Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Antifungal Proteins with Antiproliferative Activity on Cancer Cells and HIV-1 Enzyme Inhibitory Activity from Medicinal Plants and Medicinal Fungi

Author(s): Jack Ho Wong, Tzi Bun Ng*, Hexiang Wang, Randy Chi Fai Cheung*, Charlene Cheuk Wing Ng, Xiuyun Ye, Jie Yang, Fang Liu, Chen Ling, Ki Chan, Xiujuan Ye and Wai Yee Chan*

Volume 20, Issue 3, 2019

Page: [265 - 276] Pages: 12

DOI: 10.2174/1389203719666180613085704

Price: $65

Abstract

A variety of fungi, plants, and their different tissues are used in Traditional Chinese Medicine to improve health, and some of them are recommended for dietary therapy. Many of these plants and fungi contain antifungal proteins and peptides which suppress spore germination and hyphal growth in phytopathogenic fungi. The aim of this article is to review antifungal proteins produced by medicinal plants and fungi used in Chinese medicine which also possess anticancer and human immunodeficiency virus-1 (HIV-1) enzyme inhibitory activities.

Keywords: Antifungal proteins, anticancer, anti-HIV-1 enzymes, medicinal fungi, medicinal plants.

[1]
van Herwerden, E.F.; Sussmuth, R.D. Sources for leads: Natural products and libraries. Handb. Exp. Pharmacol., 2016, 232, 91-123.
[2]
Rishton, G.M. Reactive compounds and in vitro false positives in HTS. Drug Discov. Today, 1997, 2(9), 382-384.
[3]
Hugenholtz, P.; Goebel, B.M.; Pace, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol., 1998, 180(18), 4765-4774.
[4]
Verpoorte, R. Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov. Today, 1998, 3(5), 232-238.
[5]
Krawczyk, B.; Voller, G.H.; Voller, J.; Ensle, P.; Sussmuth, R.D. Curvopeptin: A new lanthionine-containing class III lantibiotic and its co-substrate promiscuous synthetase. ChemBioChem, 2012, 13(14), 2065-2071.
[6]
Cociancich, S.; Pesic, A.; Petras, D.; Uhlmann, S.; Kretz, J.; Schubert, V.; Vieweg, L.; Duplan, S.; Marguerettaz, M.; Noell, J.; Pieretti, I.; Hugelland, M.; Kemper, S.; Mainz, A.; Rott, P.; Royer, M.; Sussmuth, R.D. The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. Nat. Chem. Biol., 2015, 11(3), 195-197.
[7]
Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schaberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459.
[8]
Hornung, A.; Bertazzo, M.; Dziarnowski, A.; Schneider, K.; Welzel, K.; Wohlert, S.E.; Holzenkampfer, M.; Nicholson, G.J.; Bechthold, A.; Sussmuth, R.D.; Vente, A.; Pelzer, S. A genomic screening approach to the structure-guided identification of drug candidates from natural sources. ChemBioChem, 2007, 8(7), 757-766.
[9]
Bachmann, B.O.; Van Lanen, S.G.; Baltz, R.H. Microbial genome mining for accelerated natural products discovery: Is a renaissance in the making? J. Ind. Microbiol. Biotechnol., 2014, 41(2), 175-184.
[10]
Molohon, K.J.; Melby, J.O.; Lee, J.; Evans, B.S.; Dunbar, K.L.; Bumpus, S.B.; Kelleher, N.L.; Mitchell, D.A. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem. Biol., 2011, 6(12), 1307-1313.
[11]
Voller, G.H.; Krawczyk, J.M.; Pesic, A.; Krawczyk, B.; Nachtigall, J.; Sussmuth, R.D. Characterization of new class III lantibiotics--erythreapeptin, avermipeptin and griseopeptin from Saccharopolyspora erythraea, Streptomyces avermitilis and Streptomyces griseus demonstrates stepwise N-terminal leader processing. ChemBioChem, 2012, 13(8), 1174-1183.
[12]
Caetano, T.; Krawczyk, J.M.; Mosker, E.; Sussmuth, R.D.; Mendo, S. Heterologous expression, biosynthesis, and mutagenesis of type II lantibiotics from Bacillus licheniformis in Escherichia coli. Chem. Biol., 2011, 18(1), 90-100.
[13]
Oldach, F.; Al Toma, R.; Kuthning, A.; Caetano, T.; Mendo, S.; Budisa, N.; Sussmuth, R.D. Congeneric lantibiotics from ribosomal in vivo peptide synthesis with noncanonical amino acids. Angew. Chem. Int. Ed. Engl., 2012, 51(2), 415-418.
[14]
Sepkowitz, K.A. AIDS--the first 20 years. N. Engl. J. Med., 2001, 344(23), 1764-1772.
[15]
Fettig, J.; Swaminathan, M.; Murrill, C.S.; Kaplan, J.E. Global epidemiology of HIV. Infect. Dis. Clin. North Am., 2014, 28(3), 323-337.
[16]
Volberding, P.A.; Deeks, S.G. Antiretroviral therapy and management of HIV infection. Lancet, 2010, 376(9734), 49-62.
[17]
Moore, R.D.; Chaisson, R.E. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS, 1999, 13(14), 1933-1942.
[18]
Deeks, S.G.; Lewin, S.R.; Havlir, D.V. The end of AIDS: HIV infection as a chronic disease. Lancet, 2013, 382(9903), 1525-1533.
[19]
Ng, T.B.; Cheung, R.C.; Wong, J.H.; Chan, W.Y. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes. Appl. Microbiol. Biotechnol., 2015, 99(24), 10399-10414.
[20]
Killian, M.S.; Levy, J.A. HIV/AIDS: 30 years of progress and future challenges. Eur. J. Immunol., 2011, 41(12), 3401-3411.
[21]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[22]
Hosseini, A.; Ghorbani, A. Cancer therapy with phytochemicals: Evidence from clinical studies. Avicenna J. Phytomed., 2015, 5(2), 84-97.
[23]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nano, 2007, 2(12), 751-760.
[24]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[25]
Ling, C.Q.; Yue, X.Q.; Ling, C. Three advantages of using traditional Chinese medicine to prevent and treat tumor. J. Integr. Med., 2014, 12(4), 331-335.
[26]
Zhao, C.Q.; Zhou, Y.; Ping, J.; Xu, L.M. Traditional Chinese medicine for treatment of liver diseases: Progress, challenges and opportunities. J. Integr. Med., 2014, 12(5), 401-408.
[27]
Wang, J.; Lin, F.; Guo, L.L.; Xiong, X.J.; Fan, X. Cardiovascular disease, mitochondria, and Traditional Chinese Medicine. Evid. Based Complement. Alternat. Med., 2015, 2015, 143145.
[28]
Yao, Z.; Zhang, L.; Ji, G. Efficacy of polyphenolic ingredients of Chinese herbs in treating dyslipidemia of metabolic syndromes. J. Integr. Med., 2014, 12(3), 135-146.
[29]
Seto, S.W.; Yang, G.Y.; Kiat, H.; Bensoussan, A.; Kwan, Y.W.; Chang, D. Diabetes mellitus, cognitive impairment, and Traditional Chinese Medicine. Int. J. Endocrinol., 2015, 2015, 810439.
[30]
Wang, S.; Tang, Q.; Qian, W.; Fan, Y. Meta-analysis of clinical trials on traditional Chinese herbal medicine for treatment of persistent allergic rhinitis. Allergy, 2012, 67(5), 583-592.
[31]
Kennedy, D.O.; Haskell, C.F.; Mauri, P.L.; Scholey, A.B. Acute cognitive effects of standardised Ginkgo biloba extract complexed with phosphatidylserine. Hum. Psychopharmacol., 2007, 22(4), 199-210.
[32]
Ling, C.Q.; Wang, L.N.; Wang, Y.; Zhang, Y.H.; Yin, Z.F.; Wang, M.; Ling, C. The roles of traditional Chinese medicine in gene therapy. J. Integr. Med., 2014, 12(2), 67-75.
[33]
Wang, S.; Hu, Y.; Tan, W.; Wu, X.; Chen, R.; Cao, J.; Chen, M.; Wang, Y. Compatibility art of traditional Chinese medicine: From the perspective of herb pairs. J. Ethnopharmacol., 2012, 143(2), 412-423.
[34]
Ulrich-Merzenich, G.; Panek, D.; Zeitler, H.; Vetter, H.; Wagner, H. Drug development from natural products: Exploiting synergistic effects. Indian J. Exp. Biol., 2010, 48(3), 208-219.
[35]
Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[36]
Fowler, M.W. Plants, medicines and man. J. Sci. Food Agric., 2006, 86(12), 1797-1804.
[37]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[38]
Lam, S.K.; Ng, T.B. Acafusin, a dimeric antifungal protein from Acacia confusa seeds. Protein Pept. Lett., 2010, 17(7), 817-822.
[39]
Lam, S.K.; Ng, T.B. Acaconin, a chitinase-like antifungal protein with cytotoxic and anti-HIV-1 reverse transcriptase activities from Acacia confusa seeds. Acta Biochim. Pol., 2010, 57(3), 299-304.
[40]
Lopes, J.L.; Valadares, N.F.; Moraes, D.I.; Rosa, J.C.; Araujo, H.S.; Beltramini, L.M. Physico-chemical and antifungal properties of protease inhibitors from Acacia plumosa. Phytochemistry, 2009, 70(7), 871-879.
[41]
Zhao, M.; Ma, Y.; Pan, Y.H.; Zhang, C.H.; Yuan, W.X. A hevein-like protein and a class I chitinase with antifungal activity from leaves of the paper mulberry. Biomed. Chromatogr., 2011, 25(8), 908-912.
[42]
Liu, W.Y.; Chiou, S.J.; Ko, C.Y.; Lin, T.Y. Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea. J. Plant Physiol., 2011, 168(4), 375-381.
[43]
Lam, S.K.; Ng, T.B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine, 2009, 16(5), 444-450.
[44]
Huang, R.H.; Xiang, Y.; Liu, X.Z.; Zhang, Y.; Hu, Z.; Wang, D.C. Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett., 2002, 521(1-3), 87-90.
[45]
Huang, X.; Xie, W.; Gong, Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett., 2000, 478(1-2), 123-126.
[46]
Wang, H.; Ng, T.B. Ginkbilobin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein. Biochem. Biophys. Res. Commun., 2000, 279(2), 407-411.
[47]
Qin, X.; Shao, C.; Hou, P.; Gao, J.; Lei, N.; Jiang, L.; Ye, S.; Gou, C.; Luo, S.; Zheng, X.; Gu, X.; Zhu, X.; Xu, Y.; Chen, F. Different functions and expression profiles of curcin and curcin-L in Jatropha curcas L. Z. Naturforsch. C, 2010, 65(5-6), 355-362.
[48]
Yang, X.; Wang, X.; Li, X.; Zhang, B.; Xiao, Y.; Li, D.; Xie, C.; Pei, Y. Characterization and expression of an nsLTPs-like antimicrobial protein gene from motherwort (Leonurus japonicus). Plant Cell Rep., 2008, 27(4), 759-766.
[49]
Wang, H.; Ng, T.B. Isolation of lilin, a novel arginine- and glutamate-rich protein with potent antifungal and mitogenic activities from lily bulbs. Life Sci., 2002, 70(9), 1075-1084.
[50]
Wang, B.; Shi, X.; Guo, C.; Ye, X.; Wang, Z.; Rao, P. Isolation and purification of ribosome-inactivating proteins from bitter melon seeds by ion exchange chromatographic columns in series. Se Pu, 2004, 22(5), 543-546.
[51]
Wang, S.; Zhang, Y.; Liu, H.; He, Y.; Yan, J.; Wu, Z.; Ding, Y. Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia. Appl. Microbiol. Biotechnol., 2012, 96(4), 939-950.
[52]
Qian, Q.; Huang, L.; Yi, R.; Wang, S.; Ding, Y. Enhanced resistance to blast fungus in rice (Oryza sativa L.) by expressing the ribosome-inactivating protein alpha-momorcharin. Plant Sci., 2014, 217-218, 1-7.
[53]
Pan, W.L.; Wong, J.H.; Fang, E.F.; Chan, Y.S.; Ng, T.B.; Cheung, R.C. Preferential cytotoxicity of the type I ribosome inactivating protein alpha-momorcharin on human nasopharyngeal carcinoma cells under normoxia and hypoxia. Biochem. Pharmacol., 2014, 89(3), 329-339.
[54]
Zhang, B.; Xie, C.; Wei, Y.; Li, J.; Yang, X. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves. Protein Expr. Purif., 2015, 107, 43-49.
[55]
Pinto, C.E.; Farias, D.F.; Carvalho, A.F.; Oliveira, J.T.; Pereira, M.L.; Grangeiro, T.B.; Freire, J.E.; Viana, D.A.; Vasconcelos, I.M. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective. Food Chem. Toxicol., 2015, 83, 1-9.
[56]
Gifoni, J.M.; Oliveira, J.T.; Oliveira, H.D.; Batista, A.B.; Pereira, M.L.; Gomes, A.S.; Oliveira, H.P.; Grangeiro, T.B.; Vasconcelos, I.M. A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control. Biopolymers, 2012, 98(4), 406-415.
[57]
Batista, A.B.; Oliveira, J.T.; Gifoni, J.M.; Pereira, M.L.; Almeida, M.G.; Gomes, V.M.; Da Cunha, M.; Ribeiro, S.F.; Dias, G.B.; Beltramini, L.M.; Lopes, J.L.; Grangeiro, T.B.; Vasconcelos, I.M. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds. PLoS One, 2014, 9(10), e111427.
[58]
Freire, J.E.; Vasconcelos, I.M.; Moreno, F.B.; Batista, A.B.; Lobo, M.D.; Pereira, M.L.; Lima, J.P.; Almeida, R.V.; Sousa, A.J.; Monteiro-Moreira, A.C.; Oliveira, J.T.; Grangeiro, T.B. Mo-CBP3, an antifungal chitin-binding protein from Moringa oleifera seeds, is a member of the 2S albumin family. PLoS One, 2015, 10(3), e0119871.
[59]
He, X.M.; Ji, N.; Xiang, X.C.; Luo, P.; Bao, J.K. Purification, characterization, and molecular cloning of a novel antifungal lectin from the roots of Ophioglossum pedunculosum. Appl. Biochem. Biotechnol., 2011, 165(7-8), 1458-1472.
[60]
Da-Hui, L.; Gui-Liang, J.; Ying-Tao, Z.; Tie-Min, A. Bacterial expression of a Trichosanthes kirilowii defensin (TDEF1) and its antifungal activity on Fusarium oxysporum. Appl. Microbiol. Biotechnol., 2007, 74(1), 146-151.
[61]
Xu, L.; Wang, Y.; Wang, L.; Gao, Y.; An, C. TYchi, a novel chitinase with RNA N-glycosidase and anti-tumor activities. Front. Biosci., 2008, 13, 3127-3135.
[62]
Hu, P.; An, C.; Li, Y.; Chen, Z. Prokaryotic expressed trichosanthin and other two proteins have anti-fungal activity in vitro. Wei Sheng Wu Xue Bao, 1999, 39(3), 234-240.
[63]
Fang, E.F.; Zhang, C.Z.; Zhang, L.; Wong, J.H.; Chan, Y.S.; Pan, W.L.; Dan, X.L.; Yin, C.M.; Cho, C.H.; Ng, T.B. Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS One, 2012, 7(9), e41592.
[64]
Girish, K.S.; Machiah, K.D.; Ushanandini, S.; Harish Kumar, K.; Nagaraju, S.; Govindappa, M.; Vedavathi, M.; Kemparaju, K. Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J. Basic Microbiol., 2006, 46(5), 365-374.
[65]
Ghosh Dasgupta, M.; George, B.S.; Bhatia, A.; Sidhu, O.P. Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling. PLoS One, 2014, 9(4), e94803.
[66]
Ng, T.B.; Au, T.K.; Lam, T.L.; Ye, X.Y.; Wan, D.C. Inhibitory effects of antifungal proteins on human immunodeficiency virus type 1 reverse transcriptase, protease and integrase. Life Sci., 2002, 70(8), 927-935.
[67]
Wang, H.X.; Ng, T.B. Purification of allivin, a novel antifungal protein from bulbs of the round-cloved garlic. Life Sci., 2001, 70(3), 357-365.
[68]
Seo, H.H.; Park, S.; Oh, B.J.; Back, K.; Han, O.; Kim, J.I.; Kim, Y.S. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One, 2014, 9(5), e97936.
[69]
Ye, X.Y.; Ng, T.B. Delandin, a chitinase-like protein with antifungal, HIV-1 reverse transcriptase inhibitory and mitogenic activities from the rice bean Delandia umbellata. Protein Expr. Purif., 2002, 24(3), 524-529.
[70]
Ye, X.Y.; Wang, H.X.; Ng, T.B. Dolichin, a new chitinase-like antifungal protein isolated from field beans (Dolichos lablab). Biochem. Biophys. Res. Commun., 2000, 269(1), 155-159.
[71]
Ngai, P.H.; Ng, T.B. Purification of glysojanin, an antifungal protein, from the black soybean Glycine soja. Biochem. Cell Biol., 2003, 81(6), 387-394.
[72]
Wang, S.; Wu, J.; Rao, P.; Ng, T.B.; Ye, X. A chitinase with antifungal activity from the mung bean. Protein Expr. Purif., 2005, 40(2), 230-236.
[73]
Wang, S.Y.; Wu, J.H.; Ng, T.B.; Ye, X.Y.; Rao, P.F. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides, 2004, 25(8), 1235-1242.
[74]
Wang, S.Y.; Zhou, K.J.; Ye, X.Y.; Xu, Z.B.; Wu, J.H.; Rao, P.F. Crystallization and preliminary X-ray crystallographic analysis of a non-specific lipid-transfer protein with antipathogenic activity from Phaseolus mungo Acta Crystallogr. D. Biol. Crystallogr., 2004. 60(Pt 12 Pt 2), 2391-2393
[75]
Ye, X.Y.; Ng, T.B. Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem. Biophys. Res. Commun., 2000, 273(3), 1111-1115.
[76]
Li, M.; Wang, H.; Ng, T.B. An antifungal peptide with antiproliferative activity toward tumor cells from red kidney beans. Protein Pept. Lett., 2011, 18(6), 594-600.
[77]
Wong, J.H.; Ip, D.C.; Ng, T.B.; Chan, Y.S.; Fang, F.; Pan, W.L. A defensin-like peptide from Phaseolus vulgaris cv. ‘King Pole Bean’. Food Chem., 2012, 135(2), 408-414.
[78]
Ye, X.Y.; Ng, T.B. Purification of angularin, a novel antifungal peptide from adzuki beans. J. Pept. Sci., 2002, 8(3), 101-106.
[79]
Wang, H.; Ng, T.B. An antifungal protein from ginger rhizomes. Biochem. Biophys. Res. Commun., 2005, 336(1), 100-104.
[80]
Hawksworth, D.L. Mushrooms: The extent of the unexplored potential. Int. J. Med. Mushrooms, 2001, 3, 333-337.
[81]
Chang, S.T.; Buswell, J.A. Ganoderma lucidum (Curt.: Fr.) P. Karst. (Aphyllophoromycetideae) - a mushrooming medicinal mushroom. Int. J. Med. Mushrooms, 1999, 1, 139-146.
[82]
Ikekawa, T. Beneficial effects of edible and medicinal mushrooms on health care. Int. J. Med. Mushrooms, 2001, 3, 291-298.
[83]
Gao, Y.; Zhou, S. The immunomodulating effects of Ganoderma lucidum (Curt.: Fr.) P. Karst. (Ling Zhi, Reishi Mushroom) (Aphyllophoromycetideae). Int. J. Med. Mushrooms, 2002, 4, 1-11.
[84]
Ngai, P.H.; Zhao, Z.; Ng, T.B. Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides, 2005, 26(2), 191-196.
[85]
Park, B.T.; Na, K.H.; Jung, E.C.; Park, J.W.; Kim, H.H. Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Korean J. Physiol. Pharmacol., 2009, 13(1), 49-54.
[86]
Wong, J.H.; Ng, T.B.; Wang, H.; Sze, S.C.; Zhang, K.Y.; Li, Q.; Lu, X. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine, 2011, 18(5), 387-392.
[87]
Qi, W.; Zhang, Y.; Yan, Y.B.; Lei, W.; Wu, Z.X.; Liu, N.; Liu, S.; Shi, L.; Fan, Y. The protective effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, on diabetic osteopenia in alloxan-induced diabetic rats. Evid. Based Complement. Alternat. Med., 2013, 2013, 985636.
[88]
Qian, G.M.; Pan, G.F.; Guo, J.Y. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat. Prod. Res., 2012, 26(24), 2358-2362.
[89]
Wang, J.; Liu, Y.M.; Cao, W.; Yao, K.W.; Liu, Z.Q.; Guo, J.Y. Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab. Brain Dis., 2012, 27(2), 159-165.
[90]
Wang, H.; Ng, T.B. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides, 2006, 27(1), 27-30.
[91]
Suzuki, T.; Umehara, K.; Tashiro, A.; Kobayashi, Y.; Dohra, H.; Hirai, H.; Kawagishi, H. An antifungal protein from the culinary-medicinal beech mushroom, Hypsizygus marmoreus (Peck) Bigel. (Agaricomycetideae). Int. J. Med. Mushrooms, 2011, 13(1), 27-31.
[92]
Lam, S.K.; Ng, T.B. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem. Biophys. Res. Commun., 2001, 285(4), 1071-1075.
[93]
Wong, J.H.; Wang, H.X.; Ng, T.B. Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl. Microbiol. Biotechnol., 2008, 81(4), 669-674.
[94]
Pan, W.L.; Wong, J.H.; Fang, E.F.; Chan, Y.S.; Ye, X.J.; Ng, T.B. Differential inhibitory potencies and mechanisms of the type I ribosome inactivating protein marmorin on estrogen receptor (ER)-positive and ER-negative breast cancer cells. Biochim. Biophys. Acta, 2013, 1833(5), 987-996.
[95]
Ngai, P.H.; Ng, T.B. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci., 2003, 73(26), 3363-3374.
[96]
Lam, S.K.; Ng, T.B. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophys., 2001, 393(2), 271-280.
[97]
Wang, H.; Ng, T.B. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides, 2004, 25(1), 1-5.
[98]
Chu, K.T.; Xia, L.; Ng, T.B. Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides, 2005, 26(11), 2098-2103.
[99]
Guo, Y.; Wang, H.; Ng, T.B. Isolation of trichogin, an antifungal protein from fresh fruiting bodies of the edible mushroom Tricholoma giganteum. Peptides, 2005, 26(4), 575-580.
[100]
Longhi, C.; Santos, J.P.; Morey, A.T.; Marcato, P.D.; Duran, N.; Pinge-Filho, P.; Nakazato, G.; Yamada-Ogatta, S.F.; Yamauchi, L.M. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Med. Mycol., 2016, 54(4), 428-432.
[101]
Aerts, A.M.; Bammens, L.; Govaert, G.; Carmona-Gutierrez, D.; Madeo, F.; Cammue, B.P.; Thevissen, K. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front. Microbiol., 2011, 2, 47.
[102]
Aerts, A.M.; Carmona-Gutierrez, D.; Lefevre, S.; Govaert, G.; Francois, I.E.; Madeo, F.; Santos, R.; Cammue, B.P.; Thevissen, K. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett., 2009, 583(15), 2513-2516.
[103]
Aerts, A.M.; Francois, I.E.; Meert, E.M.; Li, Q.T.; Cammue, B.P.; Thevissen, K. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol., 2007, 13(4), 243-247.
[104]
De Cremer, K.; Staes, I.; Delattin, N.; Cammue, B.P.; Thevissen, K.; De Brucker, K. Combinatorial drug approaches to tackle Candida albicans biofilms. Expert Rev. Anti Infect. Ther., 2015, 13(8), 973-984.
[105]
Tavares, P.M.; Thevissen, K.; Cammue, B.P.; Francois, I.E.; Barreto-Bergter, E.; Taborda, C.P.; Marques, A.F.; Rodrigues, M.L.; Nimrichter, L. In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob. Agents Chemother., 2008, 52(12), 4522-4525.
[106]
Thevissen, K.; Warnecke, D.C.; Francois, I.E.; Leipelt, M.; Heinz, E.; Ott, C.; Zahringer, U.; Thomma, B.P.; Ferket, K.K.; Cammue, B.P. Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem., 2004, 279(6), 3900-3905.
[107]
Thevissen, K.; de Mello Tavares, P.; Xu, D.; Blankenship, J.; Vandenbosch, D.; Idkowiak-Baldys, J.; Govaert, G.; Bink, A.; Rozental, S.; de Groot, P.W.; Davis, T.R.; Kumamoto, C.A.; Vargas, G.; Nimrichter, L.; Coenye, T.; Mitchell, A.; Roemer, T.; Hannun, Y.A.; Cammue, B.P. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol. Microbiol., 2012, 84(1), 166-180.
[108]
Lin, P.; Xia, L.; Wong, J.H.; Ng, T.B.; Ye, X.; Wang, S.; Shi, X. Lipid transfer proteins from Brassica campestris and mung bean surpass mung bean chitinase in exploitability. J. Pept. Sci., 2007, 13(10), 642-648.
[109]
Chan, Y.S.; Ng, T.B. Northeast red beans produce a thermostable and pH-stable defensin-like peptide with potent antifungal activity. Cell Biochem. Biophys., 2013, 66(3), 637-648.
[110]
Chan, Y.S.; Wong, J.H.; Fang, E.F.; Pan, W.L.; Ng, T.B. An antifungal peptide from Phaseolus vulgaris cv. brown kidney bean. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(4), 307-315.
[111]
Sha, O.; Niu, J.; Ng, T.B.; Cho, E.Y.; Fu, X.; Jiang, W. Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: A mini review. Cancer Chemother. Pharmacol., 2013, 71(6), 1387-1393.
[112]
Ouyang, D.Y.; Chan, H.; Wang, Y.Y.; Huang, H.; Tam, S.C.; Zheng, Y.T. An inhibitor of c-Jun N-terminal kinases (CEP-11004) counteracts the anti-HIV-1 action of trichosanthin. Biochem. Biophys. Res. Commun., 2006, 339(1), 25-29.
[113]
Kaur, I.; Gupta, R.C.; Puri, M. Ribosome inactivating proteins from plants inhibiting viruses. Virol. Sin., 2011, 26(6), 357-365.
[114]
Kahn, J.O.; Gorelick, K.J.; Gatti, G.; Arri, C.J.; Lifson, J.D.; Gambertoglio, J.G.; Bostrom, A.; Williams, R. Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex. Antimicrob. Agents Chemother., 1994, 38(2), 260-267.
[115]
Garcia, P.A.; Bredesen, D.E.; Vinters, H.V.; Graefin von Einsiedel, R.; Williams, R.L.; Kahn, J.O.; Byers, V.S.; Levin, A.S.; Waites, L.A.; Messing, R.O. Neurological reactions in HIV-infected patients treated with trichosanthin. Neuropathol. Appl. Neurobiol., 1993, 19(5), 402-405.
[116]
Byers, V.S.; Levin, A.S.; Waites, L.A.; Starrett, B.A.; Mayer, R.A.; Clegg, J.A.; Price, M.R.; Robins, R.A.; Delaney, M.; Baldwin, R.W. A phase I/II study of trichosanthin treatment of HIV disease. AIDS, 1990, 4(12), 1189-1196.
[117]
Byers, V.S.; Levin, A.S.; Malvino, A.; Waites, L.; Robins, R.A.; Baldwin, R.W. A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents. AIDS Res. Hum. Retroviruses, 1994, 10(4), 413-420.
[118]
Lee-Huang, S.; Huang, P.L.; Bourinbaiar, A.S.; Chen, H.C.; Kung, H.F. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc. Natl. Acad. Sci. USA, 1995, 92(19), 8818-8822.
[119]
Li, X.C.; Jacob, M.R.; Khan, S.I.; Ashfaq, M.K.; Babu, K.S.; Agarwal, A.K.; Elsohly, H.N.; Manly, S.P.; Clark, A.M. Potent in vitro antifungal activities of naturally occurring acetylenic acids. Antimicrob. Agents Chemother., 2008, 52(7), 2442-2448.
[120]
Xu, T.; Tripathi, S.K.; Feng, Q.; Lorenz, M.C.; Wright, M.A.; Jacob, M.R.; Mask, M.M.; Baerson, S.R.; Li, X.C.; Clark, A.M.; Agarwal, A.K. A potent plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis. Antimicrob. Agents Chemother., 2012, 56(6), 2894-2907.
[121]
de Castro, A.P.; Franco, O.L. Modifying natural antimicrobial peptides to generate bioinspired antibiotics and devices. Future Med. Chem., 2015, 7(4), 413-415.
[122]
Dias Rde, O.; Machado Ldos, S.; Migliolo, L.; Franco, O.L. Insights into animal and plant lectins with antimicrobial activities. Molecules, 2015, 20(1), 519-541.
[123]
Lima, S.M.; de Padua, G.M.; Sousa, M.G.; Freire Mde, S.; Franco, O.L.; Rezende, T.M. Antimicrobial peptide-based treatment for endodontic infections--biotechnological innovation in endodontics. Biotechnol. Adv., 2015, 33(1), 203-213.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy