] [PMID: 15616285]
[39]
Faúndez, M.; López-Muñoz, R.; Torres, G.; Morello, A.; Ferreira, J.; Kemmerling, U.; Orellana, M.; Maya, J.D. Buthionine sulfoximine has anti-Trypanosoma cruzi activity in a murine model of acute Chagas’ disease and enhances the efficacy of nifurtimox. Antimicrob. Agents Chemother., 2008, 52(5), 1837-1839.
[http://dx.doi.org/10.1128/AAC.01454-07] [PMID: 18332173]
[40]
Vázquez, C.; Mejia-Tlachi, M.; González-Chávez, Z.; Silva, A.; Rodríguez-Zavala, J.S.; Moreno-Sánchez, R.; Saavedra, E. Buthionine sulfoximine is a multitarget inhibitor of trypanothione synthesis in Trypanosoma cruzi. FEBS Lett., 2017, 591(23), 3881-3894.
[http://dx.doi.org/10.1002/1873-3468.12904] [PMID: 29127710]
[41]
Pegg, A.E. Regulation of ornithine decarboxylase. J. Biol. Chem., 2006, 281(21), 14529-14532.
[http://dx.doi.org/10.1074/jbc.R500031200] [PMID: 16459331]
[42]
Persson, L. Polyamine homoeostasis. Essays Biochem., 2009, 46, 11-24.
[http://dx.doi.org/10.1042/bse0460002] [PMID: 20095967]
[43]
Michael, A.J. Polyamines in Eukaryotes, Bacteria, and Archaea. J. Biol. Chem., 2016, 291(29), 14896-14903.
[http://dx.doi.org/10.1074/jbc.R116.734780] [PMID: 27268252]
[44]
Liu, J-H.; Wang, W.; Wu, H.; Gong, X.; Moriguchi, T. Polyamines function in stress tolerance: from synthesis to regulation. Front. Plant Sci., 2015, 6, 827.
[http://dx.doi.org/10.3389/fpls.2015.00827] [PMID: 26528300]
[45]
Pegg, A.E. Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am. J. Physiol. Endocrinol. Metab., 2008, 294(6), E995-E1010.
[http://dx.doi.org/10.1152/ajpendo.90217.2008] [PMID: 18349109]
[46]
Casero, R.A.; Pegg, A.E. Polyamine catabolism and disease. Biochem. J., 2009, 421(3), 323-338.
[http://dx.doi.org/10.1042/BJ20090598] [PMID: 19589128]
[47]
Tavladoraki, P.; Cona, A.; Federico, R.; Tempera, G.; Viceconte, N.; Saccoccio, S.; Battaglia, V.; Toninello, A.; Agostinelli, E. Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids, 2012, 42(2-3), 411-426.
[http://dx.doi.org/10.1007/s00726-011-1012-1] [PMID: 21874532]
[48]
Fujita, M.; Shinozaki, K. Identification of polyamine transporters in plants: paraquat transport provides crucial clues. Plant Cell Physiol., 2014, 55(5), 855-861.
[http://dx.doi.org/10.1093/pcp/pcu032] [PMID: 24590488]
[49]
Abdulhussein, A.A.; Wallace, H.M. Polyamines and membrane transporters. Amino Acids, 2014, 46(3), 655-660.
[http://dx.doi.org/10.1007/s00726-013-1553-6] [PMID: 23851697]
[50]
Igarashi, K.; Kashiwagi, K. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem., 2010, 48(7), 506-512.
[http://dx.doi.org/10.1016/j.plaphy.2010.01.017] [PMID: 20159658]
[51]
Bacchi, C.J.; Nathan, H.C.; Hutner, S.H.; McCann, P.P.; Sjoerdsma, A. Polyamine metabolism: a potential therapeutic target in trypanosomes. Science, 1980, 210(4467), 332-334.
[http://dx.doi.org/10.1126/science.6775372] [PMID: 6775372]
[52]
Carrillo, C.; Cejas, S.; González, N.S.; Algranati, I.D. Trypanosoma cruzi epimastigotes lack ornithine decarboxylase but can express a foreign gene encoding this enzyme. FEBS Lett., 1999, 454(3), 192-196.
[http://dx.doi.org/10.1016/S0014-5793(99)00804-2] [PMID: 10431805]
[53]
Carrillo, C.; Cejas, S.; Huber, A.; González, N.S.; Algranati, I.D. Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes. J. Eukaryot. Microbiol., 2003, 50(5), 312-316.
[http://dx.doi.org/10.1111/j.1550-7408.2003.tb00141.x] [PMID: 14563168]
[54]
Carrillo, C.; Canepa, G.E.; Algranati, I.D.; Pereira, C.A. Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi. Biochem. Biophys. Res. Commun., 2006, 344(3), 936-940.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.215] [PMID: 16631600]
[55]
Hasne, M-P.; Coppens, I.; Soysa, R.; Ullman, B. A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol. Microbiol., 2010, 76(1), 78-91.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07081.x] [PMID: 20149109]
[56]
Bouvier, L.A.; Silber, A.M.; Galvão Lopes, C.; Canepa, G.E.; Miranda, M.R.; Tonelli, R.R.; Colli, W.; Alves, M.J.M.; Pereira, C.A. Post genomic analysis of permeases from the amino acid/auxin family in protozoan parasites. Biochem. Biophys. Res. Commun., 2004, 321(3), 547-556.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.002] [PMID: 15358142]
[57]
Young, G.; Jack, D.; Smith, D.; Saier, M. The amino acid/auxin: proton symport permease family. biochimica et biophysica acta (BBA) -. Biomembranes, 1999, 1415(2), 306-322.
[http://dx.doi.org/10.1016/S0005-2736(98)00196-5] [PMID: 9889387]
[58]
Taylor, M.C.; Kaur, H.; Blessington, B.; Kelly, J.M.; Wilkinson, S.R. Validation of spermidine synthase as a drug target in African trypanosomes. Biochem. J., 2008, 409(2), 563-569.
[http://dx.doi.org/10.1042/BJ20071185] [PMID: 17916066]
[59]
Gilroy, C.; Olenyik, T.; Roberts, S.C.; Ullman, B. Spermidine synthase is required for virulence of Leishmania donovani. Infect. Immun., 2011, 79(7), 2764-2769.
[http://dx.doi.org/10.1128/IAI.00073-11] [PMID: 21536795]
[60]
Yoshino, R.; Yasuo, N.; Hagiwara, Y.; Ishida, T.; Inaoka, D.K.; Amano, Y.; Tateishi, Y.; Ohno, K.; Namatame, I.; Niimi, T.; Orita, M.; Kita, K.; Akiyama, Y.; Sekijima, M. In silico, in vitro, X-ray crystallography, and integrated strategies for discovering spermidine synthase inhibitors for Chagas disease. Sci. Rep., 2017, 7(1), 6666.
[http://dx.doi.org/10.1038/s41598-017-06411-9] [PMID: 28751689]
[61]
Yamasaki, K.; Tani, O.; Tateishi, Y.; Tanabe, E.; Namatame, I.; Niimi, T.; Furukawa, K.; Sakashita, H. An NMR biochemical assay for fragment-based drug discovery: evaluation of an inhibitor activity on spermidine synthase of trypanosoma cruzi. J. Med. Chem., 2016, 59(5), 2261-2266.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01769] [PMID: 26881725]
[62]
Amano, Y.; Namatame, I.; Tateishi, Y.; Honboh, K.; Tanabe, E.; Niimi, T.; Sakashita, H. Structural insights into the novel inhibition mechanism of Trypanosoma cruzi spermidine synthase. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 9), 1879-1889.
[http://dx.doi.org/10.1107/S1399004715013048] [PMID: 26327378]
[63]
Olin-Sandoval, V.; González-Chávez, Z.; Berzunza-Cruz, M.; Martínez, I.; Jasso-Chávez, R.; Becker, I.; Espinoza, B.; Moreno-Sánchez, R.; Saavedra, E. Drug target validation of the trypanothione pathway enzymes through metabolic modelling. FEBS J., 2012, 279(10), 1811-1833.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08557.x] [PMID: 22394478]
[64]
El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; Westenberger, S.J.; Caler, E.; Cerqueira, G.C.; Branche, C.; Haas, B.; Anupama, A.; Arner, E.; Aslund, L.; Attipoe, P.; Bontempi, E.; Bringaud, F.; Burton, P.; Cadag, E.; Campbell, D.A.; Carrington, M.; Crabtree, J.; Darban, H.; da Silveira, J.F.; de Jong, P.; Edwards, K.; Englund, P.T.; Fazelina, G.; Feldblyum, T.; Ferella, M.; Frasch, A.C.; Gull, K.; Horn, D.; Hou, L.; Huang, Y.; Kindlund, E.; Klingbeil, M.; Kluge, S.; Koo, H.; Lacerda, D.; Levin, M.J.; Lorenzi, H.; Louie, T.; Machado, C.R.; McCulloch, R.; McKenna, A.; Mizuno, Y.; Mottram, J.C.; Nelson, S.; Ochaya, S.; Osoegawa, K.; Pai, G.; Parsons, M.; Pentony, M.; Pettersson, U.; Pop, M.; Ramirez, J.L.; Rinta, J.; Robertson, L.; Salzberg, S.L.; Sanchez, D.O.; Seyler, A.; Sharma, R.; Shetty, J.; Simpson, A.J.; Sisk, E.; Tammi, M.T.; Tarleton, R.; Teixeira, S.; Van Aken, S.; Vogt, C.; Ward, P.N.; Wickstead, B.; Wortman, J.; White, O.; Fraser, C.M.; Stuart, K.D.; Andersson, B. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science, 2005, 309(5733), 409-415.
[http://dx.doi.org/10.1126/science.1112631] [PMID: 16020725]
[65]
Manta, B.; Bonilla, M.; Fiestas, L.; Sturlese, M.; Salinas, G.; Bellanda, M.; Comini, M.A. Polyamine-based thiols in trypanosomatids: evolution, protein structural adaptations, and biological functions. Antioxid. Redox Signal., 2018, 28(6), 463-486.
[http://dx.doi.org/10.1089/ars.2017.7133] [PMID: 29048199]
[66]
Oza, S.L.; Tetaud, E.; Ariyanayagam, M.R.; Warnon, S.S.; Fairlamb, A.H. A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi. J. Biol. Chem., 2002, 277(39), 35853-35861.
[http://dx.doi.org/10.1074/jbc.M204403200] [PMID: 12121990]
[67]
Comini, M.A. Biosynthesis of polyamine-glutathione derivatives in enterobacteria and kinetoplastida.In: Glutathione; Flohé, L., Ed.; CRC Press: Boca Raton, 2018, pp. 285-305.
[http://dx.doi.org/10.1201/9781351261760-17]
[68]
Comini, M.A.; Guerrero, S.A.; Haile, S.; Menge, U.; Lünsdorf, H.; Flohé, L. Validation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic. Biol. Med., 2004, 36(10), 1289-1302.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.02.008] [PMID: 15110394]
[69]
Sousa, A.F.; Gomes-Alves, A.G.; Benítez, D.; Comini, M.A.; Flohé, L.; Jaeger, T.; Passos, J.; Stuhlmann, F.; Tomás, A.M.; Castro, H. Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum. Free Radic. Biol. Med., 2014, 73, 229-238.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.007] [PMID: 24853758]
[70]
Jiang, Y.; Roberts, S.C.; Jardim, A.; Carter, N.S.; Shih, S.; Ariyanayagam, M.; Fairlamb, A.H.; Ullman, B. Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J. Biol. Chem., 1999, 274(6), 3781-3788.
[http://dx.doi.org/10.1074/jbc.274.6.3781] [PMID: 9920931]
[71]
Xiao, Y.; McCloskey, D.E.; Phillips, M.A. RNA interference-mediated silencing of ornithine decarboxylase and spermidine synthase genes in Trypanosoma brucei provides insight into regulation of polyamine biosynthesis. Eukaryot. Cell, 2009, 8(5), 747-755.
[http://dx.doi.org/10.1128/EC.00047-09] [PMID: 19304951]
[72]
Jockers-Scherübl, M.C.; Schirmer, R.H.; Krauth-Siegel, R.L. Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur. J. Biochem., 1989, 180(2), 267-272.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb14643.x] [PMID: 2647489]
[73]
Krieger, S.; Schwarz, W.; Ariyanayagam, M.R.; Fairlamb, A.H.; Krauth-Siegel, R.L.; Clayton, C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol., 2000, 35(3), 542-552.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01721.x] [PMID: 10672177]
[74]
Dumas, C.; Ouellette, M.; Tovar, J.; Cunningham, M.L.; Fairlamb, A.H.; Tamar, S.; Olivier, M.; Papadopoulou, B. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J., 1997, 16(10), 2590-2598.
[http://dx.doi.org/10.1093/emboj/16.10.2590] [PMID: 9184206]
[75]
Barderi, P.; Campetella, O.; Frasch, A.C.; Santomé, J.A.; Hellman, U.; Pettersson, U.; Cazzulo, J.J. The NADP+-linked glutamate dehydrogenase from Trypanosoma cruzi: sequence, genomic organization and expression. Biochem. J., 1998, 330(Pt 2), 951-958.
[http://dx.doi.org/10.1042/bj3300951] [PMID: 9480915]
[76]
Maugeri, D.A.; Cazzulo, J.J. The pentose phosphate pathway in Trypanosoma cruzi. FEMS Microbiol. Lett., 2004, 234(1), 117-123.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09522.x] [PMID: 15109729]
[77]
Leroux, A.E.; Maugeri, D.A.; Cazzulo, J.J.; Nowicki, C. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Mol. Biochem. Parasitol., 2011, 177(1), 61-64.
[http://dx.doi.org/10.1016/j.molbiopara.2011.01.010] [PMID: 21291916]
[78]
Leroux, A.E.; Maugeri, D.A.; Opperdoes, F.R.; Cazzulo, J.J.; Nowicki, C. Comparative studies on the biochemical properties of the malic enzymes from Trypanosoma cruzi and Trypanosoma brucei. FEMS Microbiol. Lett., 2011, 314(1), 25-33.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02142.x] [PMID: 21105905]
[79]
Comini, M.A.; Ortíz, C.; Cazzulo, J.J. Drug targets in trypanosomal and leishmanial pentose phosphate pathway. In: Trypanosomatid Diseases; Molecular routes to drug discovery, Ed. Jäger T, Koch O, Flohé L. Wiley-VCH Verlag GmbH & Co. KGaA. 2013, p. 297–313.
[http://dx.doi.org/10.1002/9783527670383.ch16]
[80]
Kovářová, J.; Barrett, M.P. The Pentose Phosphate Pathway in Parasitic Trypanosomatids. Trends Parasitol., 2016, 32(8), 622-634.
[http://dx.doi.org/10.1016/j.pt.2016.04.010] [PMID: 27174163]
[81]
Krauth-Siegel, R.L.; Comini, M.A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim. Biophys. Acta, 2008, 1780(11), 1236-1248.
[http://dx.doi.org/10.1016/j.bbagen.2008.03.006] [PMID: 18395526]
[82]
Manta, B.; Comini, M.; Medeiros, A.; Hugo, M.; Trujillo, M.; Radi, R. Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids. Biochim. Biophys. Acta, 2013, 1830(5), 3199-3216.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.013] [PMID: 23396001]
[83]
Willert, E.; Phillips, M.A. Regulation and function of polyamines in African trypanosomes. Trends Parasitol., 2012, 28(2), 66-72.
[http://dx.doi.org/10.1016/j.pt.2011.11.001] [PMID: 22192816]
[84]
Bocedi, A.; Dawood, K.F.; Fabrini, R.; Federici, G.; Gradoni, L.; Pedersen, J.Z.; Ricci, G. Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites. FASEB J., 2010, 24(4), 1035-1042.
[http://dx.doi.org/10.1096/fj.09-146407] [PMID: 19952282]
[85]
Manta, B.; Pavan, C.; Sturlese, M.; Berndt, C.; Krauth-Siegel, R.L.; Bellanda, M.; Comini, M.A. Biochemical and structural basis for iron-sulfur cluster coordination by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei. Antioxid. Redox Signal., 2013, 19, 665-682.
[http://dx.doi.org/10.1089/ars.2012.4859] [PMID: 23259530]
[86]
Maya, J.D.; Bollo, S.; Nuñez-Vergara, L.J.; Squella, J.A.; Repetto, Y.; Morello, A.; Périé, J.; Chauvière, G. Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochem. Pharmacol., 2003, 65(6), 999-1006.
[http://dx.doi.org/10.1016/S0006-2952(02)01663-5] [PMID: 12623132]
[87]
Maya, J.D.; Cassels, B.K.; Iturriaga-Vásquez, P.; Ferreira, J.; Faúndez, M.; Galanti, N.; Ferreira, A.; Morello, A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2007, 146(4), 601-620.
[http://dx.doi.org/10.1016/j.cbpa.2006.03.004] [PMID: 16626984]
[88]
Repetto, Y.; Opazo, E.; Maya, J.D.; Agosin, M.; Morello, A. Glutathione and trypanothione in several strains of Trypanosoma cruzi: effect of drugs. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1996, 115(2), 281-285.
[http://dx.doi.org/10.1016/0305-0491(96)00112-5] [PMID: 8939007]
[89]
Greig, N.; Wyllie, S.; Vickers, T.J.; Fairlamb, A.H. Trypanothione-dependent glyoxalase I in Trypanosoma cruzi. Biochem. J., 2006, 400(2), 217-223.
[http://dx.doi.org/10.1042/BJ20060882] [PMID: 16958620]
[90]
Greig, N.; Wyllie, S.; Patterson, S.; Fairlamb, A.H. A comparative study of methylglyoxal metabolism in trypanosomatids. FEBS J., 2009, 276(2), 376-386.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06788.x] [PMID: 19076214]
[91]
Sousa Silva, M.; Ferreira, A.E.; Gomes, R.; Tomás, A.M.; Ponces Freire, A.; Cordeiro, C. The glyoxalase pathway in protozoan parasites. Int. J. Med. Microbiol., 2012, 302(4-5), 225-229.
[http://dx.doi.org/10.1016/j.ijmm.2012.07.005] [PMID: 22901378]
[92]
Awad, S.; Henderson, G.B.; Cerami, A.; Held, K.D. Effects of trypanothione on the biological activity of irradiated transforming DNA. Int. J. Radiat. Biol., 1992, 62(4), 401-407.
[http://dx.doi.org/10.1080/09553009214552281] [PMID: 1357053]
[93]
Arias, D.G.; Marquez, V.E.; Chiribao, M.L.; Gadelha, F.R.; Robello, C.; Iglesias, A.A.; Guerrero, S.A. Redox metabolism in Trypanosoma cruzi: functional characterization of tryparedoxins revisited. Free Radic. Biol. Med., 2013, 63, 65-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.036] [PMID: 23665397]
[94]
Arias, D.G.; Piñeyro, M.D.; Iglesias, A.A.; Guerrero, S.A.; Robello, C. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II. J. Proteomics, 2015, 120, 95-104.
[http://dx.doi.org/10.1016/j.jprot.2015.03.001] [PMID: 25765699]
[95]
Márquez, V.E.; Arias, D.G.; Chiribao, M.L.; Faral-Tello, P.; Robello, C.; Iglesias, A.A.; Guerrero, S.A. Redox metabolism in Trypanosoma cruzi. Biochemical characterization of dithiol glutaredoxin dependent cellular pathways. Biochimie, 2014, 106, 56-67.
[http://dx.doi.org/10.1016/j.biochi.2014.07.027] [PMID: 25110158]
[96]
Piattoni, C.V.; Blancato, V.S.; Miglietta, H.; Iglesias, A.A.; Guerrero, S.A. On the occurrence of thioredoxin in Trypanosoma cruzi. Acta Trop., 2006, 97(2), 151-160.
[http://dx.doi.org/10.1016/j.actatropica.2005.10.005] [PMID: 16310752]
[97]
Schmidt, A.; Clayton, C.E.; Krauth-Siegel, R.L. Silencing of the thioredoxin gene in Trypanosoma brucei brucei. Mol. Biochem. Parasitol., 2002, 125(1-2), 207-210.
[http://dx.doi.org/10.1016/S0166-6851(02)00215-3] [PMID: 12467989]
[98]
Marquez, V.E.; Arias, D.G.; Piattoni, C.V.; Robello, C.; Iglesias, A.A.; Guerrero, S.A. Cloning, expression, and characterization of a dithiol glutaredoxin from Trypanosoma cruzi. Antioxid. Redox Signal., 2010, 12(6), 787-792.
[http://dx.doi.org/10.1089/ars.2009.2907] [PMID: 19769456]
[99]
Piñeyro, M.D.; Parodi-Talice, A.; Portela, M.; Arias, D.G.; Guerrero, S.A.; Robello, C. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin 1. J. Proteomics, 2011, 74(9), 1683-1692.
[http://dx.doi.org/10.1016/j.jprot.2011.04.006] [PMID: 21539948]
[100]
Reigada, C.; Sayé, M.; Vera, E.V.; Balcazar, D.; Fraccaroli, L.; Carrillo, C.; Miranda, M.R.; Pereira, C.A. Trypanosoma cruzi polyamine transporter: its role on parasite growth and survival under stress conditions. J. Membr. Biol., 2016, 249(4), 475-481.
[http://dx.doi.org/10.1007/s00232-016-9888-z] [PMID: 26983938]
[101]
Barclay, J.J.; Morosi, L.G.; Vanrell, M.C.; Trejo, E.C.; Romano, P.S.; Carrillo, C. Trypanosoma cruzi coexpressing ornithine decarboxylase and green fluorescence proteins as a tool to study the role of polyamines in chagas disease pathology. Enzyme Res., 2011, 2011657460
[http://dx.doi.org/10.4061/2011/657460] [PMID: 21687606]
[102]
Vanrell, M.C.; Losinno, A.D.; Cueto, J.A.; Balcazar, D.; Fraccaroli, L.V.; Carrillo, C.; Romano, P.S. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis. PLoS Negl. Trop. Dis., 2017, 11(11)e0006049
[http://dx.doi.org/10.1371/journal.pntd.0006049] [PMID: 29091711]
[103]
Hasne, M-P.; Soysa, R.; Ullman, B. The trypanosoma cruzi diamine transporter is essential for robust infection of mammalian cells. PLoS One, 2016, 11(4)e0152715
[http://dx.doi.org/10.1371/journal.pone.0152715] [PMID: 27050410]
[104]
Carrillo, C.; Canepa, G.E.; Giacometti, A.; Bouvier, L.A.; Miranda, M.R.; de los Milagros Camara, M.; Pereira, C.A. Trypanosoma cruzi amino acid transporter TcAAAP411 mediates arginine uptake in yeasts. FEMS Microbiol. Lett., 2010, 306(2), 97-102.
[http://dx.doi.org/10.1111/j.1574-6968.2010.01936.x] [PMID: 20337715]
[105]
Miranda, M.R.; Sayé, M.; Bouvier, L.A. Cámara, Mde.L.; Montserrat, J.; Pereira, C.A. Cationic amino acid uptake constitutes a metabolic regulation mechanism and occurs in the flagellar pocket of Trypanosoma cruzi. PLoS One, 2012, 7(2)e32760
[http://dx.doi.org/10.1371/journal.pone.0032760] [PMID: 22393446]
[106]
Inbar, E.; Canepa, G.E.; Carrillo, C.; Glaser, F.; Suter Grotemeyer, M.; Rentsch, D.; Zilberstein, D.; Pereira, C.A. Lysine transporters in human trypanosomatid pathogens. Amino Acids, 2012, 42(1), 347-360.
[http://dx.doi.org/10.1007/s00726-010-0812-z] [PMID: 21170560]
[107]
Cavalli, A.; Bolognesi, M.L. Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J. Med. Chem., 2009, 52(23), 7339-7359.
[http://dx.doi.org/10.1021/jm9004835] [PMID: 19606868]
[108]
Ariyanayagam, M.R.; Fairlamb, A.H. Diamine auxotrophy may be a universal feature of Trypanosoma cruzi epimastigotes. Mol. Biochem. Parasitol., 1997, 84(1), 111-121.
[http://dx.doi.org/10.1016/S0166-6851(96)02788-0] [PMID: 9041526]
[109]
González-Chávez, Z.; Olin-Sandoval, V.; Rodíguez-Zavala, J.S.; Moreno-Sánchez, R.; Saavedra, E. Metabolic control analysis of the Trypanosoma cruzi peroxide detoxification pathway identifies tryparedoxin as a suitable drug target. Biochim. Biophys. Acta, 2015, 1850(2), 263-273.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.029] [PMID: 25450181]
[110]
Huynh, T.T.; Huynh, V.T.; Harmon, M.A.; Phillips, M.A. Gene knockdown of gamma-glutamylcysteine synthetase by RNAi in the parasitic protozoa Trypanosoma brucei demonstrates that it is an essential enzyme. J. Biol. Chem., 2003, 278(41), 39794-39800.
[http://dx.doi.org/10.1074/jbc.M306306200] [PMID: 12888552]
[111]
Comini, M.A.; Krauth-Siegel, R.L.; Flohé, L. Depletion of the thioredoxin homologue tryparedoxin impairs antioxidative defence in African trypanosomes. Biochem. J., 2007, 402(1), 43-49.
[http://dx.doi.org/10.1042/BJ20061341] [PMID: 17040206]
[112]
Benítez, D.; Medeiros, A.; Fiestas, L.; Panozzo-Zenere, E.A.; Maiwald, F.; Prousis, K.C.; Roussaki, M.; Calogeropoulou, T.; Detsi, A.; Jaeger, T.; Šarlauskas, J.; Peterlin Mašič, L.; Kunick, C.; Labadie, G.R.; Flohé, L.; Comini, M.A. Identification of novel chemical scaffolds inhibiting trypanothione synthetase from pathogenic trypanosomatids. PLoS Negl. Trop. Dis., 2016, 10(4)e0004617
[http://dx.doi.org/10.1371/journal.pntd.0004617] [PMID: 27070550]
[113]
Orban, O.C.; Korn, R.S.; Benítez, D.; Medeiros, A.; Preu, L.; Loaëc, N.; Meijer, L.; Koch, O.; Comini, M.A.; Kunick, C. 5-Substituted 3-chlorokenpaullone derivatives are potent inhibitors of Trypanosoma brucei bloodstream forms. Bioorg. Med. Chem., 2016, 24(16), 3790-3800.
[http://dx.doi.org/10.1016/j.bmc.2016.06.023] [PMID: 27349574]
[114]
Lueder, D.V.; Phillips, M.A. Characterization of Trypanosoma brucei gamma-glutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione (diglutathionylspermidine). J. Biol. Chem., 1996, 271(29), 17485-17490.
[http://dx.doi.org/10.1074/jbc.271.29.17485] [PMID: 8663359]
[115]
Hofmann, B.; Budde, H.; Bruns, K.; Guerrero, S.A.; Kalisz, H.M.; Menge, U.; Montemartini, M.; Nogoceke, E.; Steinert, P.; Wissing, J.B.; Flohé, L.; Hecht, H.J. Structures of tryparedoxins revealing interaction with trypanothione. Biol. Chem., 2001, 382(3), 459-471.
[http://dx.doi.org/10.1515/BC.2001.056] [PMID: 11347894]
[116]
Fueller, F.; Jehle, B.; Putzker, K.; Lewis, J.D.; Krauth-Siegel, R.L. High throughput screening against the peroxidase cascade of African trypanosomes identifies antiparasitic compounds that inactivate tryparedoxin. J. Biol. Chem., 2012, 287(12), 8792-8802.
[http://dx.doi.org/10.1074/jbc.M111.338285] [PMID: 22275351]
[117]
Leroux, A.E.; Krauth-Siegel, R.L. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol. Biochem. Parasitol., 2016, 206(1-2), 67-74.
[http://dx.doi.org/10.1016/j.molbiopara.2015.11.003] [PMID: 26592324]
[118]
Krauth-Siegel, R.L.; Enders, B.; Henderson, G.B.; Fairlamb, A.H.; Schirmer, R.H. Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Eur. J. Biochem., 1987, 164(1), 123-128.
[http://dx.doi.org/10.1111/j.1432-1033.1987.tb11002.x] [PMID: 3549299]
[119]
Bond, C.S.; Zhang, Y.; Berriman, M.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure, 1999, 7(1), 81-89.
[http://dx.doi.org/10.1016/S0969-2126(99)80011-2] [PMID: 10368274]
[120]
Zhang, Y.; Bond, C.S.; Bailey, S.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 a resolution. Protein Sci., 1996, 5(1), 52-61.
[http://dx.doi.org/10.1002/pro.5560050107] [PMID: 8771196]
[121]
Saravanamuthu, A.; Vickers, T.J.; Bond, C.S.; Peterson, M.R.; Hunter, W.N.; Fairlamb, A.H. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase: a template for drug design. J. Biol. Chem., 2004, 279(28), 29493-29500.
[http://dx.doi.org/10.1074/jbc.M403187200] [PMID: 15102853]
[122]
Fyfe, P.K.; Oza, S.L.; Fairlamb, A.H.; Hunter, W.N. Leishmania trypanothione synthetase-amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. J. Biol. Chem., 2008, 283(25), 17672-17680.
[http://dx.doi.org/10.1074/jbc.M801850200] [PMID: 18420578]
[123]
Torrie, L.S.; Wyllie, S.; Spinks, D.; Oza, S.L.; Thompson, S.; Harrison, J.R.; Gilbert, I.H.; Wyatt, P.G.; Fairlamb, A.H.; Frearson, J.A. Chemical validation of trypanothione synthetase: a potential drug target for human trypanosomiasis. J. Biol. Chem., 2009, 284(52), 36137-36145.
[http://dx.doi.org/10.1074/jbc.M109.045336] [PMID: 19828449]
[124]
Spinks, D.; Torrie, L.S.; Thompson, S.; Harrison, J.R.; Frearson, J.A.; Read, K.D.; Fairlamb, A.H.; Wyatt, P.G.; Gilbert, I.H. Design, synthesis and biological evaluation of Trypanosoma brucei trypanothione synthetase inhibitors. ChemMedChem, 2012, 7(1), 95-106.
[http://dx.doi.org/10.1002/cmdc.201100420] [PMID: 22162199]
[125]
Oza, S.L.; Chen, S.; Wyllie, S.; Coward, J.K.; Fairlamb, A.H. ATP-dependent ligases in trypanothione biosynthesis--kinetics of catalysis and inhibition by phosphinic acid pseudopeptides. FEBS J., 2008, 275(21), 5408-5421.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06670.x] [PMID: 18959765]
[126]
D’Silva, C.; Daunes, S. Structure-activity study on the in vitro antiprotozoal activity of glutathione derivatives. J. Med. Chem., 2000, 43(10), 2072-2078.
[http://dx.doi.org/10.1021/jm990259w] [PMID: 10821719]
[127]
Ravaschino, E.L.; Docampo, R.; Rodriguez, J.B. Design, synthesis, and biological evaluation of phosphinopeptides against Trypanosoma cruzi targeting trypanothione biosynthesis. J. Med. Chem., 2006, 49(1), 426-435.
[http://dx.doi.org/10.1021/jm050922i] [PMID: 16392828]
[128]
Castro, H.; Tomás, A.M. Peroxidases of trypanosomatids. Antioxid. Redox Signal., 2008, 10(9), 1593-1606.
[http://dx.doi.org/10.1089/ars.2008.2050] [PMID: 18498224]
[129]
Wilkinson, S.R.; Taylor, M.C.; Touitha, S.; Mauricio, I.L.; Meyer, D.J.; Kelly, J.M. TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum. Biochem. J., 2002, 364(Pt 3), 787-794.
[http://dx.doi.org/10.1042/bj20020038] [PMID: 12049643]
[130]
Wilkinson, S.R.; Temperton, N.J.; Mondragon, A.; Kelly, J.M. Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. J. Biol. Chem., 2000, 275(11), 8220-8225.
[http://dx.doi.org/10.1074/jbc.275.11.8220] [PMID: 10713147]
[131]
Wilkinson, S.R.; Meyer, D.J.; Kelly, J.M. Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity. Biochem. J., 2000, 352(Pt 3), 755-761.
[http://dx.doi.org/10.1042/bj3520755] [PMID: 11104683]
[132]
Piacenza, L.; Peluffo, G.; Alvarez, M.N.; Kelly, J.M.; Wilkinson, S.R.; Radi, R. Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite. Biochem. J., 2008, 410(2), 359-368.
[http://dx.doi.org/10.1042/BJ20071138] [PMID: 17973627]
[133]
Piñeyro, M.D.; Parodi-Talice, A.; Arcari, T.; Robello, C. Peroxiredoxins from Trypanosoma cruzi: virulence factors and drug targets for treatment of Chagas disease? Gene, 2008, 408(1-2), 45-50.
[http://dx.doi.org/10.1016/j.gene.2007.10.014] [PMID: 18022330]
[134]
Angelucci, F.; Miele, A.E.; Ardini, M.; Boumis, G.; Saccoccia, F.; Bellelli, A. Typical 2-Cys peroxiredoxins in human parasites: Several physiological roles for a potential chemotherapy target. Mol. Biochem. Parasitol., 2016, 206(1-2), 2-12.
[http://dx.doi.org/10.1016/j.molbiopara.2016.03.005] [PMID: 27002228]
[135]
Mucke, H.A.M. A new journal for the drug repurposing community. Drug Repurposing. Rescue and Repositioning, 2015, 1, 3-4.
[136]
Aubé, J. Drug repurposing and the medicinal chemist. ACS Med. Chem. Lett., 2012, 3(6), 442-444.
[http://dx.doi.org/10.1021/ml300114c] [PMID: 24900492]
[137]
Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem., 2014, 57(19), 7874-7887.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[138]
Barnett, C.F.; Machado, R.F. Sildenafil in the treatment of pulmonary hypertension. Vasc. Health Risk Manag., 2006, 2(4), 411-422.
[http://dx.doi.org/10.2147/vhrm.2006.2.4.411] [PMID: 17323595]
[139]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[140]
Bellera, C.L.; Sbaraglini, M.L.; Balcazar, D.E.; Fraccaroli, L.; Vanrell, M.C.; Casassa, A.F.; Labriola, C.A.; Romano, P.S.; Carrillo, C.; Talevi, A. High-throughput drug repositioning for the discovery of new treatments for Chagas disease. Mini Rev. Med. Chem., 2015, 15(3), 182-193.
[http://dx.doi.org/10.2174/138955751503150312120208] [PMID: 25769967]
[141]
Bolgár, B.; Arany, Á.; Temesi, G.; Balogh, B.; Antal, P.; Mátyus, P. Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies. Curr. Top. Med. Chem., 2013, 13(18), 2337-2363.
[http://dx.doi.org/10.2174/15680266113136660164] [PMID: 24059461]
[142]
Klug, D.M.; Gelb, M.H.; Pollastri, M.P. Repurposing strategies for tropical disease drug discovery. Bioorg. Med. Chem. Lett., 2016, 26(11), 2569-2576.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.103] [PMID: 27080183]
[143]
Ferreira, L.G.; Andricopulo, A.D. Drug repositioning approaches to parasitic diseases: a medicinal chemistry perspective. Drug Discov. Today, 2016, 21(10), 1699-1710.
[http://dx.doi.org/10.1016/j.drudis.2016.06.021] [PMID: 27365271]
[144]
Sbaraglini, M.L.; Vanrell, M.C.; Bellera, C.L.; Benaim, G.; Carrillo, C.; Talevi, A.; Romano, P.S. Neglected tropical protozoan diseases: drug repositioning as a rational option. Curr. Top. Med. Chem., 2016, 16(19), 2201-2222.
[http://dx.doi.org/10.2174/1568026616666160216154309] [PMID: 26881713]
[145]
Ekins, S.; Williams, A.J.; Krasowski, M.D.; Freundlich, J.S. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today, 2011, 16(7-8), 298-310.
[http://dx.doi.org/10.1016/j.drudis.2011.02.016] [PMID: 21376136]
[146]
Delavan, B.; Roberts, R.; Huang, R.; Bao, W.; Tong, W.; Liu, Z. Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov. Today, 2018, 23(2), 382-394.
[http://dx.doi.org/10.1016/j.drudis.2017.10.009] [PMID: 29055182]
[147]
Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272.
[http://dx.doi.org/10.1016/j.tips.2013.03.004] [PMID: 23582281]
[148]
Shineman, D.W.; Alam, J.; Anderson, M.; Black, S.E.; Carman, A.J.; Cummings, J.L.; Dacks, P.A.; Dudley, J.T.; Frail, D.E.; Green, A.; Lane, R.F.; Lappin, D.; Simuni, T.; Stefanacci, R.G.; Sherer, T.; Fillit, H.M. Overcoming obstacles to repurposing for neurodegenerative disease. Ann. Clin. Transl. Neurol., 2014, 1(7), 512-518.
[http://dx.doi.org/10.1002/acn3.76] [PMID: 25356422]
[149]
Bloom, B.E. Creating new economic incentives for repurposing generic drugs for unsolved diseases using social finance. Assay Drug Dev. Technol., 2015, 13(10), 606-611.
[http://dx.doi.org/10.1089/adt.2015.29015.beddrrr] [PMID: 26284286]
[150]
Moran, M.; Guzman, J.; Ropars, A.L.; McDonald, A.; Jameson, N.; Omune, B.; Ryan, S.; Wu, L. Neglected disease research and development: how much are we really spending? PLoS Med., 2009, 6(2)e30
[http://dx.doi.org/10.1371/journal.pmed.1000030] [PMID: 19192946]
[151]
Sahdeo, S.; Tomilov, A.; Komachi, K.; Iwahashi, C.; Datta, S.; Hughes, O.; Hagerman, P.; Cortopassi, G. High-throughput screening of FDA-approved drugs using oxygen biosensor plates reveals secondary mitofunctional effects. Mitochondrion, 2014, 17, 116-125.
[http://dx.doi.org/10.1016/j.mito.2014.07.002] [PMID: 25034306]
[152]
Siles, S.A.; Srinivasan, A.; Pierce, C.G.; López-Ribot, J.L.; Ramasubramanian, A.K. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob. Agents Chemother., 2013, 57(8), 3681-3687.
[http://dx.doi.org/10.1128/AAC.00680-13] [PMID: 23689719]
[153]
Ciallella, J.R.; Reaume, A.G. In vivo phenotypic screening: clinical proof of concept for a drug repositioning approach. Drug Discov. Today. Technol., 2017, 23, 45-52.
[http://dx.doi.org/10.1016/j.ddtec.2017.04.001] [PMID: 28647085]
[154]
Kaiser, M.; Mäser, P.; Tadoori, L.P.; Ioset, J.R.; Brun, R. Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning. PLoS One, 2015, 10(8)e0135556
[http://dx.doi.org/10.1371/journal.pone.0135556] [PMID: 26270335]
[155]
Planer, J.D.; Hulverson, M.A.; Arif, J.A.; Ranade, R.M.; Don, R.; Buckner, F.S. Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2014, 8(7)e2977
[http://dx.doi.org/10.1371/journal.pntd.0002977] [PMID: 25033456]
[156]
Engel, J.C.; Ang, K.K.; Chen, S.; Arkin, M.R.; McKerrow, J.H.; Doyle, P.S. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob. Agents Chemother., 2010, 54(8), 3326-3334.
[http://dx.doi.org/10.1128/AAC.01777-09] [PMID: 20547819]
[157]
De Rycker, M.; Thomas, J.; Riley, J.; Brough, S.J.; Miles, T.J.; Gray, D.W. Identification of trypanocidal activity for known clinical compounds using a new Trypanosoma cruzi hit-discovery screening cascade. PLoS Negl. Trop. Dis., 2016, 10(4)e0004584
[http://dx.doi.org/10.1371/journal.pntd.0004584] [PMID: 27082760]
[158]
Bellera, C.L.; Balcazar, D.E.; Vanrell, M.C.; Casassa, A.F.; Palestro, P.H.; Gavernet, L.; Labriola, C.A.; Gálvez, J.; Bruno-Blanch, L.E.; Romano, P.S.; Carrillo, C.; Talevi, A. Computer-guided drug repurposing: identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur. J. Med. Chem., 2015, 93, 338-348.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.065] [PMID: 25707014]
[159]
Hirota, K.; Tsubouchi, A.; Nakashima-Shimada, J.; Nara, T.; Aoki, T. Inhibition of Trypanosoma cruzi growth in mammalian cells by nimodipine, with low toxicity to host cells. Trop. Med. Health, 2004, 32, 181-188.
[http://dx.doi.org/10.2149/tmh.32.181]
[160]
Benaim, B.; Garcia, C.R. Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis - a review. Trop. Biomed., 2011, 28(3), 471-481.
[PMID: 22433874]
[161]
Soares, M.B.P.; Silva, C.V.; Bastos, T.M.; Guimarães, E.T.; Figueira, C.P.; Smirlis, D.; Azevedo, W.F. Jr. Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop., 2012, 122(2), 224-229.
[http://dx.doi.org/10.1016/j.actatropica.2012.01.001] [PMID: 22281243]
[162]
Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: discovery of amiodarone and bromocriptine inhibitory effects. J. Chem. Inf. Model., 2013, 53(9), 2402-2408.
[http://dx.doi.org/10.1021/ci400284v] [PMID: 23906322]
[163]
Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Identification of levothyroxine antichagasic activity through computer-aided drug repurposing. ScientificWorldJournal, 2014, 2014279618
[http://dx.doi.org/10.1155/2014/279618] [PMID: 24592161]
[164]
Benaim, G.; Sanders, J.M.; Garcia-Marchán, Y.; Colina, C.; Lira, R.; Caldera, A.R.; Payares, G.; Sanoja, C.; Burgos, J.M.; Leon-Rossell, A.; Concepcion, J.L.; Schijman, A.G.; Levin, M.; Oldfield, E.; Urbina, J.A. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J. Med. Chem., 2006, 49(3), 892-899.
[http://dx.doi.org/10.1021/jm050691f] [PMID: 16451055]
[165]
Benaim, G.; Paniz Mondolfi, A.E. The emerging role of amiodarone and dronedarone in Chagas disease. Nat. Rev. Cardiol., 2012, 9(10), 605-609.
[http://dx.doi.org/10.1038/nrcardio.2012.108] [PMID: 22869282]
[166]
Alberca, L.N.; Sbaraglini, M.L.; Morales, J.F.; Dietrich, R.; Ruiz, M.D. Pino MArtínez, A., Miranda, C. G., Fraccaroli, L.; Alba Soto, C.; Carrillo, C.; Palestro, P.H.; Talevi, A. Cascade ligand- and structure-based virtual screening to identify new trypanocidal compounds inhibiting putrescine uptake. Front. Cell. Infect. Microbiol., 2018, 8, 173.
[http://dx.doi.org/10.3389/fcimb.2018.00173] [PMID: 29888213]
[167]
Sbaraglini, M.L.; Bellera, C.L.; Fraccaroli, L.; Larocca, L.; Carrillo, C.; Talevi, A.; Alba Soto, C.D. Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease. Int. J. Antimicrob. Agents, 2016, 48(1), 91-95.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.02.018] [PMID: 27216381]
[168]
Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: virtual screening, in vitro and in vivo studies. Molecules, 2017, 22(6), 1015.
[http://dx.doi.org/10.3390/molecules22061015] [PMID: 28629155]
[169]
Lara-Ramirez, E.E.; López-Cedillo, J.C.; Nogueda-Torres, B.; Kashif, M.; Garcia-Perez, C.; Bocanegra-Garcia, V.; Agusti, R.; Uhrig, M.L.; Rivera, G. An in vitro and in vivo evaluation of new potential trans-sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method. Eur. J. Med. Chem., 2017, 132, 249-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.063] [PMID: 28364659]
[170]
Wu, L.; Ai, N.; Liu, Y.; Wang, Y.; Fan, X. Relating anatomical therapeutic indications by the ensemble similarity of drug sets. J. Chem. Inf. Model., 2013, 53(8), 2154-2160.
[http://dx.doi.org/10.1021/ci400155x] [PMID: 23889502]
[171]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[172]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462, 175-181.
[173]
Lepesheva, G.I.; Villalta, F.; Waterman, M.R. Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51). Adv. Parasitol., 2011, 75, 65-87.
[http://dx.doi.org/10.1016/B978-0-12-385863-4.00004-6] [PMID: 21820552]
[174]
Haupt, V.J.; Daminelli, S.; Schroeder, M. Drug promiscuity in PDB: protein binding site similarity is key. PLoS One, 2013, 8(6)e65894
[http://dx.doi.org/10.1371/journal.pone.0065894] [PMID: 23805191]
[175]
Ehrt, C.; Brinkjost, T.; Koch, O. Impact of binding site comparisons on medicinal chemistry and rational molecular design. J. Med. Chem., 2016, 59(9), 4121-4151.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00078] [PMID: 27046190]
[176]
Haupt, V.J.; Schroeder, M. Old friends in new guise: repositioning of known drugs with structural bioinformatics. Brief. Bioinform., 2011, 12(4), 312-326.
[http://dx.doi.org/10.1093/bib/bbr011] [PMID: 21441562]
[177]
Salentin, S.; Haupt, V.J.; Daminelli, S.; Schroeder, M. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 174-186.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.05.006] [PMID: 24923864]
[178]
Barelier, S.; Sterling, T.; O’Meara, M.J.; Shoichet, B.K. The recognition of identical ligands by unrelated proteins. ACS Chem. Biol., 2015, 10(12), 2772-2784.
[http://dx.doi.org/10.1021/acschembio.5b00683] [PMID: 26421501]
[179]
Rodrigues, J.; Alves, N.R.; Da Silva, F.G.; Cravo, P.V.L. Identification of new drugs against chagas disease through genomics and bioinformatics strategies. Fronteiras, 2015, 4, 77-84.
[http://dx.doi.org/10.21664/2238-8869.2015v4i1.p77-84]
[180]
Cohen, T.; Widdows, D.; Schvaneveldt, R.W.; Davies, P.; Rindflesch, T.C. Discovering discovery patterns with predication-based semantic indexing. J. Biomed. Inform., 2012, 45(6), 1049-1065.
[http://dx.doi.org/10.1016/j.jbi.2012.07.003] [PMID: 22841748]
[181]
Vidal, M.; Cusick, M.E.; Barabási, A.L. Interactome networks and human disease. Cell, 2011, 144(6), 986-998.
[http://dx.doi.org/10.1016/j.cell.2011.02.016] [PMID: 21414488]
[182]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[183]
Emig, D.; Ivliev, A.; Pustovalova, O.; Lancashire, L.; Bureeva, S.; Nikolsky, Y.; Bessarabova, M. Drug target prediction and repositioning using an integrated network-based approach. PLoS One, 2013, 8(4)e60618
[http://dx.doi.org/10.1371/journal.pone.0060618] [PMID: 23593264]
[184]
Vitali, F.; Cohen, L.D.; Demartini, A.; Amato, A.; Eterno, V.; Zambelli, A.; Bellazzi, R. A network-based data integration approach to support drug repurposing and multi-target therapies in triple negative breast cancer. PLoS One, 2016, 11(9)e0162407
[http://dx.doi.org/10.1371/journal.pone.0162407] [PMID: 27632168]
[185]
Berenstein, A.J.; Magariños, M.P.; Chernomoretz, A.; Agüero, F. A multilayer network approach for guiding drug repositioning in neglected diseases. PLoS Negl. Trop. Dis., 2016, 10(1)e0004300
[http://dx.doi.org/10.1371/journal.pntd.0004300] [PMID: 26735851]
[186]
Iorio, F.; Rittman, T.; Ge, H.; Menden, M.; Saez-Rodríguez, J. Transcriptional data: a new gateway to drug repositioning? Drug Discov. Today, 2013, 18(7-8), 350-357.
[http://dx.doi.org/10.1016/j.drudis.2012.07.014] [PMID: 22897878]
[187]
Sbaraglini, M.L.; Talevi, A. Hybrid compounds as anti-infective agents. Curr. Top. Med. Chem., 2017, 17(9), 1080-1095.
[http://dx.doi.org/10.2174/1568026616666160927160912] [PMID: 27697047]
[188]
García-Huertas, P.; Mejía-Jaramillo, A.M.; González, L.; Triana-Chávez, O. Transcriptome and functional genomics reveal the participation of adenine phosphoribosyltransferase in Trypanosoma cruzi resistance to benznidazole. J. Cell. Biochem., 2017, 118(7), 1936-1945.
[http://dx.doi.org/10.1002/jcb.25978] [PMID: 28276600]
[189]
Margineanu, D.G. Neuropharmacology beyond reductionism - A likely prospect. Biosystems, 2016, 141, 1-9.
[http://dx.doi.org/10.1016/j.biosystems.2015.11.010] [PMID: 26723231]
[190]
Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651.
[http://dx.doi.org/10.1016/S1359-6446(04)03163-0] [PMID: 15279847]
[191]
Hammond, D.J.; Cover, B.; Gutteridge, W.E. A novel series of chemical structures active in vitro against the trypomastigote form of Trypanosoma cruzi. Trans. R. Soc. Trop. Med. Hyg., 1984, 78(1), 91-95.
[http://dx.doi.org/10.1016/0035-9203(84)90184-6] [PMID: 6369655]
[192]
Hammond, D.J.; Hogg, J.; Gutteridge, W.E. Trypanosoma cruzi: possible control of parasite transmission by blood transfusion using amphiphilic cationic drugs. Exp. Parasitol., 1985, 60(1), 32-42.
[http://dx.doi.org/10.1016/S0014-4894(85)80020-5] [PMID: 3926530]
[193]
Benson, T.J.; McKie, J.H.; Garforth, J.; Borges, A.; Fairlamb, A.H.; Douglas, K.T. Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. Biochem. J., 1992, 286(Pt 1), 9-11.
[http://dx.doi.org/10.1042/bj2860009] [PMID: 1355650]
[194]
Chan, C.; Yin, H.; Garforth, J.; McKie, J.H.; Jaouhari, R.; Speers, P.; Douglas, K.T.; Rock, P.J.; Yardley, V.; Croft, S.L.; Fairlamb, A.H. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J. Med. Chem., 1998, 41(2), 148-156.
[http://dx.doi.org/10.1021/jm960814j] [PMID: 9457238]
[195]
Buchholz, K.; Comini, M.A.; Wissenbach, D.; Schirmer, R.H.; Krauth-Siegel, R.L.; Gromer, S. Cytotoxic interactions of methylene blue with trypanosomatid-specific disulfide reductases and their dithiol products. Mol. Biochem. Parasitol., 2008, 160(1), 65-69.
[http://dx.doi.org/10.1016/j.molbiopara.2008.03.006] [PMID: 18448175]
[196]
Doyle, P.S.; Weinbach, E.C. The activity of tricyclic antidepressant drugs against Trypanosoma cruzi. Exp. Parasitol., 1989, 68(2), 230-234.
[http://dx.doi.org/10.1016/0014-4894(89)90102-1] [PMID: 2647509]
[197]
Fauro, R.; Lo Presti, S.; Bazan, C.; Baez, A.; Strauss, M.; Triquell, F.; Cremonezzi, D.; Negrete, O.S.; Willhuber, G.C.; Paglini-Oliva, P.; Rivarola, H.W. Use of clomipramine as chemotherapy of the chronic phase of Chagas disease. Parasitology, 2013, 140(7), 917-927.
[http://dx.doi.org/10.1017/S0031182013000103] [PMID: 23534690]
[198]
Rivarola, H.W.; Paglini-Oliva, P.A. Trypanosoma cruzi trypanothione reductase inhibitors: phenothiazines and related compounds modify experimental Chagas’ disease evolution. Curr. Drug Targets Cardiovasc. Haematol. Disord., 2002, 2(1), 43-52.
[http://dx.doi.org/10.2174/1568006023337745] [PMID: 12769656]
[199]
Rivarola, H.W.; Fernández, A.R.; Enders, J.E.; Fretes, R.; Gea, S.; Paglini-Oliva, P. Effects of clomipramine on Trypanosoma cruzi infection in mice. Trans. R. Soc. Trop. Med. Hyg., 2001, 95(5), 529-533.
[http://dx.doi.org/10.1016/S0035-9203(01)90029-X] [PMID: 11706667]
[200]
Boda, C.; Enanga, B.; Courtioux, B.; Breton, J.C.; Bouteille, B. Trypanocidal activity of methylene blue. Evidence for in vitro efficacy and in vivo failure. Chemotherapy, 2006, 52(1), 16-19.
[http://dx.doi.org/10.1159/000090236] [PMID: 16340192]
[201]
O’Sullivan, M.C.; Durham, T.B.; Valdes, H.E.; Dauer, K.L.; Karney, N.J.; Forrestel, A.C.; Bacchi, C.J.; Baker, J.F. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. Bioorg. Med. Chem., 2015, 23(5), 996-1010.
[http://dx.doi.org/10.1016/j.bmc.2015.01.018] [PMID: 25661449]
[202]
Garforth, J.; Yin, H.; McKie, J.H.; Douglas, K.T.; Fairlamb, A.H. Rational design of selective ligands for trypanothione reductase from Trypanosoma cruzi. Structural effects on the inhibition by dibenzazepines based on imipramine. J. Enzyme Inhib., 1997, 12(3), 161-173.
[http://dx.doi.org/10.3109/14756369709029312] [PMID: 9314113]
[203]
Chibale, K.; Visser, M.; Yardley, V.; Croft, S.L.; Fairlamb, A.H. Synthesis and evaluation of 9,9-dimethylxanthene tricyclics against trypanothione reductase, Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. Bioorg. Med. Chem. Lett., 2000, 10(11), 1147-1150.
[http://dx.doi.org/10.1016/S0960-894X(00)00154-2] [PMID: 10866368]
[204]
Khan, M.O.; Austin, S.E.; Chan, C.; Yin, H.; Marks, D.; Vaghjiani, S.N.; Kendrick, H.; Yardley, V.; Croft, S.L.; Douglas, K.T. Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. J. Med. Chem., 2000, 43(16), 3148-3156.
[http://dx.doi.org/10.1021/jm000156+] [PMID: 10956223]
[205]
Alberca, L.N.; Sbaraglini, M.L.; Balcazar, D.; Fraccaroli, L.; Carrillo, C.; Medeiros, A.; Benítez, D.; Comini, M.; Talevi, A. Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. J. Comput. Aided Mol. Des., 2016, 30(4), 305-321.
[http://dx.doi.org/10.1007/s10822-016-9903-6] [PMID: 26891837]
[206]
van Harten, J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin. Pharmacokinet., 1993, 24(3), 203-220.
[http://dx.doi.org/10.2165/00003088-199324030-00003] [PMID: 8384945]
[207]
Reigada, C.; Valera-Vera, E.A.; Sayé, M.; Errasti, A.E.; Avila, C.C.; Miranda, M.R.; Pereira, C.A. Trypanocidal effect of isotretinoin through the inhibition of polyamine and amino acid transporters in Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2017, 11(3)e0005472
[http://dx.doi.org/10.1371/journal.pntd.0005472] [PMID: 28306713]
[208]
Colburn, W.A.; Vane, F.M.; Shorter, H.J. Pharmacokinetics of isotretinoin and its major blood metabolite following a single oral dose to man. Eur. J. Clin. Pharmacol., 1983, 24(5), 689-694.
[http://dx.doi.org/10.1007/BF00542224] [PMID: 6575916]
[209]
Dietrich, R.C.; Alberca, L.N.; Ruiz, M.D.; Palestro, P.H.; Carrillo, C.; Talevi, A.; Gavernet, L. Identification of cisapride as new inhibitor of putrescine uptake in Trypanosoma cruzi by combined ligand- and structure-based virtual screening. Eur. J. Med. Chem., 2018, 149, 22-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.006] [PMID: 29494842]
[210]
Maccari, G.; Jaeger, T.; Moraca, F.; Biava, M.; Flohé, L.; Botta, M. A fast virtual screening approach to identify structurally diverse inhibitors of trypanothione reductase. Bioorg. Med. Chem. Lett., 2011, 21(18), 5255-5258.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.036] [PMID: 21807515]
[211]
Beig, M.; Oellien, F.; Garoff, L.; Noack, S.; Krauth-Siegel, R.L.; Selzer, P.M. Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach. PLoS Negl. Trop. Dis., 2015, 9(6)e0003773
[http://dx.doi.org/10.1371/journal.pntd.0003773] [PMID: 26042772]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy