[1]
Hamburg, M.A.; Collins, F.S. The path to personalized medicine. N. Engl. J. Med., 2010, 363(4), 301-304.
[2]
Martinez-Ledesma, E.; Verhaak, R.G.; Treviño, V. Identification of a multi-cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm. Sci. Rep., 2015, 5, 11966.
[3]
Lü, L.; Sun, J.; Shi, P.; Kong, W.; Xu, K.; He, B.; Zhang, S.; Wang, J. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget, 2017, 8(27), 44096-44107.
[4]
Anderson, S.T.; Kaforou, M.; Brent, A.J.; Wright, V.J.; Banwell, C.M.; Chagaluka, G.; Crampin, A.C.; Dockrell, H.M.; French, N.; Hamilton, M.S.; Hibberd, M.L.; Kern, F.; Langford, P.R.; Ling, L.; Mlotha, R.; Ottenhoff, T.H.M.; Pienaar, S.; Pillay, V.; Scott, J.A.G.; Twahir, H.; Wilkinson, R.J.; Coin, L.J.; Heyderman, R.S.; Levin, M.; Eley, B. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N. Engl. J. Med., 2014, 370(18), 1712-1723.
[5]
Zak, D.E.; Penn-Nicholson, A.; Scriba, T.J.; Thompson, E.; Suliman, S.; Amon, L.M.; Mahomed, H.; Erasmus, M.; Whatney, W.; Hussey, G.D.; Abrahams, D.; Kafaar, F.; Hawkridge, T.; Verver, S.; Hughes, E.J.; Ota, M.; Sutherland, J.; Howe, R.; Dockrell, H.M.; Boom, W.H.; Thiel, B.; Ottenhoff, T.H.M.; Mayanja-Kizza, H.; Crampin, A.C.; Downing, K.; Hatherill, M.; Valvo, J.; Shankar, S.; Parida, S.K.; Kaufmann, S.H.E.; Walzl, G.; Aderem, A.; Hanekom, W.A. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(10035), 2312-2322.
[6]
Zou, X.; Feng, B.; Dong, T.; Yan, G.; Tan, B.; Shen, H.; Huang, A.; Zhang, X.; Zhang, M.; Yang, P.; Zheng, M.; Zhang, Y. Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J. Proteomics, 2013, 94, 473-485.
[7]
Song, Y.; Wang, Q.; Wang, D.; Junqiang Li, Yang J.; Li, H.; Wang, X.; Jin, X.; Jing, R.; Yang, J.H.; Su, H. Label-free quantitative proteomics unravels carboxypeptidases as the novel biomarker in pancreatic ductal adenocarcinoma. Transl. Oncol., 2018, 11(3), 691-699.
[8]
Wu, X.; Xing, X.; Dowlut, D.; Zeng, Y.; Liu, J.; Liu, X. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. J. Proteomics, 2019, 191, 68-79.
[9]
Ramroop, J.R.; Stein, M.N.; Drake, J.M. Impact of phosphoproteomics in the era of precision medicine for prostate cancer. Front. Oncol., 2018, 8, 28.
[10]
Papale, M.; Vocino, G.; Lucarelli, G.; Rutigliano, M.; Gigante, M.; Rocchetti, M.T.; Pesce, F.; Sanguedolce, F.; Bufo, P.; Battaglia, M.; Stallone, G.; Grandaliano, G.; Carrieri, G.; Gesualdo, L.; Ranieri, E. Urinary RKIP/p-RKIP is a potential diagnostic and prognostic marker of clear cell renal cell carcinoma. Oncotarget, 2017, 8(25), 40412-40424.
[11]
Frantzi, M.; Bhat, A.; Latosinska, A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin. Transl. Med., 2014, 3(1), 7.
[12]
Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, G.; VanNieuwenhze, M.S.; White, S.H.; Witztum, J.L.; Dennis, E.A. A comprehensive classification system for lipids. J. Lipid Res., 2005, 46(5), 839-861.
[13]
Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol., 2009, 49, 123-150.
[14]
Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 139-150.
[15]
Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res., 2014, 53, 124-144.
[16]
Bennett, M.; Gilroy, D.W. Lipid Mediators in Inflammation. Microbiol. Spectr., 2016, 4(6), 4.
[17]
Chandler, C.E.; Ernst, R.K. Bacterial lipids: Powerful modifiers of the innate immune response. F1000 Res., 2017, 6, 6.
[18]
Blanc, L.; Gilleron, M.; Prandi, J.; Song, O.R.; Jang, M.S.; Gicquel, B.; Drocourt, D.; Neyrolles, O.; Brodin, P.; Tiraby, G.; Vercellone, A.; Nigou, J. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc. Natl. Acad. Sci. USA, 2017, 114(42), 11205-11210.
[19]
Birch, H.L.; Alderwick, L.J.; Appelmelk, B.J.; Maaskant, J.; Bhatt, A.; Singh, A.; Nigou, J.; Eggeling, L.; Geurtsen, J.; Besra, G.S. A truncated lipoglycan from mycobacteria with altered immunological properties. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2634-2639.
[20]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[21]
Kumar, S.; Ingle, H.; Prasad, D.V.; Kumar, H. Recognition of bacterial infection by innate immune sensors. Crit. Rev. Microbiol., 2013, 39(3), 229-246.
[22]
Escribá, P.V.; González-Ros, J.M.; Goñi, F.M.; Kinnunen, P.K.; Vigh, L.; Sánchez-Magraner, L.; Fernández, A.M.; Busquets, X.; Horváth, I.; Barceló-Coblijn, G. Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med., 2008, 12(3), 829-875.
[23]
Piszcz, J.; Armitage, E.G.; Ferrarini, A.; Rupérez, F.J.; Kulczynska, A.; Bolkun, L.; Kloczko, J.; Kretowski, A.; Urbanowicz, A.; Ciborowski, M.; Barbas, C. To treat or not to treat: metabolomics reveals biomarkers for treatment indication in chronic lymphocytic leukaemia patients. Oncotarget, 2016, 7(16), 22324-22338.
[24]
Shen, S.; Yang, L.; Li, L.; Bai, Y.; Cai, C.; Liu, H. A plasma lipidomics strategy reveals perturbed lipid metabolic pathways and potential lipid biomarkers of human colorectal cancer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 41-48.
[25]
Matos Do Canto, L.; Marian, C.; Varghese, R.S.; Ahn, J.; Da Cunha, P.A.; Willey, S.; Sidawy, M.; Rone, J.D.; Cheema, A.K.; Luta, G.; Nezami Ranjbar, M.R.; Ressom, H.W.; Haddad, B.R. Metabolomic profiling of breast tumors using ductal fluid. Int. J. Oncol., 2016, 49(6), 2245-2254.
[26]
Ressom, H.W.; Xiao, J.F.; Tuli, L.; Varghese, R.S.; Zhou, B.; Tsai, T.H.; Ranjbar, M.R.; Zhao, Y.; Wang, J.; Di Poto, C.; Cheema, A.K.; Tadesse, M.G.; Goldman, R.; Shetty, K. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal. Chim. Acta, 2012, 743, 90-100.
[27]
Griffiths, W.J.; Abdel-Khalik, J.; Yutuc, E.; Morgan, A.H.; Gilmore, I.; Hearn, T.; Wang, Y. Cholesterolomics: An update. Anal. Biochem., 2017, 524, 56-67.
[28]
Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev., 2016, 40(1), 133-159.
[29]
López-Lara, I.M.; Geiger, O. Bacterial lipid diversity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(11), 1287-1299.
[30]
Rietveld, A.G.; Killian, J.A.; Dowhan, W.; de Kruijff, B. Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J. Biol. Chem., 1993, 268(17), 12427-12433.
[31]
Cronan, J.E., Jr Regulation of the fatty acid composition of the membrane phospholipids of Escherichia coli. Proc. Natl. Acad. Sci. USA, 1974, 71(9), 3758-3762.
[32]
Robert, C.B.; Thomson, M.; Vercellone, A.; Gardner, F.; Ernst, R.K.; Larrouy-Maumus, G.; Nigou, J. Mass spectrometry analysis of intact Francisella bacteria identifies lipid A structure remodeling in response to acidic pH stress. Biochimie, 2017, 141, 16-20.
[33]
Kang, S.S.; Sim, J.R.; Yun, C.H.; Han, S.H. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch. Pharm. Res., 2016, 39(11), 1519-1529.
[34]
Ginsburg, I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect. Dis., 2002, 2(3), 171-179.
[35]
Percy, M.G.; Gründling, A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu. Rev. Microbiol., 2014, 68, 81-100.
[36]
Lindberg, A.A.; Kärnell, A.; Weintraub, A. The lipopolysaccharide of Shigella bacteria as a virulence factor. Rev. Infect. Dis., 1991, 13(Suppl. 4), S279-S284.
[37]
Matsuura, M. Structural modifications of bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Front. Immunol., 2013, 4, 109.
[38]
Maeshima, N.; Evans-Atkinson, T.; Hajjar, A.M.; Fernandez, R.C. Bordetella pertussis Lipid A recognition by toll-like receptor 4 and MD-2 Is dependent on distinct charged and uncharged interfaces. J. Biol. Chem., 2015, 290(21), 13440-13453.
[39]
Korneev, K.V.; Kondakova, A.N.; Sviriaeva, E.N.; Mitkin, N.A.; Palmigiano, A.; Kruglov, A.A.; Telegin, G.B.; Drutskaya, M.S.; Sturiale, L.; Garozzo, D.; Nedospasov, S.A.; Knirel, Y.A.; Kuprash, D.V. Hypoacylated LPS from foodborne pathogen Campylobacter jejuni induces moderate TLR4-mediated inflammatory response in murine macrophages. Front. Cell. Infect. Microbiol., 2018, 8, 58.
[40]
Larrouy-Maumus, G.; Gilleron, M.; Skovierová, H.; Zuberogoitia, S.; Brennan, P.J.; Puzo, G.; Jackson, M.; Nigou, J. A glycomic approach reveals a new mycobacterial polysaccharide. Glycobiology, 2015, 25(11), 1163-1171.
[41]
Krishna, S.; Ray, A.; Dubey, S.K.; Larrouy-Maumus, G.; Chalut, C.; Castanier, R.; Noguera, A.; Gilleron, M.; Puzo, G.; Vercellone, A.; Nampoothiri, K.M.; Nigou, J. Lipoglycans contribute to innate immune detection of mycobacteria. PLoS One, 2011, 6(12)e28476
[42]
Skovierová, H.; Larrouy-Maumus, G.; Zhang, J.; Kaur, D.; Barilone, N.; Korduláková, J.; Gilleron, M.; Guadagnini, S.; Belanová, M.; Prevost, M.C.; Gicquel, B.; Puzo, G.; Chatterjee, D.; Brennan, P.J.; Nigou, J.; Jackson, M. AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology, 2009, 19(11), 1235-1247.
[43]
Appelmelk, B.J.; den Dunnen, J.; Driessen, N.N.; Ummels, R.; Pak, M.; Nigou, J.; Larrouy-Maumus, G.; Gurcha, S.S.; Movahedzadeh, F.; Geurtsen, J.; Brown, E.J.; Eysink Smeets, M.M.; Besra, G.S.; Willemsen, P.T.; Lowary, T.L.; van Kooyk, Y.; Maaskant, J.J.; Stoker, N.G.; van der Ley, P.; Puzo, G.; Vandenbroucke-Grauls, C.M.; Wieland, C.W.; van der Poll, T.; Geijtenbeek, T.B.; van der Sar, A.M.; Bitter, W. The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction. Cell. Microbiol., 2008, 10(4), 930-944.
[44]
Reichmann, N.T.; Gründling, A. Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol. Lett., 2011, 319(2), 97-105.
[45]
Morath, S.; Geyer, A.; Hartung, T. Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J. Exp. Med., 2001, 193(3), 393-397.
[46]
Koch, H.U.; Fischer, W. Acyldiglucosyldiacylglycerol-containing lipoteichoic acid with a poly(3-O-galabiosyl-2-O-galactosyl-sn-glycero-1-phosphate) chain from Streptococcus lactis Kiel 42172. Biochemistry, 1978, 17(24), 5275-5281.
[47]
Reid, C.W.; Vinogradov, E.; Li, J.; Jarrell, H.C.; Logan, S.M.; Brisson, J.R. Structural characterization of surface glycans from Clostridium difficile. Carbohydr. Res., 2012, 354, 65-73.
[48]
Gisch, N.; Kohler, T.; Ulmer, A.J.; Müthing, J.; Pribyl, T.; Fischer, K.; Lindner, B.; Hammerschmidt, S.; Zähringer, U. Structural reevaluation of Streptococcus pneumoniae Lipoteichoic acid and new insights into its immunostimulatory potency. J. Biol. Chem., 2013, 288(22), 15654-15667.
[49]
Rietschel, E.T.; Kirikae, T.; Schade, F.U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A.J.; Zähringer, U.; Seydel, U.; Di Padova, F. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J., 1994, 8(2), 217-225.
[50]
Helander, I.M.; Lindner, B.; Brade, H.; Altmann, K.; Lindberg, A.A.; Rietschel, E.T.; Zähringer, U. Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough chemotype. Eur. J. Biochem., 1988, 177(3), 483-492.
[51]
Meredith, T.C.; Aggarwal, P.; Mamat, U.; Lindner, B.; Woodard, R.W. Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem. Biol., 2006, 1(1), 33-42.
[52]
Samuel, G.; Reeves, P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr. Res., 2003, 338(23), 2503-2519.
[53]
Nigou, J.; Gilleron, M.; Puzo, G. Lipoarabinomannans: from structure to biosynthesis. Biochimie, 2003, 85(1-2), 153-166.
[54]
Mishra, A.K.; Krumbach, K.; Rittmann, D.; Appelmelk, B.; Pathak, V.; Pathak, A.K.; Nigou, J.; Geurtsen, J.; Eggeling, L.; Besra, G.S. Lipoarabinomannan biosynthesis in Corynebacterineae: the interplay of two α(1→2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol. Microbiol., 2011, 80(5), 1241-1259.
[55]
Pitarque, S.; Larrouy-Maumus, G.; Payré, B.; Jackson, M.; Puzo, G.; Nigou, J. The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb.), 2008, 88(6), 560-565.
[56]
Biron, B.M.; Ayala, A.; Lomas-Neira, J.L. Biomarkers for sepsis: What is and what might be? Biomark. Insights, 2015, 10(Suppl. 4), 7-17.
[57]
Glauser, M.P.; Zanetti, G.; Baumgartner, J.D.; Cohen, J. Septic shock: Pathogenesis. Lancet, 1991, 338(8769), 732-736.
[58]
Wurfel, M.M.; Kunitake, S.T.; Lichenstein, H.; Kane, J.P.; Wright, S.D. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J. Exp. Med., 1994, 180(3), 1025-1035.
[59]
Triantafilou, M.; Mouratis, M.A.; Lepper, P.M.; Haston, R.M.; Baldwin, F.; Lowes, S.; Ahmed, M.A.; Schumann, C.; Boyd, O.; Triantafilou, K. Serum proteins modulate lipopolysaccharide and lipoteichoic acid-induced activation and contribute to the clinical outcome of sepsis. Virulence, 2012, 3(2), 136-145.
[60]
Gaïni, S.; Koldkjaer, O.G.; Pedersen, C.; Pedersen, S.S. Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: A prospective study. Crit. Care, 2006, 10(2), R53.
[61]
Opal, S.M.; Scannon, P.J.; Vincent, J.L.; White, M.; Carroll, S.F.; Palardy, J.E.; Parejo, N.A.; Pribble, J.P.; Lemke, J.H. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J. Infect. Dis., 1999, 180(5), 1584-1589.
[62]
Tobias, P.S.; Mathison, J.; Mintz, D.; Lee, J.D.; Kravchenko, V.; Kato, K.; Pugin, J.; Ulevitch, R.J. Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. Am. J. Respir. Cell Mol. Biol., 1992, 7(3), 239-245.
[63]
Sakr, Y.; Burgett, U.; Nacul, F.E.; Reinhart, K.; Brunkhorst, F. Lipopolysaccharide binding protein in a surgical intensive care unit: A marker of sepsis? Crit. Care Med., 2008, 36(7), 2014-2022.
[64]
Chen, K.F.; Chaou, C.H.; Jiang, J.Y.; Yu, H.W.; Meng, Y.H.; Tang, W.C.; Wu, C.C. Diagnostic accuracy of lipopolysaccharide-binding protein as biomarker for sepsis in adult patients: A systematic review and meta-analysis. PLoS One, 2016, 11(4)e0153188
[65]
Jeannot, K.; Bolard, A.; Plésiat, P. Resistance to polymyxins in Gram-negative organisms. Int. J. Antimicrob. Agents, 2017, 49(5), 526-535.
[66]
Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol., 2014, 5, 643.
[67]
Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168.
[68]
Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev., 2017, 30(2), 557-596.
[69]
Leung, L.M.; Cooper, V.S.; Rasko, D.A.; Guo, Q.; Pacey, M.P.; McElheny, C.L.; Mettus, R.T.; Yoon, S.H.; Goodlett, D.R.; Ernst, R.K.; Doi, Y. Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother., 2017, 72(11), 3035-3042.
[70]
Beceiro, A.; Llobet, E.; Aranda, J.; Bengoechea, J.A.; Doumith, M.; Hornsey, M.; Dhanji, H.; Chart, H.; Bou, G.; Livermore, D.M.; Woodford, N. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother., 2011, 55(7), 3370-3379.
[71]
Larrouy-Maumus, G.; Clements, A.; Filloux, A.; McCarthy, R.R.; Mostowy, S. Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry. J. Microbiol. Methods, 2016, 120, 68-71.
[72]
Hamasur, B.; Bruchfeld, J.; Haile, M.; Pawlowski, A.; Bjorvatn, B.; Källenius, G.; Svenson, S.B. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J. Microbiol. Methods, 2001, 45(1), 41-52.
[73]
Lawn, S.D. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect. Dis., 2012, 12, 103.
[74]
Lawn, S.D.; Gupta-Wright, A. Detection of lipoarabinomannan (LAM) in urine is indicative of disseminated TB with renal involvement in patients living with HIV and advanced immunodeficiency: Evidence and implications. Trans. R. Soc. Trop. Med. Hyg., 2016, 110(3), 180-185.
[75]
Iskandar, A.; Nursiloningrum, E.; Arthamin, M.Z.; Olivianto, E.; Chandrakusuma, M.S. The diagnostic value of urine Lipoarabinomannan (LAM) antigen in childhood tuberculosis. J. Clin. Diagn. Res., 2017, 11(3), EC32-EC35.
[76]
Kroidl, I.; Clowes, P.; Reither, K.; Mtafya, B.; Rojas-Ponce, G.; Ntinginya, E.N.; Kalomo, M.; Minja, L.T.; Kowuor, D.; Saathoff, E.; Kroidl, A.; Heinrich, N.; Maboko, L.; Bates, M.; O’Grady, J.; Zumla, A.; Hoelscher, M.; Rachow, A. Performance of urine lipoarabinomannan assays for paediatric tuberculosis in Tanzania. Eur. Respir. J., 2015, 46(3), 761-770.
[77]
Dheda, K.; Ruhwald, M.; Theron, G.; Peter, J.; Yam, W.C. Point-of-care diagnosis of tuberculosis: Past, present and future. Respirology, 2013, 18(2), 217-232.
[78]
Drain, P.K.; Gounder, L.; Sahid, F.; Moosa, M.Y. Rapid urine LAM testing improves diagnosis of expectorated smear-negative pulmonary tuberculosis in an HIV-endemic region. Sci. Rep., 2016, 6, 19992.
[79]
Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1545-1602.
[80]
Mortality, G.B.D. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.
[81]
Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res., 2015, 4(3), 256-269.
[82]
Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[83]
Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. J. Gen. Physiol., 1927, 8(6), 519-530.
[84]
Paradies, G.; Paradies, V.; De Benedictis, V.; Ruggiero, F.M.; Petrosillo, G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim. Biophys. Acta, 2014, 1837(4), 408-417.
[85]
Mejia, E.M.; Hatch, G.M. Mitochondrial phospholipids: role in mitochondrial function. J. Bioenerg. Biomembr., 2016, 48(2), 99-112.
[86]
Sapandowski, A.; Stope, M.; Evert, K.; Evert, M.; Zimmermann, U.; Peter, D.; Päge, I.; Burchardt, M.; Schild, L. Cardiolipin composition correlates with prostate cancer cell proliferation. Mol. Cell. Biochem., 2015, 410(1-2), 175-185.
[87]
Zhang, J.; Yu, W.; Ryu, S.W.; Lin, J.; Buentello, G.; Tibshirani, R.; Suliburk, J.; Eberlin, L.S. Cardiolipins are biomarkers of mitochondria-rich thyroid oncocytic tumors. Cancer Res., 2016, 76(22), 6588-6597.
[88]
Bandu, R.; Mok, H.J.; Kim, K.P. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. Mass Spectrom. Rev., 2018, 37(2), 107-138.
[89]
Ellis, S.R.; Brown, S.H. In Het Panhuis, M.; Blanksby, S.J.; Mitchell, T.W. Surface analysis of lipids by mass spectrometry: more than just imaging. Prog. Lipid Res., 2013, 52(4), 329-353.
[90]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[91]
Jiang, N.; Zhang, G.; Pan, L.; Yan, C.; Zhang, L.; Weng, Y.; Wang, W.; Chen, X.; Yang, G. Potential plasma lipid biomarkers in early-stage breast cancer. Biotechnol. Lett., 2017, 39(11), 1657-1666.
[92]
Hammad, L.A.; Wu, G.; Saleh, M.M.; Klouckova, I.; Dobrolecki, L.E.; Hickey, R.J.; Schnaper, L.; Novotny, M.V.; Mechref, Y. Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Commun. Mass Spectrom., 2009, 23(6), 863-876.
[93]
Ni, H.; Liu, H.; Gao, R. Serum lipids and breast cancer risk: A meta-analysis of prospective cohort studies. PLoS One, 2015, 10(11)e0142669
[94]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[95]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[96]
Yu, Z.; Chen, H.; Ai, J.; Zhu, Y.; Li, Y.; Borgia, J.A.; Yang, J.S.; Zhang, J.; Jiang, B.; Gu, W.; Deng, Y. Global lipidomics identified plasma lipids as novel biomarkers for early detection of lung cancer. Oncotarget, 2017, 8(64), 107899-107906.
[97]
Li, Y.; Song, X.; Zhao, X.; Zou, L.; Xu, G. Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 966, 147-153.
[98]
Li, G.; Li, L.; Joo, E.J.; Son, J.W.; Kim, Y.J.; Kang, J.K.; Lee, K.B.; Zhang, F.; Linhardt, R.J. Glycosaminoglycans and glycolipids as potential biomarkers in lung cancer. Glycoconj. J., 2017, 34(5), 661-669.
[99]
Eastham, J. Prostate cancer screening. Investig. Clin. Urol., 2017, 58(4), 217-219.
[100]
Thompson, I.M.; Pauler, D.K.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Parnes, H.L.; Minasian, L.M.; Ford, L.G.; Lippman, S.M.; Crawford, E.D.; Crowley, J.J.; Coltman, C.A., Jr Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med., 2004, 350(22), 2239-2246.
[101]
Zhou, X.; Mao, J.; Ai, J.; Deng, Y.; Roth, M.R.; Pound, C.; Henegar, J.; Welti, R.; Bigler, S.A. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS One, 2012, 7(11)e48889
[102]
O’Malley, J.; Kumar, R.; Kuzmin, A.N.; Pliss, A.; Yadav, N.; Balachandar, S.; Wang, J.; Attwood, K.; Prasad, P.N.; Chandra, D. Lipid quantification by Raman microspectroscopy as a potential biomarker in prostate cancer. Cancer Lett., 2017, 397, 52-60.