[1]
Matuszak, N.; Es-Saadi, B.; Labar, G.; Marchand-Brynaert, J.; Lambert, D.M. Benzisothiazolinone as a useful template for the design of new monoacylglycerol lipase inhibitors: Investigation of the target residues and comparison with octhilinone. Bioorg. Med. Chem. Lett., 2011, 21, 7321-7324.
[2]
Aaltonen, N.; Savinainen, J.R.; Ribas, C.R.; Ronkko, J. Kuusisto.A.; Korhonen.J.; Navia-Paldanius, D.; Hayrinen, J.; Takabe, P.; Kasnanen, H.; Pantsar, T.; Laitinen, T.; Lehtonen, M.; Pasonen-Seppanen, S.; Poso, A.; Nevalainen, T.; Laitinen, J.T. Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase. Chem. Biol., 2013, 20, 379-390.
[3]
Tabrizi, M.A.; Baraldi, P.G.; Ruggiero, E.; Saponaro, G.; Baraldi, S.; Romagnoli, R.; Martinelli, A.; Tuccinardi, T. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH). Eur. J. Med. Chem., 2015, 97, 289-305.
[4]
Labar, G.; Wouters, J.; Lambert, D.M. A Review on the monoacylglycerol lipase: At the interface between fat and endocannabinoid signalling. Curr. Med. Chem., 2010, 17, 2588-2607.
[5]
Kapanda, C.N.; Masquelier, J.; Labar, G.; Muccioli, G.G.; Poupaert, J.H.; Lambert, D.M. Synthesis and pharmacological evaluation of 2, 4-Dinitroaryldithiocarbamate derivatives as novel monoacylglycerol lipase inhibitors. J. Med. Chem., 2012, 55, 5774-5783.
[6]
Holtfrerich, A.; Hanekamp, W.; Lehr, M. (4-Phenoxyphenyl)-tetrazolecarboxamides and related compounds as dual inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Eur. J. Med. Chem., 2013, 63, 64-75.
[7]
Fowler, C.J. Monoacylglycerol lipase-a target for drug development? British. J. Pharmacol., 2012, 166, 1568-1585.
[8]
Magrioti, V.; Naxakis, G.; Hadjipavlou-Litina, D.; Makriyannis, A.; Kokotos, G. A novel monoacylglycerol lipase inhibitor with analgesic and anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2008, 18, 5424-5427.
[9]
Mulvihill, M.M.; Nomura, D.K. Therapeutic Potential of Monoacylglycerol Lipase Inhibitors. Life Sci., 2013, 92, 492-497.
[10]
Afzal, O.; Akhtar, M.S.; Kumar, S.; Ali, M.R.; Jaggi, M.; Bawa, S. Hit to lead optimization of a series of N-[4-(1, 3-benzothiazol-2-yl)phenyl]acetamides as monoacylglycerol lipase inhibitors with potential anticancer activity. Eur. J. Med. Chem., 2016, 121, 318-330.
[11]
Hicks, J.W.; Parkes, J.; Tong, J.; Houle, S.; Vasdev, N.; Wilson, A.A. Radiosynthesis and ex vivo evaluation of [11C-carbonyl]-carbamate- and urea-based monoacylglycerol lipase inhibitors. Nuc. Med. Biol., 2014, 41, 688-694.
[12]
Wang, A.B. Synthesis of phenyl thioureas containing para substituted tertiary amino groups. Acta Chimica. Sinica.., 1954, 20, 73-76.
[13]
Mishra, P.K.; Dudhe, R.; Chaudhary, A.; Sharma, P.K. Synthesis and biological evaluation of N3-(4-substituted phenyl)-N5-phenyl-4H-1, 2, 4-triazole-3, 5-diamine derivatives. Orient. J. Chem., 2009, 25, 653-657.
[14]
Process for the preparation of febuxostat and salts thereof, US Patent No-WO2011/073617 A1,
[15]
Mhaske, P.C.; Vadgaonkar, K.S.; Jadhav, R.P.; Bobade, V.D. Synthesis and Biological Screening of Thiazole-5-Carboxamide Derivatives. J. Kor. Chem. Soc., 2011, 55, 882-886.
[16]
An Improved process for preparation of febuxostat and its polymorphic crystalline form thereof,, US Patent No-WO2012/131590 A1.,
[17]
Christian, A.G.N.; Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61, 10827-10852.
[18]
Muccioli, G.; Labar, G.; Lambert, D. CAY10499, a novel monoglyceride lipase inhibitor evidenced by an expeditious MGL assay. ChemBioChem, 2008, 9, 2704-2710.
[19]
Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol., 1992, 19, 622-638.
[20]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Natl. Rev., 2006, 6, 813-823.
[21]
Corona, P.; Carta, A.; Loriga, M.; Vitale, G.; Paglietti, G. Synthesis and in vitro antitumor activity of new quinoxaline derivatives. Eur. J. Med. Chem., 2009, 44, 1579-1591.
[22]
Holbeck, S.L.; Collins, J.M.; Doroshow, J.H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther., 2010, 9, 1451-1460.
[23]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34, 91-109.
[24]
Schrodinger, M. Maestro, Version 10.1, LLC, New York, NY, 2015.
[25]
Schalk-Hihi, C.; Schubert, C.; Alexander, R.; Bayoumy, S.; Clemente, J.C.; Deckman, I.; Jarlais, D.R.L.; Dzordzorme, K.C.; Flores, C.M.; Grasberger, B.; Kranz, J.K.; Lewandowski, F.; Liu, L.; Ma, H.; Maguire, D.; Macielag, M.J.; Mc-Donnell, M.E.; Mezzasalma, H.T.; Miller, R.; Milligan, C.; Reynolds, C.; Kuo, L.C. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 Å resolution. Protein Sci., 2011, 20, 670.
[26]
Loving, K.; Salam, N.K.; Sherman, W.J. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J. Comput. Aided Mol. Des., 2009, 23, 541.
[27]
Ali, M.R.; Kumar, S.; Afzal, O.; Shalmali, N.; Sharma, M.; Bawa, S. Development of 2-(Substituted Benzylamino)-4-Methyl-1, 3-Thiazole-5-Carboxylic acid derivatives as xanthine oxidase inhibitors and free radical scavengers. Chem. Biol. Drug Des., 2016, 87, 508-516.
[28]
Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov., 2014, 13, 105-121.
[29]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. J. Adv. Drug Deliv. Rev., 2001, 46, 3.
[30]
Hou, T. Wang, J.; Zhang, W.; Xu, X. ADME evaluation in drug discovery. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? J. Chem. Inf. Model., 2007, 47, 460-463.
[31]
Meanwell, N.A. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol., 2001, 24-, 1420-1456. I.
[32]
Tarcsay, A.; Nyíri, K.; Keseru, G.M. Impact of lipophilic efficiency on compound quality. J. Med. Chem., 201(55), 1252-1260.