Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Integrated Metabolomics and Phytochemical Genomics Approaches for Studies on St. John’s Wort

Author(s): Saeideh Mafakheri and Akbar Karami*

Volume 10, Issue 3, 2020

Page: [188 - 192] Pages: 5

DOI: 10.2174/2210315508666180723154923

Price: $65

Abstract

Metabolomics is widely applied for investigation of the correlation between metabolites and genes responsible for the synthesis of the particular sets of metabolites. In this review, we discuss metabolomics research on Hypericum perforatum (St. John’s Wort) to elucidate the overall regulation of the metabolism related to the mechanisms of natural variations and environmental stresses such as fungal infections, light stresses, and chemical elicitors. We also focus on phytochemical genomics and genomic information. St. John’s Wort is a medicinal plant with high potential of producing hypericin used for mild depression remedy, so knowledge on the biosynthetic pathway of unique metabolites is fundamental for their biotechnological commercial production. These metabolites have often complex biosynthetic pathway and it is challenging to identify all of the catalyzing enzymes. The development of metabolic systems biology could open new channels for high-speed construction and evaluation of hypotheses for cellular regulatory systems.

Keywords: Hypericum perforatum, metabolism, phytochemical genomics, hypericin, biosynthetic pathways, metabolomics.

Graphical Abstract

[1]
He, M.; Wang, Y.; Hua, W.; Zhang, Y.; Wang, Z. De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PLoS One, 2012, 7(7), 1-10.
[2]
Saddiqe, Z.; Naeem, I.; Maimoona, A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol., 2014, 131, 511-521.
[3]
Kosuth, J.; Smelcerovic, A.; Borsch, T.; Zuehlke, S.; Karppinen, K.; Spiteller, M.; Hohtola, A.; Cellarova, E. The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum. Func. Plant Biol., 2011, 38, 35-43.
[4]
Porzel, A.; Farag, M.A.; Mulbradt, J.; Wessjohann, L.A. Metabolite profiling and fingerprinting of Hypericum Species: A comparison of MS and NMR metabolomics. Metabolomics, 2014, 10, 574-588.
[5]
Velada, I.; Ragonezi, C.; Schmitt, B.A.; Cardoso, H. Reference genes selection and normalization of oxidative stress responsive genes upon different temperature stress conditions in Hypericum perforatum L. PLoS One, 2014, 9(12), 1-24.
[6]
Saito, K. Phytochemical genomics--a new trend. Curr. Opin. Plant Biol., 2013, 16, 1-8.
[7]
Conceicato, L.F.R.; Ferreres, F.; Tavares, R.M.; Dias, A.C.P. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry, 2006, 67, 149-155.
[8]
Sirvent, T.; Gibson, D. Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol. Mol. Plant Pathol., 2002, 60, 311-320.
[9]
Walker, T.S.; Bais, H.P; Vivanco, J.M. Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry, 2002, 60, 289-293.
[10]
Murch, S.J.; Haq, K.; Rupasinghe, H.P.V.; Saxena, P.K. Nickel Contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ. Exp. Bot., 2002, 49, 251-257.
[11]
Zobayed, S.M.A.; Afreen, F.; Kozai, T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol. Biochem., 2005, 43, 977-984.
[12]
Zobayed, S.M.A.; Afreen, F.; Kozai, T. Phytochemical and physiological changes in the leaves of St. John’s Wort plants under a water stress conditions. Environ. Exp. Bot., 2007, 59, 109-116.
[13]
Germ, M.; Stibilj, V.; Kreft, S.; Gaberscik, A.; Kreft, I. Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem., 2010, 122, 471-474.
[14]
Brechner, M.L.; Albright, L.D.; Weston, A. Effects of UV-B on secondary metabolotes of St. John’s Wort (Hypericum perforatum L.) grown in controlled environments. Photochem. Photobiol., 2010, 87, 680-684.
[15]
Skyba, M.; Petijová, L.; Košuth, J.; Koleva, D.P.; Ganeva, T.G.; Kapchina-Toteva, V.M.; Cellárová, E. Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment. J. Plant Physiol., 2012, 169, 955-964.
[16]
Silva, A.B.; Malva, J.O.; Dias, A.C.P.St. John’s Wort (Hypericum perforatum) extracted and isolated phenolic compounds are effective antioxidants in several in vitro model of oxidative stress. Food Chem., 2008, 110, 611-619.
[17]
Maojun, X.; Jufang, D.; Xinbo, Z. Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells. Sci. China Press , 2008, 51(8), 676-686.
[18]
Briskin, D.P.; Gawiennowski, M.C. Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol., 2001, 39, 1075-1081.
[19]
Cui, X.H.; Murthy, H.N.; Wu, C.H.; Paek, K.Y. Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult., 2010, 103, 7-14.
[20]
Couceiro, M.A.; Afreen, F.; Zobayed, S.M.A.; Kozai, T. Variation in concentrations of major bioactive compounds of St. John’s wort: Effects of harvesting time, temperature and germplasm. Plant Sci., 2006, 170, 128-134.
[21]
Sirvent, T.M.; Krasnoff, S.; Gibson, D.M. Induction of hypericins and hyperforins in Hypericum perforatum in response to damage by herbivores. J. Chem. Ecol., 2003, 29(12), 2667-2681.
[22]
Cirak, C.; Aksoy, H.M.; Ayan, A.K.; Saglam, B.; Kevseroglu, K. Enhanced hypericin production in Hypericum perforatum and Hypericum pruinatum in response to inoculation with two fungal pathogens. Plant Protect., 2005, 41(3), 109-114.
[23]
Tusevski, O.; Stanoeva, J.P.; Stefova, M.; Simic, S.G. 2015 Agrobacterium enhances xanthone production in Hypericum perforatum cell suspentions. Plant Growth Regul., 2015, 76, 199-210.
[24]
Southwell, I.A.; Bourke, C.A. Seasonal variation in hypericin content of Hypericum perforatum L. (St. John’s Wort). Phytochemistry, 2001, 56, 437-441.
[25]
Smelcerovic, A. Verma, Vijeshwar, V.; Spiteller, M.; Ahmad,S.M.; Puri, S.C.; Qazi, G.N. Phytochemical analysis and genetic characterization of six Hypericum species from Serbia. Phytochemistry, 2006, 67, 171-177.
[26]
Verma, V.; Smelcerovic, A.; Zuehlke, S.; Hussain, M.A.; Ahmad, S.M.; Ziebach, T.; Qazi, G.N.; Spiteller, M. Phenolic constituents and genetic profile of Hypericum perforatum L. from India. Biochem. Syst. Ecol., 2008, 36, 201-206.
[27]
Percifield, R.J.; Hawkins, J.S.; McCoy, J.A.; Widrlechner, M.P.; Wendel, J.F. Genetic diversity in Hypericum and AFLP Markers for species-specific identification of H. perforatum L. Planta Med., 2007, 73, 1614-1621.
[28]
Kosuth, J.; Hrehorova, D.; Jaskolski, M.; Cellarova, E. Stress-induced expression and structure of the putative gene hyp-1 for hypericin biosynthesis. Plant Cell Tissue Organ Cult., 2013, 114, 207-216.
[29]
Okazaki, Y.; Saito, K. Integrated metabolomics and phytochemical genomics approaches for studies on rice. Gigascience, 2016, 5(11), 2-7.
[30]
Franklin, G.; Conceicao, L.F.R.; Kombrink, E.; Dias, A.C.P. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry, 2009, 70, 60-68.
[31]
Sotak, M.; Czerankova, O.; Klein, D.; Nigutova, K.; Altschmied, L.; Li, L.; Jose, A.; Wurtele, E.S.; Cellarova, E. Differentially expressed genes in Hypericum- containing Hypericum perforatum leaf tissues as revealed by De novo assembly of RNA-Seq. Plant Mol. Biol. Report., 2016, 34(5), 1027-1041.
[32]
Saito, K.; Matsuda, F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol., 2010, 61, 463-489.
[33]
Crispin, M.C.; Wurtele, E.S. Biotechnology for Medicinal Plants, 16th ed; Springer: Heidelberg, Berlin, 2013.
[34]
Kusari, S.; Sezgin, S.; Nigutova, K.; Cellarova, E.; Spiteller, M. Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging. Anal. Bioanal. Chem., 2015, 407(16), 4779-4791.
[35]
Xiao, M.; Zhang, Y.; Chen, X.; Lee, E.J.; Barber, C.J.; Chakrabarty, R.; Desgagné-Penix, I.; Haslam, T.M.; Kim, Y.B.; Liu, E.; MacNevin, G.; Masada-Atsumi, S.; Reed, D.W.; Stout, J.M.; Zerbe, P.; Zhang, Y.; Bohlmann, J.; Covello, P.S.; Luca, V.D.; Page, J.E.; Ro, D.K.; Martin, V.J.J.; Facchini, P.J.; Sensen, C.W. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol., 2013, 166, 122-134.
[36]
Gantet, P.; Memelink, J. Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol. Sci., 2002, 23(12), 563-569.
[37]
Li, Chaonan. Ng, C.K.Y.; Fan, L.M. MYB transcription factors, active players in abiotic stress signaling. Environ. Experim. Bot., 2015, 114, 80-91.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy