[1]
Wilson, M.K.; Karakasis, K.; Oza, A.M. Outcomes and endpoints in trials of cancer treatment: The past, present, and future. Lancet Oncol., 2015, 16(1), e32-e42.
[2]
Qiu, J. ‘Back to the future’ for Chinese herbal medicines. Nat. Rev. Drug Discov., 2007, 6(7), 506-507.
[3]
Zhang, Y.H.; Wang, Y.; Yusufali, A.H.; Ashby, F.; Zhang, D.; Yin, Z.F.; Aslanidi, G.V.; Srivastava, A.; Ling, C.Q.; Ling, C. Cytotoxic genes from traditional Chinese medicine inhibit tumor growth both in vitro and in vivo. J. Integr. Med., 2014, 12(6), 483-494.
[4]
Ling, C.Q.; Yue, X.Q.; Ling, C. Three advantages of using traditional Chinese medicine to prevent and treat tumor. J. Integr. Med., 2014, 12(4), 331-335.
[5]
Lim, S.M.; Lee, S.H. Effectiveness of bee venom acupuncture in alleviating post-stroke shoulder pain: A systematic review and meta-analysis. J. Integr. Med., 2015, 13(4), 241-247.
[6]
Han, S.M.; Lee, K.G.; Pak, S.C. Effects of cosmetics containing purified honeybee (Apismellifera L.) venom on acne vulgaris. J. Integr. Med., 2013, 11(5), 320-326.
[7]
Havas, L.J. Effect of bee venom on colchicine-induced tumours. Nature, 1950, 166(4222), 567-568.
[8]
McDonald, J.A.; Li, F.P.; Mehta, C.R. Cancer mortality among beekeepers. J. Occup. Med., 1979, 21(12), 811-813.
[9]
Habermann, E. Bee and wasp venoms. Science, 1972, 177(4046), 314-322.
[10]
Kikuchi, Y.; Miyauchi, M.; Nagata, I. Inhibition of human ovarian cancer cell proliferation by calmodulin inhibitors and the possible mechanism. Gynecol. Oncol., 1989, 35(2), 156-158.
[11]
Gajski, G.; Garaj-Vrhovac, V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol., 2013, 36(2), 697-705.
[12]
Orsolic, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194.
[13]
Radloff, S.E.; Hepburn, C.; Hepburn, H.R.; Fuchs, S.; Hadisoesilo, S.; Tan, K.; Engel, M.S.; Kuznetsov, V. Population structure and classification of Apis cerana. Apidologie, 2010, 41(6), 589-601.
[14]
Park, D.; Jung, J.W.; Lee, M.O.; Lee, S.Y.; Kim, B.; Jin, H.J.; Kim, J.; Ahn, Y.J.; Lee, K.W.; Song, Y.S.; Hong, S.; Womack, J.E.; Kwon, H.W. Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana. Peptides, 2014, 53, 185-193.
[15]
Raghuraman, H.; Chattopadhyay, A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep., 2007, 27(4-5), 189-223.
[16]
Son, D.J.; Lee, J.W.; Lee, Y.H.; Song, H.S.; Lee, C.K.; Hong, J.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther., 2007, 115(2), 246-270.
[17]
Hait, W.N.; Grais, L.; Benz, C.; Cadman, E.C. Inhibition of growth of leukemic cells by inhibitors of calmodulin: Phenothiazines and melittin. Cancer Chemother. Pharmacol., 1985, 14(3), 202-205.
[18]
Saini, S.S.; Chopra, A.K.; Peterson, J.W. Melittin activates endogenous phospholipase D during cytolysis of human monocytic leukemia cells. Toxicon, 1999, 37(11), 1605-1619.
[19]
Moon, D.O.; Park, S.Y.; Choi, Y.H.; Kim, N.D.; Lee, C.; Kim, G.Y. Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon, 2008, 51(1), 112-120.
[20]
Park, J.H.; Jeong, Y.J.; Park, K.K.; Cho, H.J.; Chung, I.K.; Min, K.S.; Kim, M.; Lee, K.G.; Yeo, J.H.; Park, K.K.; Chang, Y.C. Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol. Cells, 2010, 29(2), 209-215.
[21]
Park, M.H.; Choi, M.S.; Kwak, D.H.; Oh, K.W. Yoon do, Y.; Han, S.B.; Song, H.S.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-kappaB. Prostate, 2011, 71(8), 801-812.
[22]
Kikuchi, Y.; Iwano, I.; Kato, K. Effects of calmodulin antagonists on human ovarian cancer cell proliferation in vitro. Biochem. Biophys. Res. Commun., 1984, 123(1), 385-392.
[23]
Jo, M.; Park, M.H.; Kollipara, P.S.; An, B.J.; Song, H.S.; Han, S.B.; Kim, J.H.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol. Appl. Pharmacol., 2012, 258(1), 72-81.
[24]
Shin, J.M.; Jeong, Y.J.; Cho, H.J.; Park, K.K.; Chung, I.K.; Lee, I.K.; Kwak, J.Y.; Chang, H.W.; Kim, C.H.; Moon, S.K.; Kim, W.J.; Choi, Y.H.; Chang, Y.C. Melittin suppresses HIF-1alpha/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells. PLoS One, 2013, 8(7), e69380.
[25]
Jeong, Y.J.; Choi, Y.; Shin, J.M.; Cho, H.J.; Kang, J.H.; Park, K.K.; Choe, J.Y.; Bae, Y.S.; Han, S.M.; Kim, C.H.; Chang, H.W.; Chang, Y.C. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem. Toxicol., 2014, 68, 218-225.
[26]
Cho, H.J.; Jeong, Y.J.; Park, K.K.; Park, Y.Y.; Chung, I.K.; Lee, K.G.; Yeo, J.H.; Han, S.M.; Bae, Y.S.; Chang, Y.C. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms. J. Ethnopharmacol., 2010, 127(3), 662-668.
[27]
Lee, G.L.; Hait, W.N. Inhibition of growth of C6 astrocytoma cells by inhibitors of calmodulin. Life Sci., 1985, 36(4), 347-354.
[28]
Yang, Z.L.; Ke, Y.Q.; Xu, R.X.; Peng, P. Melittin inhibits proliferation and induces apoptosis of malignant human glioma cells. Nan Fang Yi Ke Da Xue Xue Bao, 2007, 27(11), 1775-1777.
[29]
Drechsler, S.; Andra, J. Online monitoring of metabolism and morphology of peptide-treated neuroblastoma cancer cells and keratinocytes. J. Bioenerg. Biomembr., 2011, 43(3), 275-285.
[30]
Yang, X.; Zhu, H.; Ge, Y.; Liu, J.; Cai, J.; Qin, Q.; Zhan, L.; Zhang, C.; Xu, L.; Liu, Z.; Yang, Y.; Yang, Y.; Ma, J.; Cheng, H.; Sun, X. Melittin enhances radiosensitivity of hypoxic head and neck squamous cell carcinoma by suppressing HIF-1alpha. Tumour Biol., 2014, 35(10), 10443-10448.
[31]
Zhu, H.G.; Tayeh, I.; Israel, L.; Castagna, M. Different susceptibility of lung cell lines to inhibitors of tumor promotion and inducers of differentiation. J. Biol. Regul. Homeost. Agents, 1991, 5(2), 52-58.
[32]
Chen, Y.Q.; Zhu, Z.A.; Hao, Y.Q.; Dai, K.R.; Zhang, C. Effect of melittin on apoptosis and necrosis of U2 OS cells. Zhong Xi Yi Jie He Xue Bao, 2004, 2(3), 208-209.
[33]
Chu, S.T.; Cheng, H.H.; Huang, C.J.; Chang, H.C.; Chi, C.C.; Su, H.H.; Hsu, S.S.; Wang, J.L.; Chen, I.S.; Liu, S.I.; Lu, Y.C.; Huang, J.K.; Ho, C.M.; Jan, C.R. Phospholipase A2-independent Ca2+ entry and subsequent apoptosis induced by melittin in human MG63 osteosarcoma cells. Life Sci., 2007, 80(4), 364-369.
[34]
Zhu, H.; Yang, X.; Liu, J.; Ge, Y.; Qin, Q.; Lu, J.; Zhan, L.; Liu, Z.; Zhang, H.; Chen, X.; Zhang, C.; Xu, L.; Cheng, H.; Sun, X. Melittin radio sensitizes esophageal squamous cell carcinoma with induction of apoptosis in vitro and in vivo. Tumour Biol., 2014, 35(9), 8699-8705.
[35]
Wang, R.P.; Huang, S.R.; Zhou, J.Y.; Zou, X. Synergistic interaction between melittin and chemotherapeutic agents and their possible mechanisms: An experimental research. Zhongguo Zhong Xi Yi Jie He ZaZhi, 2014, 34(2), 224-229.
[36]
Arora, A.S.; de Groen, P.C.; Croall, D.E.; Emori, Y.; Gores, G.J. Hepatocellular carcinoma cells resist necrosis during anoxia by preventing phospholipase-mediated calpain activation. J. Cell. Physiol., 1996, 167(3), 434-442.
[37]
Zhang, H.; Zhao, B.; Huang, C.; Meng, X.M.; Bian, E.B.; Li, J. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells. PLoS One, 2014, 9(5), e95520.
[38]
Li, B.; Gu, W.; Zhang, C.; Huang, X.Q.; Han, K.Q.; Ling, C.Q. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin. Onkologie, 2006, 29(8-9), 367-371.
[39]
Li, B.; Ling, C.Q.; Zhang, C.; Gu, W.; Li, S.X.; Huang, X.Q.; Zhang, Y.N.; Yu, C.Q. The induced apoptosis of recombinant adenovirus carrying melittin gene for hepatocellular carcinoma cell. Zhonghua Gan Zang Bing Za Zhi, 2004, 12(8), 453-455.
[40]
Zhang, C.; Li, B.; Lu, S.Q.; Li, Y.; Su, Y.H.; Ling, C.Q. Effects of melittin on expressions of mitochondria membrane protein 7A6, cell apoptosis-related gene products Fas and Fas ligand in hepatocarcinoma cells. Zhong Xi Yi Jie He XueBao, 2007, 5(5), 559-563.
[41]
Wang, C.; Chen, T.; Zhang, N.; Yang, M.; Li, B.; Lu, X.; Cao, X.; Ling, C. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting I kappa B alpha kinase-NF kappa B. J. Biol. Chem., 2009, 284(6), 3804-3813.
[42]
Song, C.C.; Lu, X.; Cheng, B.B.; Du, J.; Li, B.; Ling, C.Q. Effects of melittin on growth and angiogenesis of human hepatocellular carcinoma BEL-7402 cell xenografts in nude mice. Ai Zheng, 2007, 26(12), 1315-1322.
[43]
Liu, S.; Yu, M.; He, Y.; Xiao, L.; Wang, F.; Song, C.; Sun, S.; Ling, C.; Xu, Z. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology, 2008, 47(6), 1964-1973.
[44]
Tu, W.C.; Wu, C.C.; Hsieh, H.L.; Chen, C.Y.; Hsu, S.L. Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon, 2008, 52(2), 318-329.
[45]
Do, N.; Weindl, G.; Grohmann, L.; Salwiczek, M.; Koksch, B.; Korting, H.C.; Schafer-Korting, M. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin. Exp. Dermatol., 2014, 23(5), 326-331.
[46]
Lee, S.Y.; Park, H.S.; Lee, S.J.; Choi, M.U. Melittin exerts multiple effects on the release of free fatty acids from L1210 cells: Lack of selective activation of phospholipase A2 by melittin. Arch. Biochem. Biophys., 2001, 389(1), 57-67.
[47]
Heston, W.D.; Charles, M. Calmodulin antagonist inhibition of polyamine transport in prostatic cancer cells in vitro. Biochem. Pharmacol., 1988, 37(13), 2511-2514.
[48]
Thomas, T.; Thomas, T.J. Polyamine metabolism and cancer. J. Cell. Mol. Med., 2003, 7(2), 113-126.
[49]
Marton, L.J.; Pegg, A.E. Polyamines as targets for therapeutic intervention. Annu. Rev. Pharmacol. Toxicol., 1995, 35, 55-91.
[50]
Grillo, M.A.; Colombatto, S. Polyamine transport in cells. Biochem. Soc. Trans., 1994, 22(4), 894-898.
[51]
Wu, S.N.; Li, H.F.; Chiang, H.T. Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells. J. Membr. Biol., 2000, 178(3), 205-214.
[52]
Ryu, J.S.; Jang, B.H.; Jo, Y.S.; Kim, S.J.; Eom, T.I.; Kim, M.C.; Ko, H.J.; Sim, S.S. The effect of acteoside on intracellular Ca(2+) mobilization and phospholipase C activity in RBL-2H3 cells stimulated by melittin. Arch. Pharm. Res., 2014, 37(2), 239-244.
[53]
Yu, S.P.; Canzoniero, L.M.; Choi, D.W. Ion homeostasis and apoptosis. Curr. Opin. Cell Biol., 2001, 13(4), 405-411.
[54]
Brown, E.M.; MacLeod, R.J. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev., 2001, 81(1), 239-297.
[55]
Gerst, J.E.; Salomon, Y. Inhibition by melittin and fluphenazine of melanotropin receptor function and adenylate cyclase in M2R melanoma cell membranes. Endocrinology, 1987, 121(5), 1766-1772.
[56]
Heisler, S. Calmodulin antagonists inhibit dihydropyridine calcium channel activator (BAY-K-8644) induced cGMP synthesis in pituitary tumor cells. Can. J. Physiol. Pharmacol., 1986, 64(6), 760-763.
[57]
Lazo, J.S.; Hait, W.N.; Kennedy, K.A.; Braun, I.D.; Meandzija, B. Enhanced bleomycin-induced DNA damage and cytotoxicity with calmodulin antagonists. Mol. Pharmacol., 1985, 27(3), 387-393.
[58]
Zimmermann, K.C.; Green, D.R. How cells die: Apoptosis pathways. J. Allergy Clin. Immunol., 2001, 108(4)(Suppl.), S99-S103.
[59]
Wajant, H. The Fas signaling pathway: More than a paradigm. Science, 2002, 296(5573), 1635-1636.
[60]
Roh, Y.S.; Song, J.; Seki, E. TAK1 regulates hepatic cell survival and carcinogenesis. J. Gastroenterol., 2014, 49(2), 185-194.
[61]
Mihaly, S.R.; Ninomiya-Tsuji, J.; Morioka, S. TAK1 control of cell death. Cell Death Differ., 2014, 21(11), 1667-1676.
[62]
Lee, J.; Lee, D.G. Melittin triggers apoptosis in Candida albicans through the reactive oxygen species-mediated mitochondria/ caspase-dependent pathway. FEMS Microbiol. Lett., 2014, 355(1), 36-42.
[63]
Bonora, M.; Pinton, P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front. Oncol., 2014, 4, 302.
[64]
Nicotra, A.; Parvez, S. Apoptotic molecules and MPTP-induced cell death. Neurotoxicol. Teratol., 2002, 24(5), 599-605.
[65]
Grad, J.M.; Zeng, X.R.; Boise, L.H. Regulation of Bcl-xL: A little bit of this and a little bit of STAT. Curr. Opin. Oncol., 2000, 12(6), 543-549.
[66]
Al Zaid Siddiquee, K.; Turkson, J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res., 2008, 18(2), 254-267.
[67]
Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol., 2011, 12(8), 695-708.
[68]
Perkins, N.D. The diverse and complex roles of NF-kappa B subunits in cancer. Nat. Rev. Cancer, 2012, 12(2), 121-132.
[69]
Watala, C.; Gwozdzinski, K. Melittin-induced alterations in dynamic properties of human red blood cell membranes. Chem. Biol. Interact., 1992, 82(2), 135-149.
[70]
Blondelle, S.E.; Houghten, R.A. Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry, 1991, 30(19), 4671-4678.
[71]
Ladokhin, A.S.; White, S.H. Folding of amphipathic alpha-helices on membranes: Energetics of helix formation by melittin. J. Mol. Biol., 1999, 285(4), 1363-1369.
[72]
Andersson, M.; Ulmschneider, J.P.; Ulmschneider, M.B.; White, S.H. Conformational states of melittin at a bilayer interface. Biophys. J., 2013, 104(6), L12-L14.
[73]
Rapson, A.C.; Hossain, M.A.; Wade, J.D.; Nice, E.C.; Smith, T.A.; Clayton, A.H.; Gee, M.L. Structural dynamics of a lytic peptide interacting with a supported lipid bilayer. Biophys. J., 2011, 100(5), 1353-1361.
[74]
Terwilliger, T.C.; Weissman, L.; Eisenberg, D. The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities. Biophys. J., 1982, 37(1), 353-361.
[75]
Wessman, P.; Morin, M.; Reijmar, K.; Edwards, K. Effect of alpha-helical peptides on liposome structure: A comparative study of melittin and alamethicin. J. Colloid Interface Sci., 2010, 346(1), 127-135.
[76]
Lee, M.T.; Sun, T.L.; Hung, W.C.; Huang, H.W. Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. USA, 2013, 110(35), 14243-14248.
[77]
Hain, N.; Gallego, M.; Reviakine, I. Unraveling supported lipid bilayer formation kinetics: Osmotic effects. Langmuir, 2013, 29(7), 2282-2288.
[78]
Kokot, G.; Mally, M.; Svetina, S. The dynamics of melittin-induced membrane permeability. Eur. Biophys. J., 2012, 41(5), 461-474.
[79]
Sengupta, D.; Leontiadou, H.; Mark, A.E.; Marrink, S.J. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim. Biophys. Acta, 2008, 1778(10), 2308-2317.
[80]
Allende, D.; Simon, S.A.; McIntosh, T.J. Melittin-induced bilayer leakage depends on lipid material properties: Evidence for toroidal pores. Biophys. J., 2005, 88(3), 1828-1837.
[81]
Beven, L.; Castano, S.; Dufourcq, J.; Wieslander, A.; Wroblewski, H. The antibiotic activity of cationic linear amphipathic peptides: Lessons from the action of leucine/lysine copolymers on bacteria of the class Mollicutes. Eur. J. Biochem., 2003, 270(10), 2207-2217.
[82]
Irudayam, S.J.; Berkowitz, M.L. Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores. Biochim. Biophys. Acta, 2011, 1808(9), 2258-2266.
[83]
Maher, S.; Devocelle, M.; Ryan, S.; McClean, S.; Brayden, D.J. Impact of amino acid replacements on in vitro permeation enhancement and cytotoxicity of the intestinal absorption promoter, melittin. Int. J. Pharm., 2010, 387(1-2), 154-160.
[84]
Mihajlovic, M.; Lazaridis, T. Antimicrobial peptides bind more strongly to membrane pores. Biochim. Biophys. Acta, 2010, 1798(8), 1494-1502.
[85]
Svensson, F.R.; Lincoln, P.; Norden, B.; Esbjorner, E.K. Tryptophan orientations in membrane-bound gramicidin and melittin-a comparative linear dichroism study on transmembrane and surface-bound peptides. Biochim. Biophys. Acta, 2011, 1808(1), 219-228.
[86]
Misra, S.K.; Ye, M.; Kim, S.; Pan, D. Defined nanoscale chemistry influences delivery of peptido-toxins for cancer therapy. PLoS One, 2015, 10(6), e0125908.
[87]
Pan, H.; Soman, N.R.; Schlesinger, P.H.; Lanza, G.M.; Wickline, S.A. Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(3), 318-327.
[88]
Hou, K.K.; Pan, H.; Schlesinger, P.H.; Wickline, S.A. A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol. Adv., 2015, 33(6 Pt 1), 931-940.
[89]
Dempsey, C.E. The actions of melittin on membranes. Biochim. Biophys. Acta, 1990, 1031(2), 143-161.
[90]
Otoda, K.; Kimura, S.; Imanishi, Y. Interaction of melittin derivatives with lipid bilayer membrane. Role of basic residues at the C-terminal and their replacement with lactose. Biochim. Biophys. Acta, 1992, 1112(1), 1-6.
[91]
Tan, Y.X.; Chen, C.; Wang, Y.L.; Lin, S.; Wang, Y.; Li, S.B.; Jin, X.P.; Gao, H.W.; Du, F.S.; Gong, F.; Ji, S.P. Truncated peptides from melittin and its analog with high lytic activity at endosomal pH enhance branched polyethylenimine-mediated gene transfection. J. Gene Med., 2012, 14(4), 241-250.
[92]
Yan, H.; Li, S.; Sun, X.; Mi, H.; He, B. Individual substitution analogs of Mel(12-26), melittin’s C-terminal 15-residue peptide: Their antimicrobial and hemolytic actions. FEBS Lett., 2003, 554(1-2), 100-104.
[93]
Habermann, E.; Kowallek, H. Modifications of amino groups and tryptophan in melittin as an aid to recognition of structure-activity relationships. Hoppe Seylers Z. Physiol. Chem., 1970, 351(7), 884-890.
[94]
Rivett, D.E.; Kirkpatrick, A.; Hewish, D.R.; Reilly, W.; Werkmeister, J.A. Dimerization of truncated melittin analogues results in cytolytic peptides. Biochem. J., 1996, 316(Pt 2), 525-529.
[95]
Jamasbi, E.; Batinovic, S.; Sharples, R.A.; Sani, M.A.; Robins-Browne, R.M.; Wade, J.D.; Separovic, F.; Hossain, M.A. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids, 2014, 46(12), 2759-2766.
[96]
Werkmeister, J.A.; Kirkpatrick, A.; McKenzie, J.A.; Rivett, D.E. The effect of sequence variations and structure on the cytolytic activity of melittin peptides. Biochim. Biophys. Acta, 1993, 1157(1), 50-54.
[97]
Weaver, A.J.; Kemple, M.D.; Prendergast, F.G. Characterization of selectively 13C-labeled synthetic melittin and melittin analogues in isotropic solvents by circular dichroism, fluorescence, and NMR spectroscopy. Biochemistry, 1989, 28(21), 8614-8623.
[98]
Subbalakshmi, C.; Nagaraj, R.; Sitaram, N. Biological activities of C-terminal 15-residue synthetic fragment of melittin: Design of an analog with improved antibacterial activity. FEBS Lett., 1999, 448(1), 62-66.
[99]
Asthana, N.; Yadav, S.P.; Ghosh, J.K. Dissection of antibacterial and toxic activity of melittin: A leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J. Biol. Chem., 2004, 279(53), 55042-55050.
[100]
Saravanan, R.; Bhunia, A.; Bhattacharjya, S. Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: Implications in cell selective lysis by D-amino acid containing antimicrobial peptides. Biochim. Biophys. Acta, 2010, 1798(2), 128-139.
[101]
Sun, X.; Chen, S.; Li, S.; Yan, H.; Fan, Y.; Mi, H. Deletion of two C-terminal Gln residues of 12-26-residue fragment of melittin improves its antimicrobial activity. Peptides, 2005, 26(3), 369-375.
[102]
Juvvadi, P.; Vunnam, S.; Merrifield, E.L.; Boman, H.G.; Merrifield, R.B. Hydrophobic effects on antibacterial and channel-forming properties of cecropin A-melittin hybrids. J. Pept. Sci., 1996, 2(4), 223-232.
[103]
Merrifield, E.L.; Mitchell, S.A.; Ubach, J.; Boman, H.G.; Andreu, D.; Merrifield, R.B. D-enantiomers of 15-residue cecropin A-melittin hybrids. Int. J. Pept. Protein Res., 1995, 46(3-4), 214-220.
[104]
Wade, D.; Andreu, D.; Mitchell, S.A.; Silveira, A.M.; Boman, A.; Boman, H.G.; Merrifield, R.B. Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int. J. Pept. Protein Res., 1992, 40(5), 429-436.
[105]
Huang, Y.; Liu, F.P.; Zhou, T.H.; Zhu, J.M. Cloning and expression of a synthetic gene encoding magainin-melittin hybrid peptide in Escherichia coli and studies on its antibacterial activity. Sheng Wu Gong Cheng Xue Bao, 2001, 17(2), 207-210.
[106]
Ji, S.; Li, W.; Zhang, L.; Zhang, Y.; Cao, B. Cecropin A-melittin mutant with improved proteolytic stability and enhanced antimicrobial activity against bacteria and fungi associated with gastroenteritis in vitro. Biochem. Biophys. Res. Commun., 2014, 451(4), 650-655.
[107]
Russell, P.J.; Hewish, D.; Carter, T.; Sterling-Levis, K.; Ow, K.; Hattarki, M.; Doughty, L.; Guthrie, R.; Shapira, D.; Molloy, P.L.; Werkmeister, J.A.; Kortt, A.A. Cytotoxic properties of immunoconjugates containing melittin-like peptide 101 against prostate cancer: In vitro and in vivo studies. Cancer Immunol. Immunother., 2004, 53(5), 411-421.
[108]
Liu, H.; Han, Y.; Fu, H.; Liu, M.; Wu, J.; Chen, X.; Zhang, S.; Chen, Y. Construction and expression of sTRAIL-melittin combining enhanced anticancer activity with antibacterial activity in Escherichia coli. Appl. Microbiol. Biotechnol., 2013, 97(7), 2877-2884.
[109]
Holle, L.; Song, W.; Holle, E.; Wei, Y.; Wagner, T.; Yu, X. A matrix metalloproteinase 2 cleavable melittin/avidin conjugate specifically targets tumor cells in vitro and in vivo. Int. J. Oncol., 2003, 22(1), 93-98.
[110]
Su, M.; Chang, W.; Cui, M.; Lin, Y.; Wu, S.; Xu, T. Expression and anticancer activity analysis of recombinant human uPA143-melittin. Int. J. Oncol., 2015, 46(2), 619-626.
[111]
Liu, M.; Zong, J.; Liu, Z.; Li, L.; Zheng, X.; Wang, B.; Sun, G. A novel melittin-MhIL-2 fusion protein inhibits the growth of human ovarian cancer SKOV3 cells in vitro and in vivo tumor growth. Cancer Immunol. Immunother., 2013, 62(5), 889-895.
[112]
Cui, F.; Cun, D.; Tao, A.; Yang, M.; Shi, K.; Zhao, M.; Guan, Y. Preparation and characterization of melittin-loaded poly (DL-lactic acid) or poly (DL-lactic-co-glycolic acid) microspheres made by the double emulsion method. J. Control. Release, 2005, 107(2), 310-319.
[113]
Soman, N.R.; Lanza, G.M.; Heuser, J.M.; Schlesinger, P.H.; Wickline, S.A. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett., 2008, 8(4), 1131-1136.
[114]
Huang, C.; Jin, H.; Qian, Y.; Qi, S.; Luo, H.; Luo, Q.; Zhang, Z. Hybrid melittin cytolytic Peptide-driven ultra small lipid nanoparticles block melanoma growth in vivo. ACS Nano, 2013, 7(7), 5791-5800.
[115]
Bei, C.; Bindu, T.; Remant, K.C.; Peisheng, X. Dual secured nano-melittin for the safe and effective eradication of cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(1), 25-29.
[116]
Ahmad, A.; Ranjan, S.; Zhang, W.; Zou, J.; Pyykko, I.; Kinnunen, P.K. Novel endosomolytic peptides for enhancing gene delivery in nanoparticles. Biochim. Biophys. Acta, 2015, 1848(2), 544-553.
[117]
Piyasena, M.E.; Zeineldin, R.; Fenton, K.; Buranda, T.; Lopez, G.P. Biosensors based on release of compounds upon disruption of lipid bilayers supported on porous microspheres. Biointerphases, 2008, 3(2), 38.
[118]
Buhrman, J.S.; Cook, L.C.; Rayahin, J.E.; Federle, M.J.; Gemeinhart, R.A. Proteolytically activated anti-bacterial hydrogel microspheres. J. Control. Release, 2013, 171(3), 288-295.
[119]
Tian, J.L.; Ke, X.; Chen, Z.; Wang, C.J.; Zhang, Y.; Zhong, T.C. Melittin liposomes surface modified with poloxamer 188: In vitro characterization and in vivo evaluation. Pharmazie, 2011, 66(5), 362-367.
[120]
Ling, C.Q.; Li, B.; Zhang, C.; Zhu, D.Z.; Huang, X.Q.; Gu, W.; Li, S.X. Inhibitory effect of recombinant adenovirus carrying melittin gene on hepatocellular carcinoma. Ann. Oncol., 2005, 16(1), 109-115.
[121]
Bastone, P.; Romen, F.; Liu, W.; Wirtz, R.; Koch, U.; Josephson, N.; Langbein, S.; Lochelt, M. Construction and characterization of efficient, stable and safe replication-deficient foamy virus vectors. Gene Ther., 2007, 14(7), 613-620.
[122]
McCown, T.J. The future of epilepsy treatment: focus on adeno-associated virus vector gene therapy. Drug News Perspect., 2010, 23(5), 281-286.
[123]
Yao, X.L.; Nakagawa, S.; Gao, J.Q. Current targeting strategies for adenovirus vectors in cancer gene therapy. Curr. Cancer Drug Targets, 2011, 11(7), 810-825.
[124]
Malhotra, M.; Kulamarva, A.; Sebak, S.; Paul, A.; Bhathena, J.; Mirzaei, M.; Prakash, S. Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. Drug Dev. Ind. Pharm., 2009, 35(6), 719-726.
[125]
Serikawa, T.; Kikuchi, A.; Sugaya, S.; Suzuki, N.; Kikuchi, H.; Tanaka, K. In vitro and in vivo evaluation of novel cationic liposomes utilized for cancer gene therapy. J. Control. Release, 2006, 113(3), 255-260.
[126]
Li, S.X.; Ling, C.Q.; Liu, X.Y. Impact of infection with recombinant adenovirus carrying melittin gene on CD54 expression in HepG2 cells. Di Yi Jun Yi Da XueXueBao, 2003, 23(4), 300-305.
[127]
Ling, C.Q.; Li, B.; Zhang, C.; Gu, W.; Li, S.X.; Huang, X.Q.; Zhang, Y.N. Anti-hepatocarcinoma effect of recombinant adenovirus carrying melittin gene. ZhonghuaGanZang Bing ZaZhi, 2004, 12(12), 741-744.
[128]
Holle, L.; Song, W.; Holle, E.; Wei, Y.; Li, J.; Wagner, T.E.; Yu, X. In vitro- and in vivo-targeted tumor lysis by an MMP2 cleavable melittin-LAP fusion protein. Int. J. Oncol., 2009, 35(4), 829-835.
[129]
Salomone, F.; Cardarelli, F.; Signore, G.; Boccardi, C.; Beltram, F. In vitro efficient transfection by CM(1)(8)-Tat(1)(1) hybrid peptide: A new tool for gene-delivery applications. PLoS One, 2013, 8(7), e70108.
[130]
Ling, C.; Wang, Y.; Zhang, Y.; Ejjigani, A.; Yin, Z.; Lu, Y.; Wang, L.; Wang, M.; Li, J.; Hu, Z.; Aslanidi, G.V.; Zhong, L.; Gao, G.; Srivastava, A.; Ling, C. Selective in vivo targeting of human liver tumors by optimized AAV3 vectors in a murine xenograft model. Hum. Gene Ther., 2014, 25(12), 1023-1034.
[131]
Soman, N.R.; Baldwin, S.L.; Hu, G.; Marsh, J.N.; Lanza, G.M.; Heuser, J.E.; Arbeit, J.M.; Wickline, S.A.; Schlesinger, P.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest., 2009, 119(9), 2830-2842.
[132]
Piscotta, F.J.; Tharp, J.M.; Liu, W.R.; Link, A.J. Expanding the chemical diversity of lasso peptide MccJ25 with genetically encoded noncanonical amino acids. Chem. Commun., 2015, 51(2), 409-412.