[1]
Buckland, K.F.; Bobby Gaspar, H. Gene and cell therapy for children--new medicines, new challenges? Adv. Drug Deliv. Rev., 2014, 73, 162-169.
[2]
Moss, J.A. Gene therapy review. Radiol. Technol., 2014, 86(2), 155-180. quiz 181-184
[3]
Bersenev, A.; Levine, B.L. Convergence of gene and cell therapy. Regen. Med., 2012, 7(6)(Suppl.), 50-56.
[4]
Lee, B.; Davidson, B.L. Gene therapy grows into young adulthood: Special review issue. Hum. Mol. Genet., 2011, 20(R1), R1.
[5]
Watts, K.L.; Adair, J.; Kiem, H.P. Hematopoietic stem cell expansion and gene therapy. Cytotherapy, 2011, 13(10), 1164-1171.
[6]
Abou-El-Enein, M.; Bauer, G.; Reinke, P. Gene therapy: A possible future standard for HIV care. Trends Biotechnol., 2015, 33(7), 374-376.
[7]
Chen, G.X.; Zhang, S.; He, X.H.; Liu, S.Y.; Ma, C.; Zou, X.P. Clinical utility of recombinant adenoviral human p53 gene therapy: Current perspectives. OncoTargets Ther., 2014, 7, 1901-1909.
[8]
Westphal, M.; Yla-Herttuala, S.; Martin, J.; Warnke, P.; Menei, P.; Eckland, D.; Kinley, J.; Kay, R.; Ram, Z. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): A randomised, open-label, phase 3 trial. Lancet Oncol., 2013, 14(9), 823-833.
[9]
Ferreira, V.; Twisk, J.; Kwikkers, K.; Aronica, E.; Brisson, D.; Methot, J.; Petry, H.; Gaudet, D. Immune responses to intramuscular administration of alipogene tiparvovec (AAV1-LPL(S447X)) in a phase II clinical trial of lipoprotein lipase deficiency gene therapy. Hum. Gene Ther., 2014, 25(3), 180-188.
[10]
Palfi, S.; Gurruchaga, J.M.; Ralph, G.S.; Lepetit, H.; Lavisse, S.; Buttery, P.C.; Watts, C.; Miskin, J.; Kelleher, M.; Deeley, S.; Iwamuro, H.; Lefaucheur, J.P.; Thiriez, C.; Fenelon, G.; Lucas, C.; Brugieres, P.; Gabriel, I.; Abhay, K.; Drouot, X.; Tani, N.; Kas, A.; Ghaleh, B.; Le Corvoisier, P.; Dolphin, P.; Breen, D.P.; Mason, S.; Guzman, N.V.; Mazarakis, N.D.; Radcliffe, P.A.; Harrop, R.; Kingsman, S.M.; Rascol, O.; Naylor, S.; Barker, R.A.; Hantraye, P.; Remy, P.; Cesaro, P.; Mitrophanous, K.A. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: A dose escalation, open-label, phase 1/2 trial. Lancet, 2014, 383(9923), 1138-1146.
[11]
Chambers, J.D.; Neumann, P.J. Listening to Provenge--what a costly cancer treatment says about future Medicare policy. N. Engl. J. Med., 2011, 364(18), 1687-1689.
[12]
Falchook, G. Nivolumab: Another weapon in the growing immunotherapy arsenal. Lancet Oncol., 2015, 16(4), 350-351.
[13]
Macpherson, J.L.; Rasko, J.E. Clinical potential of gene therapy: Towards meeting the demand. Intern. Med. J., 2014, 44(3), 224-233.
[14]
Ling, C.Q.; Wang, L.N.; Wang, Y.; Zhang, Y.H.; Yin, Z.F.; Wang, M.; Ling, C. The roles of traditional Chinese medicine in gene therapy. J. Integr. Med., 2014, 12(2), 67-75.
[15]
Liu, P.; Guo, Y.; Qian, X.; Tang, S.; Li, Z.; Chen, L. China’s distinctive engagement in global health. Lancet, 2014, 384(9945), 793-804.
[16]
Li, H.M.; Ye, Z.H.; Zhang, J.; Gao, X.; Chen, Y.M.; Yao, X.; Gu, J.X.; Zhan, L.; Ji, Y.; Xu, J.L.; Zeng, Y.H.; Yang, F.; Xiao, L.; Sheng, G.G.; Xin, W.; Long, Q.; Zhu, Q.J.; Shi, Z.H.; Ruan, L.G.; Yang, J.Y.; Li, C.C.; Wu, H.B.; Chen, S.D.; Luo, X.L. Clinical trial with traditional Chinese medicine intervention “tonifying the kidney to promote liver regeneration and repair by affecting stem cells and their microenvironment” for chronic hepatitis B-associated liver failure. World J. Gastroenterol., 2014, 20(48), 18458-18465.
[17]
Deng, X.; Jiang, M.; Zhao, X.; Liang, J. Efficacy and safety of traditional Chinese medicine for the treatment of acquired immunodeficiency syndrome: A systematic review. J. Tradit. Chin. Med., 2014, 34(1), 1-9.
[18]
Li, M.; Qiao, C.; Qin, L.; Zhang, J.; Ling, C. Application of traditional Chinese medicine injection in treatment of primary liver cancer: A review. J. Tradit. Chin. Med., 2012, 32(3), 299-307.
[19]
Zhou, Z.Y.; Xu, L.; Li, H.G.; Tian, J.H.; Jiao, L.J.; You, S.F.; Han, Z.F.; Jiang, Y.; Guo, H.R.; Liu, H. Chemotherapy in conjunction with traditional Chinese medicine for survival of elderly patients with advanced non-small-cell lung cancer: Protocol for a randomized double-blind controlled trial. J. Integr. Med., 2014, 12(3), 175-181.
[20]
Guo, J.; Chen, H.; Song, J.; Wang, J.; Zhao, L.; Tong, X. Syndrome differentiation of diabetes by the traditional Chinese medicine according to evidence-based medicine and expert consensus opinion. Evid. Based Complement. Alternat. Med., 2014, 2014, 492193.
[21]
Zhang, W.; Gao, K.; Liu, J.; Zhao, H.; Wang, J.; Li, Y.; Murtaza, G.; Chen, J.; Wang, W. A review of the pharmacological mechanism of traditional Chinese medicine in the intervention of coronary heart disease and stroke. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(6), 532-537.
[22]
Chen, S.L.; Jiang, J.G. Application of gene differential expression technology in the mechanism studies of nature product-derived drugs. Expert Opin. Biol. Ther., 2012, 12(7), 823-839.
[23]
Lu, Q.; Jiang, J.G. Chemical metabolism of medicinal compounds from natural botanicals. Curr. Med. Chem., 2012, 19(11), 1682-1705.
[24]
Gao, J.; Inagaki, Y.; Li, X.; Kokudo, N.; Tang, W. Research progress on natural products from traditional Chinese medicine in treatment of Alzheimer’s disease. Drug Discov. Ther., 2013, 7(2), 46-57.
[25]
Xia, J.; Chen, J.; Zhang, Z.; Song, P.; Tang, W.; Kokudo, N. A map describing the association between effective components of traditional Chinese medicine and signaling pathways in cancer cells in vitro and in vivo. Drug Discov. Ther., 2014, 8(4), 139-153.
[26]
Zhang, T.T.; Jiang, J.G. Active ingredients of traditional Chinese medicine in the treatment of diabetes and diabetic complications. Expert Opin. Investig. Drugs, 2012, 21(11), 1625-1642.
[27]
Wong, K.L.; Wong, R.N.; Zhang, L.; Liu, W.K.; Ng, T.B.; Shaw, P.C.; Kwok, P.C.; Lai, Y.M.; Zhang, Z.J.; Zhang, Y.; Tong, Y.; Cheung, H.P.; Lu, J.; Sze, S.C. Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chin. Med., 2014, 9, 19.
[28]
[No authors listed] Studies on the mechanisms of abortion induction by Trichosanthin Sci. Sin, 1976, 19(6), 811-830.
[29]
Ng, T.B.; Chan, W.Y.; Yeung, H.W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen. Pharmacol., 1992, 23(4), 579-590.
[30]
Mondal, A. A novel extraction of trichosanthin from Trichosanthes kirilowii roots using three-phase partitioning and its in vitro anticancer activity. Pharm. Biol., 2014, 52(6), 677-680.
[31]
Collins, E.J.; Robertus, J.D.; LoPresti, M.; Stone, K.L.; Williams, K.R.; Wu, P.; Hwang, K.; Piatak, M. Primary amino acid sequence of alpha-trichosanthin and molecular models for abrin A-chain and alpha-trichosanthin. J. Biol. Chem., 1990, 265(15), 8665-8669.
[32]
Fang, E.F.; Ng, T.B.; Shaw, P.C.; Wong, R.N. Recent progress in medicinal investigations on trichosanthin and other ribosome inactivating proteins from the plant genus Trichosanthes. Curr. Med. Chem., 2011, 18(28), 4410-4417.
[33]
Schad, F.; Atxner, J.; Buchwald, D.; Happe, A.; Popp, S.; Kroz, M.; Matthes, H. Intratumoral mistletoe (Viscum album L) therapy in patients with unresectable pancreas carcinoma: A retrospective analysis. Integr. Cancer Ther., 2013, 13(4), 332-340.
[34]
Cai, X.; Guo, W. The application of Mistletoe in common cardiovascular diseases. Yunnan J. Trad. Chin. Med. Mater. Medica, 2011, 32(12), 69-70.
[35]
Yau, T.; Dan, X.; Ng, C.C.; Ng, T.B. Lectins with potential for anti-cancer therapy. Molecules, 2015, 20(3), 3791-3810.
[36]
Mockel, B.; Schwarz, T.; Zinke, H.; Eck, J.; Langer, M.; Lentzen, H. Effects of mistletoe lectin I on human blood cell lines and peripheral blood cells. Cytotoxicity, apoptosis and induction of cytokines. Arzneimittelforschung, 1997, 47(10), 1145-1151.
[37]
Thies, A.; Nugel, D.; Pfuller, U.; Moll, I.; Schumacher, U. Influence of mistletoe lectins and cytokines induced by them on cell proliferation of human melanoma cells in vitro. Toxicology, 2005, 207(1), 105-116.
[38]
Kong, J.; Du, X.; Fan, C.; Zhang, J.; Liu, S. Gene cloning and sequencing of a chain of a novel mistletoe protein. J. Med. Mol. Biol, 2005, 2, 403-408.
[39]
Li, L.N.; Zhang, H.D.; Zhi, R.; Yuan, S.J. Down-regulation of some miRNAs by degrading their precursors contributes to anti-cancer effect of mistletoe lectin-I. Br. J. Pharmacol., 2011, 162(2), 349-364.
[40]
Gong, F.; Ma, Y.; Ma, A.; Yu, Q.; Zhang, J.; Nie, H.; Chen, X.; Shen, B.; Li, N.; Zhang, D. A lectin from Chinese mistletoe increases gammadelta T cell-mediated cytotoxicity through induction of caspase-dependent apoptosis. Acta Biochim. Biophys. Sin. (Shanghai), 2007, 39(6), 445-452.
[41]
Xiong, C.; Long, L. The clinical application of Tufuling. Chin. J. Ethnomed. Ethnopharm, 2012, 21(19), 30-31.
[42]
Liu, Y.W.; Sun, W.F.; Zhang, X.X.; Li, J.; Zhang, H.H. Compound Tufuling Granules ([characters: see text]) regulate glucose transporter 9 expression in kidney to influence serum uric acid level in hyperuricemia mice. Chin. J. Integr. Med., 2015, 21(11), 823-829.
[43]
Ng, T.B.; Yu, Y.L. Isolation of a novel heterodimeric agglutinin from rhizomes of Smilax glabra, the Chinese medicinal material tufuling. Int. J. Biochem. Cell Biol., 2001, 33(3), 269-277.
[44]
Chu, K.T.; Ng, T.B. Smilaxin, a novel protein with immunostimulatory, antiproliferative, and HIV-1-reverse transcriptase inhibitory activities from fresh Smilax glabra rhizomes. Biochem. Biophys. Res. Commun., 2006, 340(1), 118-124.
[45]
Ooi, L.S.; Wong, E.Y.; Chiu, L.C.; Sun, S.S.; Ooi, V.E. Antiviral and anti-proliferative glycoproteins from the rhizome of Smilax glabra Roxb (Liliaceae). Am. J. Chin. Med., 2008, 36(1), 185-195.
[46]
Vega-Villa, K.R.; Remsberg, C.M.; Ohgami, Y.; Yanez, J.A.; Takemoto, J.K.; Andrews, P.K.; Davies, N.M. Stereospecific high-performance liquid chromatography of taxifolin, applications in pharmacokinetics, and determination in tu fu ling (Rhizoma smilacis glabrae) and apple (Malus x domestica). Biomed. Chromatogr., 2009, 23(6), 638-646.
[47]
Orsolic, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194.
[48]
Tuo, H.; Sun, J.; Chen, X. Recent clinical applications of Bee venom. J. Med. Thero. Prac, 2009, 22(10), 1190-1192.
[49]
Park, D.; Jung, J.W.; Lee, M.O.; Lee, S.Y.; Kim, B.; Jin, H.J.; Kim, J.; Ahn, Y.J.; Lee, K.W.; Song, Y.S.; Hong, S.; Womack, J.E.; Kwon, H.W. Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana. Peptides, 2014, 53, 185-193.
[50]
Raghuraman, H.; Chattopadhyay, A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep., 2007, 27(4-5), 189-223.
[51]
Leuschner, C.; Hansel, W. Membrane disrupting lytic peptides for cancer treatments. Curr. Pharm. Des., 2004, 10(19), 2299-2310.
[52]
Damianoglou, A.; Rodger, A.; Pridmore, C.; Dafforn, T.R.; Mosely, J.A.; Sanderson, J.M.; Hicks, M.R. The synergistic action of melittin and phospholipase A2 with lipid membranes: Development of linear dichroism for membrane-insertion kinetics. Protein Pept. Lett., 2010, 17(11), 1351-1362.
[53]
Gajski, G.; Garaj-Vrhovac, V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol., 2013, 36(2), 697-705.
[54]
Moreno, M.; Giralt, E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins (Basel), 2015, 7(4), 1126-1150.
[55]
Zhang, H.; Wang, X.; Gao, X. Recent clinical and experimental research of Hirudo spp. Chin. J. Infor. TCM, 2009, 16(S1), 98-100.
[56]
Barzegar, A.; Azizi, A.; Faridi, P.; Mohagheghzadeh, A. Leech therapy in Iranian traditional medicine. Forsch. Komplement. Med., 2015, 22(1), 50-53.
[57]
Houschyar, K.S.; Momeni, A.; Maan, Z.N.; Pyles, M.N.; Jew, O.S.; Strathe, M.; Michalsen, A. Medical leech therapy in plastic reconstructive surgery. Wien. Med. Wochenschr., 2015, 165(19-20), 419-425.
[58]
Markwardt, F. Hirudin as alternative anticoagulant--a historical review. Semin. Thromb. Hemost., 2002, 28(5), 405-414.
[59]
Rydel, T.J.; Tulinsky, A.; Bode, W.; Huber, R. Refined structure of the hirudin-thrombin complex. J. Mol. Biol., 1991, 221(2), 583-601.
[60]
Lu, Q.; Lv, M.; Xu, E.; Shao, F.; Feng, Y.; Yang, J.; Shi, L. Recombinant hirudin suppresses the viability, adhesion, migration and invasion of Hep-2 human laryngeal cancer cells. Oncol. Rep., 2015, 33(3), 1358-1364.
[61]
Folkers, P.J.; Clore, G.M.; Driscoll, P.C.; Dodt, J.; Kohler, S.; Gronenborn, A.M. Solution structure of recombinant hirudin and the Lys-47----Glu mutant: A nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry, 1989, 28(6), 2601-2617.
[62]
Long, Y.; Liu, J.Y.; Liu, L.; Wang, Z.R. Construction of phage-displayed library by DNA shuffling and the screening of potent hirudin variants. Chin. J. Cell Mol. Immunol, 2006, 22(2), 167-170.
[63]
Lehman, E.D.; Joyce, J.G.; Bailey, F.J.; Markus, H.Z.; Schultz, L.D.; Dunwiddie, C.T.; Jacobson, M.A.; Miller, W.J. Expression, purification and characterization of multigram amounts of a recombinant hybrid HV1-HV2 hirudin variant expressed in Saccharomyces cerevisiae. Protein Expr. Purif., 1993, 4(3), 247-255.
[64]
Lu, W.F.; Mo, W.; Liu, Z.; Fu, W.G. Guo da, Q.; Wang, Y.Q.; Song, H.Y. The antithrombotic effect of a novel hirudin derivative after reconstruction of carotid artery in rabbits. Thromb. Res., 2010, 126(4), e339-e343.
[65]
Yu, A.P.; Shi, B.X.; Dong, C.N.; Jiang, Z.H.; Wu, Z.Z. Construction and expression of a fusion protein made of tissue-type plasminogen activator and hirudin in Pichia pastoris. Chin. J. Biotechnol., 2005, 21(4), 553-557.
[66]
Han, Y.; Guo, J.; Zheng, Y.; Zang, H.; Su, X.; Wang, Y.; Chen, S.; Jiang, T.; Yang, P.; Chen, J.; Jiang, D.; Jing, Q.; Liang, Z.; Liu, H.; Zhao, X.; Li, J.; Li, Y.; Xu, B.; Stone, G.W. Bivalirudin vs heparin with or without tirofiban during primary percutaneous coronary intervention in acute myocardial infarction: The BRIGHT randomized clinical trial. JAMA, 2015, 313(13), 1336-1346.
[67]
Yuan, Y. The identification and clinical applicaiton of Quanxie. Mod. Med. Hea, 2012, 28(8), 1252.
[68]
Zhang, H.; He, F.; Wang, Q. The machanism for anti-cancer effect of Quanxie and its clinical application. Chin. Pharm, 2013, 22(1), 95-96.
[69]
Zhou, X.H.; Yang, D.; Zhang, J.H.; Liu, C.M.; Lei, K.J. Purification and N-terminal partial sequence of anti-epilepsy peptide from venom of the scorpion Buthus martensii Karsch. Biochem. J., 1989, 257(2), 509-517.
[70]
Wang, C.G.; He, X.L.; Shao, F.; Liu, W.; Ling, M.H.; Wang, D.C.; Chi, C.W. Molecular characterization of an anti-epilepsy peptide from the scorpion Buthus martensi Karsch. Eur. J. Biochem., 2001, 268(8), 2480-2485.
[71]
Wang, Z.; Wang, W.; Shao, Z.; Gao, B.; Li, J.; Ma, J.; Che, H.; Zhang, W. Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions. Mol. Cell. Biochem., 2009, 330(1-2), 97-104.
[72]
Liu, Y.F.; Ma, R.L.; Wang, S.L.; Duan, Z.Y.; Zhang, J.H.; Wu, L.J.; Wu, C.F. Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii karsch in Escherichia coli. Protein Expr. Purif., 2003, 27(2), 253-258.
[73]
DeBin, J.A.; Maggio, J.E.; Strichartz, G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol., 1993, 264(2 Pt 1), C361-C369.
[74]
Zeng, X.C.; Li, W.X.; Zhu, S.Y.; Peng, F.; Zhu, Z.H.; Wu, K.L.; Yiang, F.H. Cloning and characterization of a cDNA sequence encoding the precursor of a chlorotoxin-like peptide from the Chinese scorpion Buthus martensii Karsch. Toxicon, 2000, 38(8), 1009-1014.
[75]
Zang, M.; Liu, X.; Chen, L.; Xiao, Q.; Yuan, L.; Yang, J. Determination of BmKCT-13, a chlorotoxin-like peptide, in rat plasma by LC-MS/MS: Application to a preclinical pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 947-948, 125-131.
[76]
Dardevet, L.; Rani, D.; Aziz, T.A.; Bazin, I.; Sabatier, J.M.; Fadl, M.; Brambilla, E.; De Waard, M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel), 2015, 7(4), 1079-1101.
[77]
Cheng, S.; Sliva, D. Ganoderma lucidum for cancer treatment: We are close but still not there. Integr. Cancer Ther., 2015, 14(3), 249-257.
[78]
Batra, P.; Sharma, A.K.; Khajuria, R. Probing Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes): A bitter mushroom with amazing health benefits. Int. J. Med. Mushrooms, 2013, 15(2), 127-143.
[79]
Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.; Bisen, P.S. Ganoderma lucidum: A potent pharmacological macrofungus. Curr. Pharm. Biotechnol., 2009, 10(8), 717-742.
[80]
Paterson, R.R. Ganoderma - a therapeutic fungal biofactory. Phytochemistry, 2006, 67(18), 1985-2001.
[81]
Tanaka, S.; Ko, K.; Kino, K.; Tsuchiya, K.; Yamashita, A.; Murasugi, A.; Sakuma, S.; Tsunoo, H. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. J. Biol. Chem., 1989, 264(28), 16372-16377.
[82]
Kino, K.; Yamashita, A.; Yamaoka, K.; Watanabe, J.; Tanaka, S.; Ko, K.; Shimizu, K.; Tsunoo, H. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J. Biol. Chem., 1989, 264(1), 472-478.
[83]
Murasugi, A.; Tanaka, S.; Komiyama, N.; Iwata, N.; Kino, K.; Tsunoo, H.; Sakuma, S. Molecular cloning of a cDNA and a gene encoding an immunomodulatory protein, Ling Zhi-8, from a fungus, Ganoderma lucidum. J. Biol. Chem., 1991, 266(4), 2486-2493.
[84]
Xue, Q.; Ding, Y.; Shang, C.; Jiang, C.; Zhao, M. Functional expression of LZ-8, a fungal immunomodulatory protein from Ganoderma lucidium in Pichia pastoris. J. Gen. Appl. Microbiol., 2008, 54(6), 393-398.
[85]
Yeh, C.M.; Yeh, C.K.; Hsu, X.Y.; Luo, Q.M.; Lin, M.Y. Extracellular expression of a functional recombinant Ganoderma lucidium immunomodulatory protein by Bacillus subtilis and Lactococcus lactis. Appl. Environ. Microbiol., 2008, 74(4), 1039-1049.
[86]
Legendre, J.Y.; Szoka, F.C., Jr Cyclic amphipathic peptide-DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc. Natl. Acad. Sci. USA, 1993, 90(3), 893-897.
[87]
Hou, K.K.; Pan, H.; Schlesinger, P.H.; Wickline, S.A. A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol. Adv., 2015, 33(6 Pt 1), 931-940.
[88]
Legendre, J.Y.; Trzeciak, A.; Bohrmann, B.; Deuschle, U.; Kitas, E.; Supersaxo, A. Dioleoylmelittin as a novel serum-insensitive reagent for efficient transfection of mammalian cells. Bioconjug. Chem., 1997, 8(1), 57-63.
[89]
Ogris, M.; Carlisle, R.C.; Bettinger, T.; Seymour, L.W. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J. Biol. Chem., 2001, 276(50), 47550-47555.
[90]
Chen, C.P.; Kim, J.S.; Steenblock, E.; Liu, D.; Rice, K.G. Gene transfer with poly-melittin peptides. Bioconjug. Chem., 2006, 17(4), 1057-1062.
[91]
Baumhover, N.J.; Anderson, K.; Fernandez, C.A.; Rice, K.G. Synthesis and in vitro testing of new potent polyacridine-melittin gene delivery peptides. Bioconjug. Chem., 2010, 21(1), 74-83.
[92]
Zhang, W.; Song, J.; Liang, R.; Zheng, X.; Chen, J.; Li, G.; Zhang, B.; Yan, X.; Wang, R. Stearylated antimicrobial peptide melittin and its retro isomer for efficient gene transfection. Bioconjug. Chem., 2013, 24(11), 1805-1812.
[93]
Boeckle, S.; Fahrmeir, J.; Roedl, W.; Ogris, M.; Wagner, E. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J. Control. Release, 2006, 112(2), 240-248.
[94]
Meyer, M.; Dohmen, C.; Philipp, A.; Kiener, D.; Maiwald, G.; Scheu, C.; Ogris, M.; Wagner, E. Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol. Pharm., 2009, 6(3), 752-762.
[95]
Rozema, D.B.; Ekena, K.; Lewis, D.L.; Loomis, A.G.; Wolff, J.A. Endosomolysis by Masking of a Membrane-Active Agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug. Chem., 2003, 14(1), 51-57.
[96]
Hou, K.K.; Pan, H.; Lanza, G.M.; Wickline, S.A. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials, 2013, 34(12), 3110-3119.
[97]
Hou, K.K.; Pan, H.; Ratner, L.; Schlesinger, P.H.; Wickline, S.A. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS Nano, 2013, 7(10), 8605-8615.
[98]
Salomone, F.; Cardarelli, F.; Signore, G.; Boccardi, C.; Beltram, F. In vitro efficient transfection by CM(1)(8)-Tat(1)(1) hybrid peptide: A new tool for gene-delivery applications. PLoS One, 2013, 8(7), e70108.
[99]
Wooddell, C.I.; Rozema, D.B.; Hossbach, M.; John, M.; Hamilton, H.L.; Chu, Q.; Hegge, J.O.; Klein, J.J.; Wakefield, D.H.; Oropeza, C.E.; Deckert, J.; Roehl, I.; Jahn-Hofmann, K.; Hadwiger, P.; Vornlocher, H.P.; McLachlan, A.; Lewis, D.L. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther., 2013, 21(5), 973-985.
[100]
Sebestyen, M.G.; Wong, S.C.; Trubetskoy, V.; Lewis, D.L.; Wooddell, C.I. Targeted in vivo delivery of siRNA and an endosome-releasing agent to hepatocytes. Methods Mol. Biol., 2015, 1218, 163-186.
[101]
Soroceanu, L.; Gillespie, Y.; Khazaeli, M.B.; Sontheimer, H. Use of chlorotoxin for targeting of primary brain tumors. Cancer Res., 1998, 58(21), 4871-4879.
[102]
Lyons, S.A.; O’Neal, J.; Sontheimer, H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia, 2002, 39(2), 162-173.
[103]
Veiseh, O.; Kievit, F.M.; Gunn, J.W.; Ratner, B.D.; Zhang, M. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials, 2009, 30(4), 649-657.
[104]
Kievit, F.M.; Veiseh, O.; Fang, C.; Bhattarai, N.; Lee, D.; Ellenbogen, R.G.; Zhang, M. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano, 2010, 4(8), 4587-4594.
[105]
Veiseh, O.; Kievit, F.M.; Fang, C.; Mu, N.; Jana, S.; Leung, M.C.; Mok, H.; Ellenbogen, R.G.; Park, J.O.; Zhang, M. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials, 2010, 31(31), 8032-8042.
[106]
Mok, H.; Veiseh, O.; Fang, C.; Kievit, F.M.; Wang, F.Y.; Park, J.O.; Zhang, M. pH-Sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol. Pharm., 2010, 7(6), 1930-1939.
[107]
Huang, R.; Ke, W.; Han, L.; Li, J.; Liu, S.; Jiang, C. Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration. Biomaterials, 2011, 32(9), 2399-2406.
[108]
Sha, O.; Niu, J.; Ng, T.B.; Cho, E.Y.; Fu, X.; Jiang, W. Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: A mini review. Cancer Chemother. Pharmacol., 2013, 71(6), 1387-1393.
[109]
Shaw, P.C.; Yung, M.H.; Zhu, R.H.; Ho, W.K.; Ng, T.B.; Yeung, H.W. Cloning of trichosanthin cDNA and its expression in Escherichia coli. Gene, 1991, 97(2), 267-272.
[110]
Zhu, R.H.; Ng, T.B.; Yeung, H.W.; Shaw, P.C. High level synthesis of biologically active recombinant trichosanthin in Escherichia coli. Int. J. Pept. Protein Res., 1992, 39(1), 77-81.
[111]
Peng, P.; Huang, L.; Wang, Y.; You, C.; Cao, W.; Song, H.; Tan, H.; Wu, Y. Effect of recombinant trichosanthin on proliferation of human cevical cancer Caski cells. Chin. J. Chin. Mater. Med, 2011, 36(18), 2539-2542.
[112]
Peng, P.; Huang, L.; Han, Y.; You, C.; Fang, Z. Efect of high expression of recombinant trichosanthin on p73 methylation and mechanism research in Caski cell. Chin. Pharmacol. Bull, 2013, 29(9), 1290-1293.
[113]
Zhang, Y.H.; Wang, Y.; Yusufali, A.H.; Ashby, F.; Zhang, D.; Yin, Z.F.; Aslanidi, G.V.; Srivastava, A.; Ling, C.Q.; Ling, C. Cytotoxic genes from traditional Chinese medicine inhibit tumor growth both in vitro and in vivo. J. Integr. Med., 2014, 12(6), 483-494.
[114]
Abelev, G.I. Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv. Cancer Res., 1971, 14, 295-358.
[115]
Cheng, B.; Ling, C.; Dai, Y.; Lu, Y.; Glushakova, L.G.; Gee, S.W.; McGoogan, K.E.; Aslanidi, G.V.; Park, M.; Stacpoole, P.W.; Siemann, D.; Liu, C.; Srivastava, A. Development of optimized AAV3 serotype vectors: Mechanism of high-efficiency transduction of human liver cancer cells. Gene Ther., 2012, 19(4), 375-384.
[116]
Ling, C.; Lu, Y.; Cheng, B.; McGoogan, K.E.; Gee, S.W.; Ma, W.; Li, B.; Aslanidi, G.V.; Srivastava, A. High-efficiency transduction of liver cancer cells by recombinant adeno-associated virus serotype 3 vectors. J. Vis. Exp., 2011, 49, pii 2538.
[117]
Ling, C.; Lu, Y.; Kalsi, J.K.; Jayandharan, G.R.; Li, B.; Ma, W.; Cheng, B.; Gee, S.W.; McGoogan, K.E.; Govindasamy, L.; Zhong, L.; Agbandje-McKenna, M.; Srivastava, A. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3. Hum. Gene Ther., 2010, 21(12), 1741-1747.
[118]
Ling, C.; Wang, Y.; Zhang, Y.; Ejjigani, A.; Yin, Z.; Lu, Y.; Wang, L.; Wang, M.; Li, J.; Hu, Z.; Aslanidi, G.V.; Zhong, L.; Gao, G.; Srivastava, A. Selective in vivo targeting of human liver tumors by optimized AAV3 vectors in a murine xenograft model. Hum. Gene Ther., 2014, 25(12), 1023-1034.
[119]
Huang, Y.; Liu, F.P.; Zhou, T.H.; Zhu, J.M. Cloning and expression of a synthetic gene encoding magainin-melittin hybrid peptide in Escherichia coli and studies on its antibacterial activity. Chin. J. Biotechnol., 2001, 17(2), 207-210.
[120]
Lazarev, V.N.; Govorun, V.M.; Parfenova, T.M.; Akopian, T.A.; Lopukhin, Y. Effect of controlled expression of the melittin gene on infection caused by Mycoplasma hominis in cell culture. Dokl. Biochem. Biophys., 2001, 378, 186-187.
[121]
Lazarev, V.N.; Shkarupeta, M.M.; Kostryukova, E.S.; Levitskii, S.A.; Titova, G.A.; Akopian, T.A.; Govorun, V.M. Recombinant plasmid constructs expressing gene for antimicrobial peptide melittin for the therapy of mycoplasma and chlamydia infections. Bull. Exp. Biol. Med., 2007, 144(3), 452-456.
[122]
Li, B.; Ling, C.Q.; Zhang, C.; Gu, W.; Li, S.X.; Huang, X.Q.; Zhang, Y.N.; Yu, C.Q. The induced apoptosis of recombinant adenovirus carrying melittin gene for hepatocellular carcinoma cell. Chin. J. Hepatol, 2004, 12(8), 453-455.
[123]
Ling, C.Q.; Li, B.; Zhang, C.; Gu, W.; Li, S.X.; Huang, X.Q.; Zhang, Y.N. Anti-hepatocarcinoma effect of recombinant adenovirus carrying melittin gene. Chin. J. Hepatol, 2004, 12(12), 741-744.
[124]
Ling, C.Q.; Li, B.; Zhang, C.; Zhu, D.Z.; Huang, X.Q.; Gu, W.; Li, S.X. Inhibitory effect of recombinant adenovirus carrying melittin gene on hepatocellular carcinoma. Ann. Oncol., 2005, 16(1), 109-115.
[125]
Qu, L.; Jiang, M.; Li, Z.; Pu, F.; Gong, L.; Sun, L.; Gong, R.; Ji, G.; Si, J. Inhibitory effect of biosynthetic nanoscale peptide Melittin on hepatocellular carcinoma, driven by survivin promoter. J. Biomed. Nanotechnol., 2014, 10(4), 695-706.
[126]
Shao, G.; Qian, D.; Wang, H.; Yan, Z.; Hu, M.; Wang, T.; Wang, B. Construction of the plasmid coding for the expression of the EGFP--2(Arg, Ala) fusion protein and the anti-tumor effects exerted by the fusion protein in HeLa-60 cells. Oncol. Lett., 2015, 9(6), 2729-2735.
[127]
Jin, S.; Lin, X.; Guan, H.; Wu, J. Cell-specific expression of the analgesic-antitumor peptide coding sequence under the control of the human alpha-fetoprotein gene promoter and enhancer. Exp. Ther. Med., 2015, 9(3), 863-867.
[128]
Wu, C.T.; Lin, T.Y.; Hsu, H.Y.; Sheu, F.; Ho, C.M.; Chen, E.I. Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis, 2011, 32(12), 1890-1896.
[129]
Liang, C.; Li, H.; Zhou, H.; Zhang, S.; Liu, Z.; Zhou, Q.; Sun, F. Recombinant Lz-8 from Ganoderma lucidum induces endoplasmic reticulum stress-mediated autophagic cell death in SGC-7901 human gastric cancer cells. Oncol. Rep., 2012, 27(4), 1079-1089.
[130]
Wu, J.R.; Hu, C.T.; You, R.I.; Ma, P.L.; Pan, S.M.; Lee, M.C.; Wu, W.S. Preclinical trials for prevention of tumor progression of hepatocellular carcinoma by LZ-8 targeting c-Met dependent and independent pathways. PLoS One, 2015, 10(1), e0114495.
[131]
Mairhofer, J.; Lara, A.R. Advances in host and vector development for the production of plasmid DNA vaccines. Methods Mol. Biol., 2014, 1139, 505-541.
[132]
Lin, C.C.; Yu, Y.L.; Shih, C.C.; Liu, K.J.; Ou, K.L.; Hong, L.Z.; Chen, J.D.; Chu, C.L. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol. Immunother., 2011, 60(7), 1019-1027.
[133]
Rade, J.J.; Schulick, A.H.; Virmani, R.; Dichek, D.A. Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat. Med., 1996, 2(3), 293-298.
[134]
Riesbeck, K.; Chen, D.; Kemball-Cook, G.; McVey, J.H.; George, A.J.; Tuddenham, E.G.; Dorling, A.; Lechler, R.I. Expression of hirudin fusion proteins in mammalian cells: A strategy for prevention of intravascular thrombosis. Circulation, 1998, 98(24), 2744-2752.
[135]
Shen, L.; Chen, S.P.; Qin, Y.W.; Cai, Z.L.; Yang, S.S. Effects of fusion gene encoding the hVEGF165 and fused hirudin on restenosis of injured carotid artery induced by angioplasty. Chin. Med. J., 2006, 86(38), 2698-2702.
[136]
Ou, Y.; Geng, P.; Liao, G.Y.; Zhou, Z.; Wu, W.T. Intracellular GSH and ROS levels may be related to galactose-mediated human lens epithelial cell apoptosis: role of recombinant hirudin variant III. Chem. Biol. Interact., 2009, 179(2-3), 103-109.
[137]
Ou, Y.; Liao, G.; Yuan, Z.; Wu, W. Protective effect of recombinant hirudin variant III against galactose-mediated rat lens epithelial cell damage. Curr. Eye Res., 2012, 37(3), 187-194.
[138]
Summerford, C.; Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol., 1998, 72(2), 1438-1445.
[139]
Hacker, U.T.; Gerner, F.M.; Buning, H.; Hutter, M.; Reichenspurner, H.; Stangl, M.; Hallek, M. Standard heparin, low molecular weight heparin, low molecular weight heparinoid, and recombinant hirudin differ in their ability to inhibit transduction by recombinant adeno-associated virus type 2 vectors. Gene Ther., 2001, 8(12), 966-968.
[140]
Rey-Rico, A.; Frisch, J.; Venkatesan, J.K.; Schmitt, G.; Madry, H.; Cucchiarini, M. Determination of effective rAAV-mediated gene transfer conditions to support chondrogenic differentiation processes in human primary bone marrow aspirates. Gene Ther., 2015, 22(1), 50-57.
[141]
Shaw, P.C.; Chan, W.L.; Yeung, H.W.; Ng, T.B. Minireview: Trichosanthin--a protein with multiple pharmacological properties. Life Sci., 1994, 55(4), 253-262.
[142]
Xu, M.F.; Jin, Y.C. Clinical trial of trichosanthin with or without dexamethasone in induction of abortion by four different routes of administration. Shengzhi Yu Biyun, 1991, 11(2), 47-50.
[143]
Leung, K.N.; Yeung, H.W.; Leung, S.O. The immunomodulatory and antitumor activities of trichosanthin-an abortifacient protein isolated from tian-hua-fen (Trichosanthes kirilowii). Asian Pac. J. Allergy Immunol., 1986, 4(2), 111-120.
[144]
Tao, J.X.; Chou, K.Y. The roles of monocytes and the interaction between monocyte and T cell in human immune suppression induced by trichosanthin. Acta Biologiae Experimentalis Sinica, 1993, 26(2), 127-131.
[145]
Chou, K.Y.; Chan, M.; Bias, W.B. Differential expression of the down-regulatory function of CD8 cells in trichosanthin-induced immunosuppression and its genetic control in humans. Eur. J. Immunogenet., 1996, 23(1), 29-40.
[146]
Li, N.L.; Zheng, Z.X.; Shen, B.H.; Chou, G.Y. Modulation of T-cell-mediated immune responses by trichosanthin via antigen processing and presentation. Acta Biologiae Experimentalis Sinica, 1997, 30(2), 165-171.
[147]
Hong, J.; Fu, S.L.; Shen, Z.Y.; Lu, P.H.; Chou, K.Y. Trichosanthin inhibits T cell activation by interfering with the recruitment of ZAP-70 to CD3 zeta chain. Cell Res., 1998, 8(1), 33-39.
[148]
Zhou, H.; Jiao, Z.; Pan, J.; Hong, J.; Tao, J.; Li, N.; Zhou, Y.; Zhang, J.; Chou, K.Y. Immune suppression via IL-4/IL-10-secreting T cells: A nontoxic property of anti-HIV agent trichosanthin. Clin. Immunol., 2007, 122(3), 312-322.
[149]
Yang, N.; Li, Z.; Jiao, Z.; Gu, P.; Zhou, Y.; Lu, L.; Chou, K.Y. A Trichosanthin-derived peptide suppresses type 1 immune responses by TLR2-dependent activation of CD8(+)CD28(-) Tregs. Clin. Immunol., 2014, 153(2), 277-287.
[150]
Zhou, X.; Yang, N.; Lu, L.; Ding, Q.; Jiao, Z.; Zhou, Y.; Chou, K.Y. Up-regulation of IL-10 expression in dendritic cells is involved in Trichosanthin-induced immunosuppression. Immunol. Lett., 2007, 110(1), 74-81.
[151]
Wang, B.; Jiao, Z.; Shao, X.; Lu, L.; Yang, N.; Zhou, X.; Xin, L.; Zhou, Y.; Chou, K.Y. Phenotypic alterations of dendritic cells are involved in suppressive activity of trichosanthin-induced CD8+CD28- regulatory T cells. J. Immunol., 2010, 185(1), 79-88.
[152]
Yan, R.; Zhong, W.; Zhu, Y.; Zhang, X. Trichosanthin-stimulated dendritic cells induce a type 2 helper T lymphocyte response through the OX40 ligand. J. Investig. Allergol. Clin. Immunol., 2012, 22(7), 491-500.
[153]
Chen, X.; Ma, B.L. Trichosanthin, an initiator of the alternative complement activation pathway. Clin. Exp. Immunol., 1993, 93(2), 248-252.
[154]
Bi, L.Q.; Liu, J.W.; Song, Y. The effect of trichosanthin on immunoregulatory T lymphocytes Zhongguo Zhong Xi Yi Jie He Za Zhi,, 1994, 14(1), 18-20. 13-14
[155]
Gong, Q.; Deng, D.; Ding, J.; Wang, C.; Bian, Z.; Ye, Z.; Xu, J. Trichosanthin, an extract of Trichosanthes kirilowii, effectively prevents acute rejection of major histocompatibility complex-mismatched mouse skin allograft. Transplant. Proc., 2008, 40(10), 3714-3718.
[156]
Wang, B.L.; Su, H.; Chen, Y.; Wang, J.; Xu, G.L. A role for trichosanthin in the expansion of CD4CD25 regulatory T cells. Scand. J. Immunol., 2010, 71(4), 258-266.
[157]
Ma, Y.H.; Cheng, W.Z.; Gong, F.; Ma, A.L.; Yu, Q.W.; Zhang, J.Y.; Hu, C.Y.; Chen, X.H.; Zhang, D.Q. Active Chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses. World J. Gastroenterol., 2008, 14(34), 5274-5281.
[158]
Haak-Frendscho, M.; Kino, K.; Sone, T.; Jardieu, P. Ling Zhi-8: A novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell. Immunol., 1993, 150(1), 101-113.
[159]
van der Hem, L.G.; van der Vliet, J.A.; Bocken, C.F.; Kino, K.; Hoitsma, A.J.; Tax, W.J. Prolongation of allograft survival with Ling Zhi-8, a new immunosuppressive drug. Transplant. Proc., 1994, 26(2), 746.
[160]
Lin, Y.L.; Liang, Y.C.; Tseng, Y.S.; Huang, H.Y.; Chou, S.Y.; Hseu, R.S.; Huang, C.T.; Chiang, B.L. An immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and MAPK pathways. J. Leukoc. Biol., 2009, 86(4), 877-889.
[161]
Zhou, H.; Sun, F.; Li, H.; Zhang, S.; Liu, Z.; Pei, J.; Liang, C. Effect of recombinant Ganoderma lucidum immunoregulatory protein on cyclophosphamide-induced leukopenia in mice. Immunopharmacol. Immunotoxicol., 2013, 35(3), 426-433.
[162]
Cao, Q.; Lu, W.; Cai, X.; Hu, C.; Wang, C.; Ye, J.; Yan, H.; Yang, Y.; Wang, Z.; Huo, J.; Liu, Y.; Yu, Y.; Ling, C.; Cao, P. In vitro refolding and functional analysis of polyhistidine-tagged Buthus martensii Karsch antitumor-analgesic peptide produced in Escherichia coli. Biotechnol. Lett., 2015, 37(12), 2461-2466.
[163]
Zhang, F.L.; Jia, S.Q.; Zheng, S.P.; Ding, W. Celastrol enhances AAV1-mediated gene expression in mice adipose tissues. Gene Ther., 2011, 18(2), 128-134.
[164]
Mitchell, A.M.; Li, C.; Samulski, R.J. Arsenic trioxide stabilizes accumulations of adeno-associated virus virions at the perinuclear region, increasing transduction in vitro and in vivo. J. Virol., 2013, 87(8), 4571-4583.
[165]
Wang, L.N.; Wang, Y.; Lu, Y.; Yin, Z.F.; Zhang, Y.H.; Aslanidi, G.V.; Srivastava, A.; Ling, C.Q.; Ling, C. Pristimerin enhances recombinant adeno-associated virus vector-mediated transgene expression in human cell lines in vitro and murine hepatocytes in vivo. J. Integr. Med., 2014, 12(1), 20-34.
[166]
Wang, Y.; Zhao, T.; Wei, D.; Strandberg, E.; Ulrich, A.S.; Ulmschneider, J.P. How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? Biochim. Biophys. Acta, 2014, 1838(9), 2280-2288.
[167]
Zhang, F.; Lu, Y.J.; Shaw, P.C.; Sui, S.F. Change in pH-dependent membrane insertion characteristics of trichosanthin caused by deletion of its last seven C-terminal amino acid residues. Biochemistry (Mosc.), 2003, 68(4), 436-445.
[168]
Xia, X.F.; Sui, S.F. The membrane insertion of trichosanthin is membrane-surface-pH dependent. Biochem. J., 2000, 349(Pt 3), 835-841.