[1]
He, M.; Wang, Y.; Hua, W.; Zhang, Y.; Wang, Z. De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PLoS One, 2012, 7(7), 1-10.
[2]
Saddiqe, Z.; Naeem, I.; Maimoona, A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol., 2014, 131, 511-521.
[3]
Kosuth, J.; Smelcerovic, A.; Borsch, T.; Zuehlke, S.; Karppinen, K.; Spiteller, M.; Hohtola, A.; Cellarova, E. The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum. Func. Plant Biol., 2011, 38, 35-43.
[4]
Porzel, A.; Farag, M.A.; Mulbradt, J.; Wessjohann, L.A. Metabolite profiling and fingerprinting of Hypericum Species: A comparison of MS and NMR metabolomics. Metabolomics, 2014, 10, 574-588.
[5]
Velada, I.; Ragonezi, C.; Schmitt, B.A.; Cardoso, H. Reference genes selection and normalization of oxidative stress responsive genes upon different temperature stress conditions in Hypericum perforatum L. PLoS One, 2014, 9(12), 1-24.
[6]
Saito, K. Phytochemical genomics--a new trend. Curr. Opin. Plant Biol., 2013, 16, 1-8.
[7]
Conceicato, L.F.R.; Ferreres, F.; Tavares, R.M.; Dias, A.C.P. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry, 2006, 67, 149-155.
[8]
Sirvent, T.; Gibson, D. Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol. Mol. Plant Pathol., 2002, 60, 311-320.
[9]
Walker, T.S.; Bais, H.P; Vivanco, J.M. Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry, 2002, 60, 289-293.
[10]
Murch, S.J.; Haq, K.; Rupasinghe, H.P.V.; Saxena, P.K. Nickel Contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ. Exp. Bot., 2002, 49, 251-257.
[11]
Zobayed, S.M.A.; Afreen, F.; Kozai, T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol. Biochem., 2005, 43, 977-984.
[12]
Zobayed, S.M.A.; Afreen, F.; Kozai, T. Phytochemical and physiological changes in the leaves of St. John’s Wort plants under a water stress conditions. Environ. Exp. Bot., 2007, 59, 109-116.
[13]
Germ, M.; Stibilj, V.; Kreft, S.; Gaberscik, A.; Kreft, I. Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem., 2010, 122, 471-474.
[14]
Brechner, M.L.; Albright, L.D.; Weston, A. Effects of UV-B on secondary metabolotes of St. John’s Wort (Hypericum perforatum L.) grown in controlled environments. Photochem. Photobiol., 2010, 87, 680-684.
[15]
Skyba, M.; Petijová, L.; Košuth, J.; Koleva, D.P.; Ganeva, T.G.; Kapchina-Toteva, V.M.; Cellárová, E. Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment. J. Plant Physiol., 2012, 169, 955-964.
[16]
Silva, A.B.; Malva, J.O.; Dias, A.C.P.St. John’s Wort (Hypericum perforatum) extracted and isolated phenolic compounds are effective antioxidants in several in vitro model of oxidative stress. Food Chem., 2008, 110, 611-619.
[17]
Maojun, X.; Jufang, D.; Xinbo, Z. Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells. Sci. China Press , 2008, 51(8), 676-686.
[18]
Briskin, D.P.; Gawiennowski, M.C. Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol., 2001, 39, 1075-1081.
[19]
Cui, X.H.; Murthy, H.N.; Wu, C.H.; Paek, K.Y. Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult., 2010, 103, 7-14.
[20]
Couceiro, M.A.; Afreen, F.; Zobayed, S.M.A.; Kozai, T. Variation in concentrations of major bioactive compounds of St. John’s wort: Effects of harvesting time, temperature and germplasm. Plant Sci., 2006, 170, 128-134.
[21]
Sirvent, T.M.; Krasnoff, S.; Gibson, D.M. Induction of hypericins and hyperforins in Hypericum perforatum in response to damage by herbivores. J. Chem. Ecol., 2003, 29(12), 2667-2681.
[22]
Cirak, C.; Aksoy, H.M.; Ayan, A.K.; Saglam, B.; Kevseroglu, K. Enhanced hypericin production in Hypericum perforatum and Hypericum pruinatum in response to inoculation with two fungal pathogens. Plant Protect., 2005, 41(3), 109-114.
[23]
Tusevski, O.; Stanoeva, J.P.; Stefova, M.; Simic, S.G. 2015 Agrobacterium enhances xanthone production in Hypericum perforatum cell suspentions. Plant Growth Regul., 2015, 76, 199-210.
[24]
Southwell, I.A.; Bourke, C.A. Seasonal variation in hypericin content of Hypericum perforatum L. (St. John’s Wort). Phytochemistry, 2001, 56, 437-441.
[25]
Smelcerovic, A. Verma, Vijeshwar, V.; Spiteller, M.; Ahmad,S.M.; Puri, S.C.; Qazi, G.N. Phytochemical analysis and genetic characterization of six Hypericum species from Serbia. Phytochemistry, 2006, 67, 171-177.
[26]
Verma, V.; Smelcerovic, A.; Zuehlke, S.; Hussain, M.A.; Ahmad, S.M.; Ziebach, T.; Qazi, G.N.; Spiteller, M. Phenolic constituents and genetic profile of Hypericum perforatum L. from India. Biochem. Syst. Ecol., 2008, 36, 201-206.
[27]
Percifield, R.J.; Hawkins, J.S.; McCoy, J.A.; Widrlechner, M.P.; Wendel, J.F. Genetic diversity in Hypericum and AFLP Markers for species-specific identification of H. perforatum L. Planta Med., 2007, 73, 1614-1621.
[28]
Kosuth, J.; Hrehorova, D.; Jaskolski, M.; Cellarova, E. Stress-induced expression and structure of the putative gene hyp-1 for hypericin biosynthesis. Plant Cell Tissue Organ Cult., 2013, 114, 207-216.
[29]
Okazaki, Y.; Saito, K. Integrated metabolomics and phytochemical genomics approaches for studies on rice. Gigascience, 2016, 5(11), 2-7.
[30]
Franklin, G.; Conceicao, L.F.R.; Kombrink, E.; Dias, A.C.P. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry, 2009, 70, 60-68.
[31]
Sotak, M.; Czerankova, O.; Klein, D.; Nigutova, K.; Altschmied, L.; Li, L.; Jose, A.; Wurtele, E.S.; Cellarova, E. Differentially expressed genes in Hypericum- containing Hypericum perforatum leaf tissues as revealed by De novo assembly of RNA-Seq. Plant Mol. Biol. Report., 2016, 34(5), 1027-1041.
[32]
Saito, K.; Matsuda, F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol., 2010, 61, 463-489.
[33]
Crispin, M.C.; Wurtele, E.S. Biotechnology for Medicinal Plants, 16th ed; Springer: Heidelberg, Berlin, 2013.
[34]
Kusari, S.; Sezgin, S.; Nigutova, K.; Cellarova, E.; Spiteller, M. Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging. Anal. Bioanal. Chem., 2015, 407(16), 4779-4791.
[35]
Xiao, M.; Zhang, Y.; Chen, X.; Lee, E.J.; Barber, C.J.; Chakrabarty, R.; Desgagné-Penix, I.; Haslam, T.M.; Kim, Y.B.; Liu, E.; MacNevin, G.; Masada-Atsumi, S.; Reed, D.W.; Stout, J.M.; Zerbe, P.; Zhang, Y.; Bohlmann, J.; Covello, P.S.; Luca, V.D.; Page, J.E.; Ro, D.K.; Martin, V.J.J.; Facchini, P.J.; Sensen, C.W. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol., 2013, 166, 122-134.
[36]
Gantet, P.; Memelink, J. Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol. Sci., 2002, 23(12), 563-569.
[37]
Li, Chaonan. Ng, C.K.Y.; Fan, L.M. MYB transcription factors, active players in abiotic stress signaling. Environ. Experim. Bot., 2015, 114, 80-91.