Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Molecular Modeling of an Orphan GPR18 Receptor

Author(s): Kamil J. Kuder, Tadeusz Karcz, Maria Kaleta and Katarzyna Kiec-Kononowicz*

Volume 16, Issue 10, 2019

Page: [1167 - 1174] Pages: 8

DOI: 10.2174/1570180815666180810114847

Price: $65

Abstract

Background: One of the best known to date GPCR class A (Rhodopsin) includes more than 100 orphan receptors for which the endogenous ligand is not known or is unclear. One of them is N-arachidonyl glycine receptor, named GPR18, a receptor that has been reported to be activated by Δ9-THC, endogenous cannabinoid receptors agonist anandamide and other cannabinoid receptor ligands suggesting it could be considered as third cannabinoid receptor. GPR18 activity, as well as its distribution might suggest usage of GPR18 ligands in treatment of endometriosis, cancer, and neurodegenerative disorders. Yet, so far only few GPR18 antagonists have been described, thus only ligand-based design approaches appear to be most useful to identify new ligands for this orphan receptor.

Methods: Main goal of this study, GPR18 inactive form homology model was built on the basis of the evolutionary closest homologous template: Human P2Y1 Receptor crystal structure.

Results: Obtained model was further evaluated and showed active/nonactive ligands differentiating properties with acceptable confidence. Moreover, it allowed for preliminary assessment of proteinligand interactions for a set of previously described ligands.

Conclusion: Thus collected data might serve as a starting point for a discovery of novel, active GPR18 blocking ligands.

Keywords: GPR18, N-arachidonyl glycine receptor, GPCR, orphan receptors, cannabidiol, rhodopsin.

Graphical Abstract

[1]
Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 639-650.
[http://dx.doi.org/10.1038/nrm908] [PMID: 12209124]
[2]
Dubois, D.J.; Fang, Y.; Kenakin, T.; Liu, C. Editorial: Orphan GPCRs As Emerging Drug Targets The Editorial on the Research Topic. Front. Pharmacol., 2015, 6.
[3]
Kreitzer, F.R.; Stella, N. The therapeutic potential of novel cannabinoid receptors. Pharmacol. Ther., 2009, 122(2), 83-96.
[http://dx.doi.org/10.1016/j.pharmthera.2009.01.005] [PMID: 19248809]
[4]
You, H.; Gadotti, V.M.; Petrov, R.R.; Zamponi, G.W.; Diaz, P. Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands. Mol. Pain, 2011, 7, 89.
[http://dx.doi.org/10.1186/1744-8069-7-89] [PMID: 22093952]
[5]
McHugh, D.; Hu, S.S.; Rimmerman, N.; Juknat, A.; Vogel, Z.; Walker, J.M.; Bradshaw, H.B. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci., 2010, 11, 44.
[http://dx.doi.org/10.1186/1471-2202-11-44] [PMID: 20346144]
[6]
McHugh, D.; Page, J.; Dunn, E.; Bradshaw, H.B.Δ.Δ. (9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br. J. Pharmacol., 2012, 165(8), 2414-2424.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01497.x] [PMID: 21595653]
[7]
(a)Rempel, V.; Atzler, K.; Behrenswerth, A.; Karcz, T.; Schoeder, C.; Hinz, S.; Kaleta, M.; Thimm, D.; Kiec-Kononowicz, K.; Uller, C.E. Bicyclic Imidazole-4-One Derivatives: A New Class of Antagonists for the Orphan G Protein-Coupled Receptors GPR18 and GPR55. MedChemComm, 2014, 5, 632-649.
[http://dx.doi.org/10.1039/C3MD00394A]
(b)Schoeder, C.T.; Kaleta, M.; Mahardhika, A.B.; Olejarz-Maciej, A.; Łażewska, D.; Kieć-Kononowicz, K.; Müller, C.E. Structure-activity relationships of imidazothiazinones and analogs as antagonists of the cannabinoid-activated orphan G protein-coupled receptor GPR18. Eur. J. Med. Chem., 2018, 155, 381-397.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.050] [PMID: 29902723]
[8]
Isberg, V.; Mordalski, S.; Munk, C.; Rataj, K.; Harpsøe, K.; Hauser, A.S.; Vroling, B.; Bojarski, A.J.; Vriend, G.; Gloriam, D.E. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res., 2016, 44(D1), D356-D364.
[http://dx.doi.org/10.1093/nar/gkv1178] [PMID: 26582914]
[9]
Munk, C.; Isberg, V.; Mordalski, S.; Harpsøe, K.; Rataj, K.; Hauser, A.S.; Kolb, P.; Bojarski, A.J.; Vriend, G.; Gloriam, D.E. GPCRdb: the G protein-coupled receptor database - an introduction. Br. J. Pharmacol., 2016, 173(14), 2195-2207.
[http://dx.doi.org/10.1111/bph.13509] [PMID: 27155948]
[10]
Zhang, D.; Gao, Z-G.; Zhang, K.; Kiselev, E.; Crane, S.; Wang, J.; Paoletta, S.; Yi, C.; Ma, L.; Zhang, W.; Han, G.W.; Liu, H.; Cherezov, V.; Katritch, V.; Jiang, H.; Stevens, R.C.; Jacobson, K.A.; Zhao, Q.; Wu, B. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature, 2015, 520(7547), 317-321.
[http://dx.doi.org/10.1038/nature14287] [PMID: 25822790]
[11]
The PyMOL Molecular Graphics System, Schrödinger, LLC;
[12]
Eswar, N.; Webb, B.; Marti‐Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using MODELLER.Current Protocols in Protein Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007, p. 2.9.1-2.9.31.
[http://dx.doi.org/10.1002/0471140864.ps0209s50]
[13]
Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol., 1993, 234(3), 779-815.
[http://dx.doi.org/10.1006/jmbi.1993.1626] [PMID: 8254673]
[14]
RAMPAGE. Ramachandran Plot Assessment, http://mordred.bioc. cam.ac.uk/~rapper/rampage.php (accessed January 31, 2018).
[15]
Heo, L.; Shin, W-H.; Lee, M.S.; Seok, C. GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Res, 2014. 42(Web Server issue)W210-4
[http://dx.doi.org/10.1093/nar/gku321] [PMID: 24753427]
[16]
Watts, K.S.; Dalal, P.; Murphy, R.B.; Sherman, W.; Friesner, R.A.; Shelley, J.C. ConfGen: a conformational search method for efficient generation of bioactive conformers. J. Chem. Inf. Model., 2010, 50(4), 534-546.
[http://dx.doi.org/10.1021/ci100015j] [PMID: 20373803]
[17]
Release, S. 2017-1: ConfGen; Schrödinger, LLC: New York, NY, 2017.
[18]
Release, S. 2017-1: Schrödinger Suite 2016-1 Protein Preparation Wizard; Epik, Schrödinger, LLC: New York, NY, 2017.
[19]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[20]
Farid, R.; Day, T.; Friesner, R.A.; Pearlstein, R.A. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg. Med. Chem., 2006, 14(9), 3160-3173.
[http://dx.doi.org/10.1016/j.bmc.2005.12.032] [PMID: 16413785]
[21]
Sherman, W.; Beard, H.S.; Farid, R. Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des., 2006, 67(1), 83-84.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00327.x] [PMID: 16492153]
[22]
Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem., 2006, 49(2), 534-553.
[http://dx.doi.org/10.1021/jm050540c] [PMID: 16420040]
[23]
McGann, M. FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model., 2011, 51(3), 578-596.
[http://dx.doi.org/10.1021/ci100436p] [PMID: 21323318]
[24]
McGann, M. FRED and HYBRID docking performance on standardized datasets. J. Comput. Aided Mol. Des., 2012, 26(8), 897-906.
[http://dx.doi.org/10.1007/s10822-012-9584-8] [PMID: 22669221]
[25]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[26]
Miller, B.T.; Singh, R.P.; Klauda, J.B.; Hodošček, M.; Brooks, B.R.; Woodcock, H.L., III; Iii, W. CHARMMing: a new, flexible web portal for CHARMM. J. Chem. Inf. Model., 2008, 48(9), 1920-1929.
[http://dx.doi.org/10.1021/ci800133b] [PMID: 18698840]
[27]
Ballesteros, J.A.; Weinstein, H. [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci., 1995, 25, 366-428.
[http://dx.doi.org/10.1016/S1043-9471(05)80049-7]
[28]
UniProt http://www.uniprot.org/ (accessed Jan 31, 2018).
[29]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 2014. 42(Web Server issue)W252-8
[http://dx.doi.org/10.1093/nar/gku340] [PMID: 24782522]
[30]
Protein BLAST https://blast.ncbi.nlm.nih.gov/ (accessed Jan 31, 2018).
[31]
Shao, Z.; Yin, J.; Chapman, K.; Grzemska, M.; Clark, L.; Wang, J.; Rosenbaum, D.M. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature, 2016, 540(7634), 602-606.
[http://dx.doi.org/10.1038/nature20613] [PMID: 27851727]
[32]
Pei, J.; Kim, B-H.; Grishin, N.V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res., 2008, 36(7), 2295-2300.
[http://dx.doi.org/10.1093/nar/gkn072] [PMID: 18287115]
[33]
Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci., 2006, 15(11), 2507-2524.
[http://dx.doi.org/10.1110/ps.062416606] [PMID: 17075131]
[34]
Melo, F.; Sánchez, R.; Sali, A. Statistical potentials for fold assessment. Protein Sci., 2002, 11(2), 430-448.
[http://dx.doi.org/10.1002/pro.110430] [PMID: 11790853]
[35]
John, B.; Sali, A. Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res., 2003, 31(14), 3982-3992.
[http://dx.doi.org/10.1093/nar/gkg460] [PMID: 12853614]
[36]
Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol., 1963, 7(1), 95-99.
[http://dx.doi.org/10.1016/S0022-2836(63)80023-6] [PMID: 13990617]
[37]
Schmeisser, M.G.; Pearsall, E.A.; Reggio, P.H. construction of a GPR18 receptor model using conformational memories. Biophys. J., 2013, 104(2), 409a.
[http://dx.doi.org/10.1016/j.bpj.2012.11.2280]
[38]
Trzaskowski, B.; Latek, D.; Yuan, S.; Ghoshdastider, U.; Debinski, A.; Filipek, S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr. Med. Chem., 2012, 19(8), 1090-1109.
[http://dx.doi.org/10.2174/092986712799320556] [PMID: 22300046]
[39]
Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J.P. The ChEMBL bioactivity database: an update. Nucleic Acids Res., 2014, 42(Database issue), D1083-D1090.
[http://dx.doi.org/10.1093/nar/gkt1031] [PMID: 24214965]
[40]
O ’boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform., 2011, 3, 33.
[41]
Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model., 2010, 50(4), 572-584.
[http://dx.doi.org/10.1021/ci100031x] [PMID: 20235588]
[42]
Release, S. 2017-1: Schrödinger Suite 2017-1 Induced Fit Docking Protocol; Glide, Schrödinger, LLC, New York, NY, 2017; Prime, Schrödinger, LLC: New York, NY, 2017.
[43]
Kolb Lab http://www.kolblab.org/ (accessed Jan 31, 2018)
[44]
Schmeisser, M. Creation of a GPR18 Homology Model using Conformational Memories, PhD Propos; The University of North Carolina at Greensboro, 2013.
[45]
Kotsikorou, E.; Madrigal, K.E.; Hurst, D.P.; Sharir, H.; Lynch, D.L.; Heynen-Genel, S.; Milan, L.B.; Chung, T.D.Y.; Seltzman, H.H.; Bai, Y.; Caron, M.G.; Barak, L.; Abood, M.E.; Reggio, P.H. Identification of the GPR55 agonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry, 2011, 50(25), 5633-5647.
[http://dx.doi.org/10.1021/bi200010k] [PMID: 21534610]
[46]
Pei, Y.; Mercier, R.W.; Anday, J.K.; Thakur, G.A.; Zvonok, A.M.; Hurst, D.; Reggio, P.H.; Janero, D.R.; Makriyannis, A. Ligand-binding architecture of human CB2 cannabinoid receptor: evidence for receptor subtype-specific binding motif and modeling GPCR activation. Chem. Biol., 2008, 15(11), 1207-1219.
[http://dx.doi.org/10.1016/j.chembiol.2008.10.011] [PMID: 19022181]
[47]
Yuan, S.; Chan, H.C.S.; Vogel, H.; Filipek, S.; Stevens, R.C.; Palczewski, K. The Molecular Mechanism of P2Y1 Receptor Activation. Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10331-10335.
[http://dx.doi.org/10.1002/anie.201605147] [PMID: 27460867]
[48]
Kothandan, G.; Cho, S.J. Homology Modeling of GPR18 Receptor, an Orphan G-proteincoupled Receptor. J. Chosun. Nat. Sci, 2013, 6, 16-20.
[http://dx.doi.org/10.13160/ricns.2013.6.1.016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy