[1]
Joule, J.A.; Smith, G.; Mills, K. Heterocyclic Chemistry, 3rd ed; Chapman and Hall: London, 1995, pp. 72-119.
[2]
Roth, H.J.; Kleeman, A. Eds.; Pharmaceutical Chemistry, Drug Synthesis; Prentice Hall Europe: London,., 1988, 1, p. 407.
[3]
Henry, G.D. De novo synthesis of substituted pyridines. Tetrahedron, 2004, 60, 6043.
[4]
Vacher, B.; Bonnaud, B.; Funes, P.; Jubault, N.; Koek, W.; Assie, M.B.; Cos, C.; Kleven, M. Novel derivatives of 2-pyridinemethylamine as selective, potent, and orally active agonists at 5-HT1A receptors. J. Med. Chem., 1999, 42, 1648-1660.
[5]
El-Essawy, F.A.; El-Sayed Wael, A.; Morshedy, A.S.; Rahman, A.A.; Anti-Hepatitis, B. Virus Activity of New 1,2,4-Triazol-2-yl- and 1,3,4-Oxadiazol-2-yl-2-pyridinone Derivatives. Zeitschrift für Naturforschung, 2008, 63c, 667-674.
[6]
Abbas, H-A.S.; El Sayed, W.A.; Fathy, N.M. Synthesis and antitumor activity of new dihydropyridine thioglycosides and their corresponding dehydrogenated forms. Europ. J. Med. Chem., 2010, 45, 973-982.
[7]
Rashad, A.E.; El-Sayed, W.A.; Ewas, A.M.; Ali, M.M. Synthesis of new quinoline derivatives as inhibitors of human tumor cells growth. Arch.der Pharmazie, 2010, 8, 440-448.
[8]
Fadda, A.A.; Abdel-Rahman, A.A-H.; El-Sayed, W.A.; Zidan, T.A.; Farid, A.B. Synthesis of novel 1,3,4-oxadiazole derivatives and their nucleoside analogues with antioxidant, and antitumor activities. Khimiya Geterotsiklicheskhikh Soedinenii, 2011, 7, 1045-1054.
[9]
El-Sayed, W.A.; Metwally, M.A.; Nada, D.S.; Abdel-Rahman, A.A-H. Synthesis and antimicrobial activity of new substituted 5-(Pyridine-3-yl)-1,3,4-thiadiazoles and their sugar derivatives. J. Heterocyc. Chem., 2013, 50, 194-201.
[10]
El-Essawy, F.A.; El-Sayed, W.A.; El-Etrawy, A.Sh.; El-Bayaha, M.N. Synthesis of new isolated and fused tri- and tetracyclic pyridine derivatives with antimicrobial evaluation. Chem. Het. Comp., 2013, 48, 1977-1986.
[11]
El-Sayed, W.A.; Khalaf, H.S.; Mohamed, S.F.; Hssien, H.A.; Kutkat, O.M.; Amr, A-E.E. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russian . J. Gen. Chem., 2017, 87(10), 2444-2453.
[12]
Cieplik, J. Pyrimidines as the cytostatic drugs. Acta Pol. Pharm., 1992, 49, 51-57.
[13]
Pogorelcnik, B.; Brvar, M.; Zegura, B.; Filipic, M.; Solmajer, T.; Perdih, A. Discovery of mono- and disubstituted 1H-pyrazolo[3,4]-pyrimidines and 9H-purines as catalytic inhibitors of human DNA topoisomerase IIalpha. ChemMedChem, 2015, 10, 345-359.
[14]
Ogilvie, K.K.; Hamilton, R.G.; Gillen, M.F.; Radatus, B.K.; Smith, K.O.; Galloway, K.S. Uracil analogues of the acyclonucleoside 9-[[2-hydroxy-1-(hydroxylmethyl) ethoxy]-methyl]guanine (BIOLF-62). Can. J. Chem., 1984, 62, 16-21.
[15]
Zenker, N. Thyroid function and thyroid drugs. In: W.O. Foye (Ed.), Principles of Medicinal Chemistry, third ed; Lea & Febiger: Philadelphia, London, 1990; pp. 603-621.
[16]
Deshmukh, M.B.; Salunkhe, S.M.; Patil, D.R.; Anbhule, P.V. A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity. Eur. J. Med. Chem., 2009, 44, 2651-2654.
[17]
Masoud, M.S.; Ibrahim, A.A.; Khalil, E.A.; El-Marghany, A. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 67, 662-668.
[18]
Odani, A.; Kozlowski, H.; Swiatek-Kozlowska, J.; Brasun, J.; Operschall, B.P.; Sigel, H. Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. J. Inorg. Biochem., 2007, 101, 727-735.
[19]
Prachayasittikul, S.; Sornsongkhram, N.; Pingaew, R.; Techatanachai, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and novel bioactivities of substituted 6-Propylthiouracils. Eur. J. Sci. Res., 2009, 36, 236-245.
[20]
Elion, G.B. The purine path to chemotherapy. Science, 1989, 244, 41.
[21]
Legraverend, M.; Aubertin, A.M.; Oberg, G.; Huel, C.; Bisagni, E. Synthesis and Anti-HIV Evaluation of 7-Deaza Analogues of Carbovir. Nucleosides Nucleotides Nucleic Acids, 1994, 13, 915-923.
[22]
Gudmundsson, K.S.; Freeman, G.A.; Drach, J.C.; Townsend, L.B.J. synthesis of fluorosugar analogues of 2,5,6-Trichloro-1-(β-d-ribofuranosyl) benzimidazole as antivirals with potentially increased glycosidic bond stability. J. Med. Chem., 2000, 43, 2473-2478.
[23]
Zackny, V.L.; Gershburg, E.; Davis, M.G.; Biron, K.K.; Pagano, J.S. Inhibition of Epstein-Barr virus replication by a benzimidazole L-riboside: Novel antiviral mechanism of 5,6-dichloro-2-(isopropylamino)-1-beta-L-ribofuranosyl-1H-benzimidazole. J. Virol., 1999, 73, 7271.
[24]
Underwood, M.R.; Harvey, R.J.; Stanat, S.C.; Hemphill, M.L.; Miller, T.; Drach, J.C.; Townsend, L.B.; Biron, K.K. Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J. Virol., 1998, 72, 717-725.
[25]
Tanaka, H.; Takashima, H.; Ubasawa, M.; Sekiya, K.; Inouye, N.; Baba, M.; Shigeta, S.; Walker, R.T.; Clercq, E.D.; Miyasaka, T. Synthesis and antiviral activity of 6-Benzyl analogs of 1-[(2-Hydroxyethoxy)methyl]-5-(phenylthio)thymine (HEPT) as potent and selective Anti-HIV-1 Agents. J. Med. Chem., 1995, 38, 2860-2865.
[26]
Genini, D.; Adachi, S.; Chao, Q.; Rose, D.W.; Carrera, C.J.; Cottam, H.B.; Carson, D.A.; Leoni, L.M. Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood, 2000, 96, 3537.
[27]
Ramez, M.M.M.; El-Sayed, W.A.; Hagag, E.; Abdel-Rahman, A.A-H. Synthesis and antiviral activity of new substituted pyrimidine glycosides. J. Heterocycl. Chem., 2011, 48, 1028-1038.
[28]
Nassar, I.F.; El Farargy, A.F.; Abdelrazek, F.M.; Ismail, N.S.M. Design, synthesis and anticancer evaluation of novel pyrazole, pyrazolo [3, 4-d] pyrimidine and their glycoside derivatives. Nucleosides Nucleotides Nucleic Acids, 2017, 36(4), 275.
[29]
Nassar, I.F.; El Farargy, A.F.; Abdelrazek, F.M. Synthesis of some novel pyrazoles and their glycoside derivatives. J. Heterocycl. Chem., 2018, 55, 1709-1719.
[30]
Vetter, C.; Wagner, C.; Kaluderovic, G.N.; Paschke, R.; Steinborn, D. Synthesis, characterization, and cytotoxicity of trimethylplatinum (IV) complexes with 2-thiocytosine and 1-methyl-2-thiocytosine ligands. Inorg. Chim. Acta, 2009, 362, 189-195.
[31]
Hasaninejad, A.; Zare, A.; Balooty, L.; Mehregan, H.; Shekouhy, M. Solvent-Free, cross-aldol condensation reaction using silica-supported, phosphorus-containing reagents leading to α,α′-Bis (arylidene)cycloalkanones. Synth. Communicat., 2010, 40(23), 3488-3495.
[33]
Pepeljnjak, S.; Lalodera, Z.; Zovko, M. Investigation of antimicrobial activity of Pelargonium radula (Cav.) L’ Hérit. Acta Pharm., 2005, 55, 409-415.
[34]
Shalaby, A.l.G.; Ragab, I.M.T.; Belal, A.; Mehany, M.; Helal, M.M.I.; Helmy, W.A. Antitumor and prebiotic activities of novel sulfated acidic polysaccharide from ginseng; Biocatal. Agricult. Biotechnol, 2018, pp. 402-409.
[35]
Abdel-Aal, M.T.; El-Sayed, W.A.; El-Ashry, E.S.H. Synthesis and antiviral evaluation of some sugararylglycinoylhydrazones and their oxadiazoline derivatives. Arch. Pharm. Chem. Life Sci., 2006, 339, 656-663.
[36]
Rival, Y.; Grassy, G.; Michel, G. Synthesis and antimicrobial activity of some Imidazo [1,2-a] pyrimidine derivatives. Chem. Pharm. Bull., 1992, 40, 1170-1176.
[37]
Snell, Mitchell. Purine and pyrimidine bases as growth substances for lactic acid bacteria. Proceed. Natl. Acad. Sci., 1941, 27, 1-7.
[38]
Nassar, E. Synthesis, (in vitro) antitumor and antimicrobial activity of some pyrazoline, pyridine, pyrimidine derivatives linked to indol moiety. J. Am. Sci., 2010, 6(8), 338-347.
[39]
Shoda, T.; Kato, M.; Fujisato, T.; Misawa, T.; Demizu, Y.; Inoue, H.; Naito, M.; Kurihara, M. Synthesis and evaluation of raloxifene derivatives as a selective estrogen receptor down-regulator. Bioorg. Med. Chem., 2016, 24, 2914-2919.
[40]
De Savi, C.; Bradbury, R.H.; Rabow, A.A.; Norman, R.A.; de Almeida, C.; Andrews, D.M.; Ballard, P.; Buttar, D.; Callis, R.J.; Currie, G.S.; Curwen, J.O.; Davies, C.D.; Donald, C.S.; Feron, L.J.; Gingell, H.; Glossop, S.C.; Hayter, B.R.; Hussain, S.; Karoutchi, G.; Lamont, S.G.; MacFaul, P.; Moss, T.A.; Pearson, S.E.; Tonge, M.; Walker, G.E.; Weir, H.M.; Wilson, Z. Optimization of a novel binding motif to (E)-3-(3,5-Difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic Acid (AZD9496), a potent and orally bioavailable selective estrogen receptor down regulator and antagonist. J. Med. Chem., 2015, 58(81), 28-40.