[1]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[2]
Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[3]
Odegaard, J.I.; Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science, 2013, 339(6116), 172-177.
[4]
Schmidt, A.; Endo, N.; Rutledge, S.J.; Vogel, R.; Shinar, D.; Rodan, G.A. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol. Endocrinol., 1992, 6(10), 1634-1641.
[5]
Lehmann, J.M.; Kliewer, S.A.; Moore, L.B.; Smith-Oliver, T.A.; Oliver, B.B.; Su, J.L.; Sundseth, S.S.; Winegar, D.A.; Blanchard, D.E.; Spencer, T.A.; Willson, T.M. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem., 1997, 272(6), 3137-3140.
[6]
Parks, D.J.; Blanchard, S.G.; Bledsoe, R.K.; Chandra, G.; Consler, T.G.; Kliewer, S.A.; Stimmel, J.B.; Willson, T.M.; Zavacki, A.M.; Moore, D.D.; Lehmann, J.M. Bile acids: natural ligands for an orphan nuclear receptor. Science, 1999, 284(5418), 1365-1368.
[7]
A unified nomenclature system for the nuclear receptor superfamily. Cell, 1999, 97(2), 161-163.
[8]
Clinckemalie, L.; Vanderschueren, D.; Boonen, S.; Claessens, F. The hinge region in androgen receptor control. Mol. Cell. Endocrinol., 2012, 358(1), 1-8.
[9]
Gronemeyer, H.; Gustafsson, J.A.; Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov., 2004, 3(11), 950-964.
[10]
Fujita, A.; Mitsuhashi, T. Differential regulation of ligand-dependent and ligand-independent functions of the mouse retinoid X receptor beta by alternative splicing. Biochem. Biophys. Res. Commun., 1999, 255(3), 625-630.
[11]
Wallace, B.D.; Betts, L.; Talmage, G.; Pollet, R.M.; Holman, N.S.; Redinbo, M.R. Structural and functional analysis of the human nuclear xenobiotic receptor PXR in complex with RXRα. J. Mol. Biol., 2013, 425(14), 2561-2577.
[12]
Heery, D.M.; Hoare, S.; Hussain, S.; Parker, M.G.; Sheppard, H. Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors. J. Biol. Chem., 2001, 276(9), 6695-6702.
[13]
Hu, X.; Lazar, M.A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature, 1999, 402(6757), 93-96.
[14]
Dreyer, C.; Krey, G.; Keller, H.; Givel, F.; Helftenbein, G.; Wahli, W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell, 1992, 68(5), 879-887.
[15]
Issemann, I.; Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 1990, 347(6294), 645-650.
[16]
Mukherjee, R.; Jow, L.; Croston, G.E.; Paterniti, J.R. Jr Identification, characterization, and tissue distribution of human peroxisome Proliferator-Activated Receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J. Biol. Chem., 1997, 272(12), 8071-8076.
[17]
Fajas, L.; Fruchart, J.C.; Auwerx, J. PPARgamma3 mRNA: A distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett., 1998, 438(1-2), 55-60.
[18]
Sundvold, H.; Lien, S. Identification of a novel peroxisome Proliferator-Activated Receptor (PPAR) gamma promoter in man and transactivation by the nuclear receptor RORalpha1. Biochem. Biophys. Res. Commun., 2001, 287(2), 383-390.
[19]
Chen, Y.; Jimenez, A.R.; Medh, J.D. Identification and regulation of novel PPAR-gamma splice variants in human THP-1 macrophages. Biochim. Biophys. Acta, 2006, 1759(1-2), 32-43.
[20]
DeFronzo, R.A.; Tripathy, D.; Schwenke, D.C.; Banerji, M.; Bray, G.A.; Buchanan, T.A.; Clement, S.C.; Henry, R.R.; Hodis, H.N.; Kitabchi, A.E.; Mack, W.J.; Mudaliar, S.; Ratner, R.E.; Williams, K.; Stentz, F.B.; Musi, N.; Reaven, P.D. Pioglitazone for diabetes prevention in impaired glucose tolerance. N. Engl. J. Med., 2011, 364(12), 1104-1115.
[21]
Cusi, K.; Orsak, B.; Bril, F.; Lomonaco, R.; Hecht, J.; Ortiz-Lopez, C.; Tio, F.; Hardies, J.; Darland, C.; Musi, N.; Webb, A.; Portillo-Sanchez, P. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: A randomized trial. Ann. Intern. Med., 2016, 165(5), 305-315.
[22]
Kramer, D.; Shapiro, R.; Adler, A.; Bush, E.; Rondinone, C.M. Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats. Metabolism, 2001, 50(11), 1294-1300.
[23]
Festuccia, W.T.; Blanchard, P.G.; Turcotte, V.; Laplante, M.; Sariahmetoglu, M.; Brindley, D.N.; Deshaies, Y. Depot-specific effects of the PPARgamma agonist rosiglitazone on adipose tissue glucose uptake and metabolism. J. Lipid Res., 2009, 50(6), 1185-1194.
[24]
Saitoh, Y.; Chun-ping, C.; Noma, K.; Ueno, H.; Mizuta, M.; Nakazato, M. Pioglitazone attenuates fatty acid-induced oxidative stress and apoptosis in pancreatic beta-cells. Diabetes Obes. Metab., 2008, 10(7), 564-573.
[25]
Patsouris, D.; Neels, J.G.; Fan, W.; Li, P.P.; Nguyen, M.T.; Olefsky, J.M. Glucocorticoids and thiazolidinediones interfere with adipocyte-mediated macrophage chemotaxis and recruitment. J. Biol. Chem., 2009, 284(45), 31223-31235.
[26]
Cipolletta, D.; Feuerer, M.; Li, A.; Kamei, N.; Lee, J.; Shoelson, S.E.; Benoist, C.; Mathis, D. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 2012, 486(7404), 549-553.
[27]
Ryan, K.K.; Li, B.; Grayson, B.E.; Matter, E.K.; Woods, S.C.; Seeley, R.J. A role for central nervous system PPAR-γ in the regulation of energy balance. Nat. Med., 2011, 17(5), 623-626.
[28]
Beck, G.R., Jr; Khazai, N.B.; Bouloux, G.F.; Camalier, C.E.; Lin, Y.; Garneys, L.M.; Siqueira, J.; Peng, L.; Pasquel, F.; Umpierrez, D.; Smiley, D.; Umpierrez, G.E. The effects of thiazolidinediones on human bone marrow stromal cell differentiation in vitro and in thiazolidinedione-treated patients with type 2 diabetes. Transl. Res., 2013, 161(3), 145-155.
[29]
Nissen, S.E.; Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med., 2007, 356(24), 2457-2471.
[30]
Graham, D.J.; Ouellet-Hellstrom, R. MaCurdy, T.E.; Ali, F.; Sholley, C.; Worrall, C.; Kelman, J.A. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA, 2010, 304(4), 411-418.
[31]
Lago, R.M.; Singh, P.P.; Nesto, R.W. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet, 2007, 370(9593), 1129-1136.
[32]
Davis, T.M.; Yeap, B.B.; Davis, W.A.; Bruce, D.G. Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia, 2008, 51(4), 562-566.
[33]
Keech, A.; Simes, R.J.; Barter, P.; Best, J.; Scott, R.; Taskinen, M.R.; Forder, P.; Pillai, A.; Davis, T.; Glasziou, P.; Drury, P.; Kesäniemi, Y.A.; Sullivan, D.; Hunt, D.; Colman, P.; d’Emden, M.; Whiting, M.; Ehnholm, C.; Laakso, M. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet, 2005, 366(9500), 1849-1861.
[34]
Hiukka, A.; Westerbacka, J.; Leinonen, E.S.; Watanabe, H.; Wiklund, O.; Hulten, L.M.; Salonen, J.T.; Tuomainen, T.P.; Yki-Järvinen, H.; Keech, A.C.; Taskinen, M.R. Long-term effects of fenofibrate on carotid intima-media thickness and augmentation index in subjects with type 2 diabetes mellitus. J. Am. Coll. Cardiol., 2008, 52(25), 2190-2197.
[35]
Brunmair, B.; Staniek, K.; Dörig, J.; Szöcs, Z.; Stadlbauer, K.; Marian, V.; Gras, F.; Anderwald, C.; Nohl, H.; Waldhäusl, W.; Fürnsinn, C. Activation of PPAR-delta in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids. Diabetologia, 2006, 49(11), 2713-2722.
[36]
Risérus, U.; Sprecher, D.; Johnson, T.; Olson, E.; Hirschberg, S.; Liu, A.; Fang, Z.; Hegde, P.; Richards, D.; Sarov-Blat, L.; Strum, J.C.; Basu, S.; Cheeseman, J.; Fielding, B.A.; Humphreys, S.M.; Danoff, T.; Moore, N.R.; Murgatroyd, P.; O’Rahilly, S.; Sutton, P.; Willson, T.; Hassall, D.; Frayn, K.N.; Karpe, F. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes, 2008, 57(2), 332-339.
[37]
Mottillo, E.P.; Bloch, A.E.; Leff, T.; Granneman, J.G. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply. J. Biol. Chem., 2012, 287(30), 25038-25048.
[38]
Qin, X.; Xie, X.; Fan, Y.; Tian, J.; Guan, Y.; Wang, X.; Zhu, Y.; Wang, N. Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology, 2008, 48(2), 432-441.
[39]
Choi, K.C.; Lee, S.Y.; Yoo, H.J.; Ryu, O.H.; Lee, K.W.; Kim, S.M.; Baik, S.H.; Choi, K.M. Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 2007, 357(1), 62-67.
[40]
Salvadó, L.; Barroso, E.; Gómez-Foix, A.M.; Palomer, X.; Michalik, L.; Wahli, W.; Vázquez-Carrera, M. PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia, 2014, 57(10), 2126-2135.
[41]
Zhang, J.; Liu, X.; Xie, X.B.; Cheng, X.C.; Wang, R.L. Multitargeted bioactive ligands for PPARs discovered in the last decade. Chem. Biol. Drug Des., 2016, 88(5), 635-663.
[42]
Willy, P.J.; Umesono, K.; Ong, E.S.; Evans, R.M.; Heyman, R.A.; Mangelsdorf, D.J. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev., 1995, 9(9), 1033-1045.
[43]
Apfel, R.; Benbrook, D.; Lernhardt, E.; Ortiz, M.A.; Salbert, G.; Pfahl, M. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol. Cell. Biol., 1994, 14(10), 7025-7035.
[44]
Lu, T.T.; Repa, J.J.; Mangelsdorf, D.J. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J. Biol. Chem., 2001, 276(41), 37735-37738.
[45]
Peet, D.J.; Turley, S.D.; Ma, W.; Janowski, B.A.; Lobaccaro, J.M.; Hammer, R.E.; Mangelsdorf, D.J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell, 1998, 93(5), 693-704.
[46]
Cao, G.; Liang, Y.; Broderick, C.L.; Oldham, B.A.; Beyer, T.P.; Schmidt, R.J.; Zhang, Y.; Stayrook, K.R.; Suen, C.; Otto, K.A.; Miller, A.R.; Dai, J.; Foxworthy, P.; Gao, H.; Ryan, T.P.; Jiang, X.C.; Burris, T.P.; Eacho, P.I.; Etgen, G.J. Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J. Biol. Chem., 2003, 278(2), 1131-1136.
[47]
Liu, Y.; Yan, C.; Wang, Y.; Nakagawa, Y.; Nerio, N.; Anghel, A.; Lutfy, K.; Friedman, T.C. Liver X receptor agonist T0901317 inhibition of glucocorticoid receptor expression in hepatocytes may contribute to the amelioration of diabetic syndrome in db/db mice. Endocrinology, 2006, 147(11), 5061-5068.
[48]
Dong, Y.; Gao, G.; Fan, H.; Li, S.; Li, X.; Liu, W. Activation of the Liver X Receptor by Agonist TO901317 Improves Hepatic Insulin Resistance via Suppressing Reactive Oxygen Species and JNK Pathway. PLoS One, 2015, 10(4), e0124778.
[49]
Gao, M.; Zhang, C.; Ma, Y.; Liu, D. Cold Exposure Improves the Anti-diabetic Effect of T0901317 in Streptozotocin-Induced Diabetic Mice. AAPS J., 2015, 17(3), 700-710.
[50]
Laffitte, B.A.; Chao, L.C.; Li, J.; Walczak, R.; Hummasti, S.; Joseph, S.B.; Castrillo, A.; Wilpitz, D.C.; Mangelsdorf, D.J.; Collins, J.L.; Saez, E.; Tontonoz, P. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5419-5424.
[51]
Weems, J.C.; Griesel, B.A.; Olson, A.L. Class II histone deacetylases downregulate GLUT4 transcription in response to increased cAMP signaling in cultured adipocytes and fasting mice. Diabetes, 2012, 61(6), 1404-1414.
[52]
Baranowski, M.; Zabielski, P.; Błachnio-Zabielska, A.U.; Harasim, E.; Chabowski, A.; Górski, J. Insulin-sensitizing effect of LXR agonist T0901317 in high-fat fed rats is associated with restored muscle GLUT4 expression and insulin-stimulated AS160 phosphorylation. Cell. Physiol. Biochem., 2014, 33(4), 1047-1057.
[53]
Pettersson, A.M.; Stenson, B.M.; Lorente-Cebrián, S.; Andersson, D.P.; Mejhert, N.; Krätzel, J.; Aström, G.; Dahlman, I.; Chibalin, A.V.; Arner, P.; Laurencikiene, J. LXR is a negative regulator of glucose uptake in human adipocytes. Diabetologia, 2013, 56(9), 2044-2054.
[54]
Bełtowski, J.; Liver, X. Receptors (LXR) as therapeutic targets in dyslipidemia. Cardiovasc. Ther., 2008, 26(4), 297-316.
[55]
Athithan, V.; Srikumar, K. 28-Homocastasterone down regulates blood glucose, cholesterol, triglycerides, SREBP1c and activates LxR expression in normal & diabetic male rat. Chem. Biol. Interact., 2017, 277, 8-20.
[56]
Briand, O.; Touche, V.; Colin, S.; Brufau, G.; Davalos, A.; Schonewille, M.; Bovenga, F.; Carrière, V.; de Boer, J.F.; Dugardin, C.; Riveau, B.; Clavey, V.; Tailleux, A.; Moschetta, A.; Lasunción, M.A.; Groen, A.K.; Staels, B.; Lestavel, S.; Liver, X.; Liver, X. Receptor Regulates Triglyceride Absorption Through Intestinal Down-regulation of Scavenger Receptor Class B, Type 1. Gastroenterology, 2016, 150(3), 650-658.
[57]
Zhang, X.; Liu, J.; Su, W.; Wu, J.; Wang, C.; Kong, X.; Gustafsson, J.A.; Ding, J.; Ma, X.; Guan, Y. Liver X receptor activation increases hepatic fatty acid desaturation by the induction of SCD1 expression through an LXRα-SREBP1c-dependent mechanism. J. Diabetes, 2014, 6(3), 212-220.
[58]
Fu, Y.; Mukhamedova, N.; Ip, S.; D’Souza, W.; Henley, K.J.; DiTommaso, T.; Kesani, R.; Ditiatkovski, M.; Jones, L.; Lane, R.M.; Jennings, G.; Smyth, I.M.; Kile, B.T.; Sviridov, D. ABCA12 regulates ABCA1-dependent cholesterol efflux from macrophages and the development of atherosclerosis. Cell Metab., 2013, 18(2), 225-238.
[59]
Cruz-Garcia, L.; Schlegel, A. Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids. J. Lipid Res., 2014, 55(9), 1944-1958.
[60]
Efanov, A.M.; Sewing, S.; Bokvist, K.; Gromada, J. Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes, 2004, 53(Suppl. 3), S75-S78.
[61]
Green, C.D.; Jump, D.B.; Olson, L.K. Elevated insulin secretion from liver X receptor-activated pancreatic beta-cells involves increased de novo lipid synthesis and triacylglyceride turnover. Endocrinology, 2009, 150(6), 2637-2645.
[62]
Meng, Z.X.; Yin, Y.; Lv, J.H.; Sha, M.; Lin, Y.; Gao, L.; Zhu, Y.X.; Sun, Y.J.; Han, X. Aberrant activation of liver X receptors impairs pancreatic beta cell function through upregulation of sterol regulatory element-binding protein 1c in mouse islets and rodent cell lines. Diabetologia, 2012, 55(6), 1733-1744.
[63]
Li, Y.; Jing, C.; Tang, X.; Chen, Y.; Han, X.; Zhu, Y. LXR activation causes G1/S arrest through inhibiting SKP2 expression in MIN6 pancreatic beta cells. Endocrine, 2016, 53(3), 689-700.
[64]
Steffensen, K.R.; Gustafsson, J.A. Putative metabolic effects of the Liver X Receptor (LXR). Diabetes, 2004, 53(Suppl. 1), S36-S42.
[65]
Pascual-García, M.; Rué, L.; León, T.; Julve, J.; Carbó, J.M.; Matalonga, J.; Auer, H.; Celada, A.; Escolà-Gil, J.C.; Steffensen, K.R.; Pérez-Navarro, E.; Valledor, A.F. Reciprocal negative cross-talk between Liver X Receptors (LXRs) and STAT1: effects on IFN-γ-induced inflammatory responses and LXR-dependent gene expression. J. Immunol., 2013, 190(12), 6520-6532.
[66]
Sun, X.; Haas, M.E.; Miao, J.; Mehta, A.; Graham, M.J.; Crooke, R.M.; Pais de Barros, J.P.; Wang, J.G.; Aikawa, M.; Masson, D.; Biddinger, S.B. Insulin dissociates the effects of liver x receptor on lipogenesis, endoplasmic reticulum stress, and inflammation. J. Biol. Chem., 2016, 291(3), 1115-1122.
[67]
Su, W.; Huang, S.Z.; Gao, M.; Kong, X.M.; Gustafsson, J.A.; Xu, S.J.; Wang, B.; Zheng, F.; Chen, L.H.; Wang, N.P.; Guan, Y.F.; Zhang, X.Y. Liver X receptor β increases aquaporin 2 protein level via a posttranscriptional mechanism in renal collecting ducts. Am. J. Physiol. Renal Physiol., 2017, 312(4), F619-F628.
[68]
Patel, M.; Wang, X.X.; Magomedova, L.; John, R.; Rasheed, A.; Santamaria, H.; Wang, W.; Tsai, R.; Qiu, L.; Orellana, A.; Advani, A.; Levi, M.; Cummins, C.L. Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice. Diabetologia, 2014, 57(2), 435-446.
[69]
Hayashi, T.; Kotani, H.; Yamaguchi, T.; Taguchi, K.; Iida, M.; Ina, K.; Maeda, M.; Kuzuya, M.; Hattori, Y.; Ignarro, L.J. Endothelial cellular senescence is inhibited by liver X receptor activation with an additional mechanism for its atheroprotection in diabetes. Proc. Natl. Acad. Sci. USA, 2014, 111(3), 1168-1173.
[70]
Hammer, S.S.; Beli, E.; Kady, N.; Wang, Q.; Wood, K.; Lydic, T.A.; Malek, G.; Saban, D.R.; Wang, X.X.; Hazra, S.; Levi, M.; Busik, J.V.; Grant, M.B. The mechanism of diabetic retinopathy pathogenesis unifying key lipid regulators, sirtuin 1 and liver X receptor. EBioMedicine, 2017, 22, 181-190.
[71]
He, Q.; Pu, J.; Yuan, A.; Yao, T.; Ying, X.; Zhao, Y.; Xu, L.; Tong, H.; He, B. Liver X receptor agonist treatment attenuates cardiac dysfunction in type 2 diabetic db/db mice. Cardiovasc. Diabetol., 2014, 13, 149.
[72]
Cannon, M.V.; Silljé, H.H.; Sijbesma, J.W.; Khan, M.A.; Steffensen, K.R.; van Gilst, W.H.; de Boer, R.A. LXRα improves myocardial glucose tolerance and reduces cardiac hypertrophy in a mouse model of obesity-induced type 2 diabetes. Diabetologia, 2016, 59(3), 634-643.
[73]
Russell, D.W. Nuclear orphan receptors control cholesterol catabolism. Cell, 1999, 97(5), 539-542.
[74]
Otte, K.; Kranz, H.; Kober, I.; Thompson, P.; Hoefer, M.; Haubold, B.; Remmel, B.; Voss, H.; Kaiser, C.; Albers, M.; Cheruvallath, Z.; Jackson, D.; Casari, G.; Koegl, M.; Pääbo, S.; Mous, J.; Kremoser, C.; Deuschle, U. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol. Cell. Biol., 2003, 23(3), 864-872.
[75]
Chiang, J.Y.; Pathak, P.; Liu, H.; Donepudi, A.; Ferrell, J.; Boehme, S. Intestinal farnesoid X receptor and takeda G protein couple receptor 5 signaling in metabolic regulation. Dig. Dis., 2017, 35(3), 241-245.
[76]
Pathak, P.; Liu, H.; Boehme, S.; Xie, C.; Krausz, K.W.; Gonzalez, F.; Chiang, J.Y.L. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J. Biol. Chem., 2017, 292(26), 11055-11069.
[77]
Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev., 2007, 87(4), 1409-1439.
[78]
Kliewer, S.A.; Mangelsdorf, D.J. Bile Acids as hormones: The FXR-FGF15/19 pathway. Dig. Dis., 2015, 33(3), 327-331.
[79]
Schmitt, J.; Kong, B.; Stieger, B.; Tschopp, O.; Schultze, S.M.; Rau, M.; Weber, A.; Müllhaupt, B.; Guo, G.L.; Geier, A. Protective effects of Farnesoid X Receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver Int., 2015, 35(4), 1133-1144.
[80]
Sonne, D.P.; van Nierop, F.S.; Kulik, W.; Soeters, M.R.; Vilsbøll, T.; Knop, F.K. Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with type 2 diabetes. J. Clin. Endocrinol. Metab., 2016, 101(8), 3002-3009.
[81]
Zhang, J.; Li, H.; Zhou, H.; Fang, L.; Xu, J.; Yan, H.; Chen, S.; Song, Q.; Zhang, Y.; Xu, A.; Fang, Q.; Ye, Y.; Jia, W. Lowered fasting chenodeoxycholic acid correlated with the decrease of fibroblast growth factor 19 in Chinese subjects with impaired fasting glucose. Sci. Rep., 2017, 7(1), 6042.
[82]
Chiang, J.Y. Regulation of bile acid synthesis. Front. Biosci., 1998, 3, d176-d193.
[83]
Båvner, A.; Sanyal, S.; Gustafsson, J.A.; Treuter, E. Transcriptional corepression by SHP: molecular mechanisms and physiological consequences. Trends Endocrinol. Metab., 2005, 16(10), 478-488.
[84]
Del Bas, J.M.; Ricketts, M.L.; Vaqué, M.; Sala, E.; Quesada, H.; Ardevol, A.; Salvadó, M.J.; Blay, M.; Arola, L.; Moore, D.D.; Pujadas, G.; Fernandez-Larrea, J.; Bladé, C. Dietary procyanidins enhance transcriptional activity of bile acid-activated FXR in vitro and reduce triglyceridemia in vivo in a FXR-dependent manner. Mol. Nutr. Food Res., 2009, 53(7), 805-814.
[85]
Watanabe, M.; Houten, S.M.; Wang, L.; Moschetta, A.; Mangelsdorf, D.J.; Heyman, R.A.; Moore, D.D.; Auwerx, J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest., 2004, 113(10), 1408-1418.
[86]
Stroeve, J.H.; Brufau, G.; Stellaard, F.; Gonzalez, F.J.; Staels, B.; Kuipers, F. Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Lab. Invest., 2010, 90(10), 1457-1467.
[87]
Ma, K.; Saha, P.K.; Chan, L.; Moore, D.D. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest., 2006, 116(4), 1102-1109.
[88]
Kim, K.H.; Choi, S.; Zhou, Y.; Kim, E.Y.; Lee, J.M.; Saha, P.K.; Anakk, S.; Moore, D.D. Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology, 2017, 66(2), 498-509.
[89]
Akinrotimi, O.; Riessen, R.; VanDuyne, P.; Park, J.E.; Lee, Y.K.; Wong, L.J.; Zavacki, A.M.; Schoonjans, K.; Anakk, S. Small heterodimer partner deletion prevents hepatic steatosis and when combined with farnesoid X receptor loss protects against type 2 diabetes in mice. Hepatology, 2017, 66(6), 1854-1865.
[90]
Prawitt, J.; Abdelkarim, M.; Stroeve, J.H.; Popescu, I.; Duez, H.; Velagapudi, V.R.; Dumont, J.; Bouchaert, E.; van Dijk, T.H.; Lucas, A.; Dorchies, E.; Daoudi, M.; Lestavel, S.; Gonzalez, F.J.; Oresic, M.; Cariou, B.; Kuipers, F.; Caron, S.; Staels, B. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes, 2011, 60(7), 1861-1871.
[91]
Zhang, Y.; Ge, X.; Heemstra, L.A.; Chen, W.D.; Xu, J.; Smith, J.L.; Ma, H.; Kasim, N.; Edwards, P.A.; Novak, C.M. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol. Endocrinol., 2012, 26(2), 272-280.
[92]
Zhang, Y.; Lee, F.Y.; Barrera, G.; Lee, H.; Vales, C.; Gonzalez, F.J.; Willson, T.M.; Edwards, P.A. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl. Acad. Sci. USA, 2006, 103(4), 1006-1011.
[93]
Cariou, B.; van Harmelen, K.; Duran-Sandoval, D.; van Dijk, T.H.; Grefhorst, A.; Abdelkarim, M.; Caron, S.; Torpier, G.; Fruchart, J.C.; Gonzalez, F.J.; Kuipers, F.; Staels, B. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem., 2006, 281(16), 11039-11049.
[94]
Cipriani, S.; Mencarelli, A.; Palladino, G.; Fiorucci, S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J. Lipid Res., 2010, 51(4), 771-784.
[95]
Watanabe, M.; Horai, Y.; Houten, S.M.; Morimoto, K.; Sugizaki, T.; Arita, E.; Mataki, C.; Sato, H.; Tanigawara, Y.; Schoonjans, K.; Itoh, H.; Auwerx, J. Lowering bile acid pool size with a synthetic Farnesoid X Receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem., 2011, 286(30), 26913-26920.
[96]
Zhang, Y.; Lee, F.Y.; Barrera, G.; Lee, H.; Vales, C.; Gonzalez, F.J.; Willson, T.M.; Edwards, P.A. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl. Acad. Sci. USA, 2006, 103(4), 1006-1011.
[97]
Potthoff, M.J.; Boney-Montoya, J.; Choi, M.; He, T.; Sunny, N.E.; Satapati, S.; Suino-Powell, K.; Xu, H.E.; Gerard, R.D.; Finck, B.N.; Burgess, S.C.; Mangelsdorf, D.J.; Kliewer, S.A. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab., 2011, 13(6), 729-738.
[98]
Shen, H.; Zhang, Y.; Ding, H.; Wang, X.; Chen, L.; Jiang, H.; Shen, X. Farnesoid X receptor induces GLUT4 expression through FXR response element in the GLUT4 promoter. Cell. Physiol. Biochem., 2008, 22(1-4), 1-14.
[99]
Renga, B.; Mencarelli, A.; Vavassori, P.; Brancaleone, V.; Fiorucci, S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim. Biophys. Acta, 2010, 1802(3), 363-372.
[100]
Li, T.; Francl, J.M.; Boehme, S.; Ochoa, A.; Zhang, Y.; Klaassen, C.D.; Erickson, S.K.; Chiang, J.Y. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J. Biol. Chem., 2012, 287(3), 1861-1873.
[101]
Düfer, M.; Hörth, K.; Wagner, R.; Schittenhelm, B.; Prowald, S.; Wagner, T.F.; Oberwinkler, J.; Lukowski, R.; Gonzalez, F.J.; Krippeit-Drews, P.; Drews, G. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes, 2012, 61(6), 1479-1489.
[102]
Trabelsi, M.S.; Daoudi, M.; Prawitt, J.; Ducastel, S.; Touche, V.; Sayin, S.I.; Perino, A.; Brighton, C.A.; Sebti, Y.; Kluza, J.; Briand, O.; Dehondt, H.; Vallez, E.; Dorchies, E.; Baud, G.; Spinelli, V.; Hennuyer, N.; Caron, S.; Bantubungi, K.; Caiazzo, R.; Reimann, F.; Marchetti, P.; Lefebvre, P.; Bäckhed, F.; Gribble, F.M.; Schoonjans, K.; Pattou, F.; Tailleux, A.; Staels, B.; Lestavel, S. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun., 2015, 6, 7629.
[103]
Jiang, T.; Wang, X.X.; Scherzer, P.; Wilson, P.; Tallman, J.; Takahashi, H.; Li, J.; Iwahashi, M.; Sutherland, E.; Arend, L.; Levi, M. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes, 2007, 56(10), 2485-2493.
[104]
Wang, X.X.; Jiang, T.; Shen, Y.; Caldas, Y.; Miyazaki-Anzai, S.; Santamaria, H.; Urbanek, C.; Solis, N.; Scherzer, P.; Lewis, L.; Gonzalez, F.J.; Adorini, L.; Pruzanski, M.; Kopp, J.B.; Verlander, J.W.; Levi, M. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes, 2010, 59(11), 2916-2927.
[105]
Glastras, S.J.; Wong, M.G.; Chen, H.; Zhang, J.; Zaky, A.; Pollock, C.A.; Saad, S. FXR expression is associated with dysregulated glucose and lipid levels in the offspring kidney induced by maternal obesity. Nutr. Metab. (Lond.), 2015, 12, 40.
[106]
Wang, X.X.; Wang, D.; Luo, Y.; Myakala, K.; Dobrinskikh, E.; Rosenberg, A.Z.; Levi, J.; Kopp, J.B.; Field, A.; Hill, A.; Lucia, S.; Qiu, L.; Jiang, T.; Peng, Y.; Orlicky, D.; Garcia, G.; Herman-Edelstein, M.; D’Agati, V.; Henriksen, K.; Adorini, L.; Pruzanski, M.; Xie, C.; Krausz, K.W.; Gonzalez, F.J.; Ranjit, S.; Dvornikov, A.; Gratton, E.; Levi, M. FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. J. Am. Soc. Nephrol., 2018, 29(1), 118-137.
[107]
Timsit, Y.E.; Negishi, M. Coordinated regulation of nuclear receptor CAR by CCRP/DNAJC7, HSP70 and the ubiquitin-proteasome system. PLoS One, 2014, 9(5), e96092.
[108]
Dash, A.K.; Yende, A.S.; Jaiswal, B.; Tyagi, R.K. Heterodimerization of Retinoid X Receptor with Xenobiotic Receptor partners occurs in the cytoplasmic compartment: Mechanistic insights of events in living cells. Exp. Cell Res., 2017, 360(2), 337-346.
[109]
Hassani-Nezhad-Gashti, F.; Rysä, J.; Kummu, O.; Näpänkangas, J.; Buler, M.; Karpale, M.; Hukkanen, J.; Hakkola, J. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem. Pharmacol., 2018, 148, 253-264.
[110]
Ling, Z.; Shu, N.; Xu, P.; Wang, F.; Zhong, Z.; Sun, B.; Li, F.; Zhang, M.; Zhao, K.; Tang, X.; Wang, Z.; Zhu, L.; Liu, L.; Liu, X. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes. Biochem. Pharmacol., 2016, 100, 98-111.
[111]
Gotoh, S.; Negishi, M. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis. Sci. Rep., 2015, 5, 14076.
[112]
Rysä, J.; Buler, M.; Savolainen, M.J.; Ruskoaho, H.; Hakkola, J.; Hukkanen, J. Pregnane X receptor agonists impair postprandial glucose tolerance. Clin. Pharmacol. Ther., 2013, 93(6), 556-563.
[113]
Hukkanen, J.; Rysa, J.; Makela, K.A.; Herzig, K.H.; Hakkola, J.; Savolainen, M.J. The effect of pregnane X receptor agonists on postprandial incretin hormone secretion in rats and humans. J. Physiol. Pharmacol., 2015, 66(6), 831-839.
[114]
He, J.; Gao, J.; Xu, M.; Ren, S.; Stefanovic-Racic, M.; O’Doherty, R.M.; Xie, W. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes, 2013, 62(6), 1876-1887.
[115]
Gao, J.; Yan, J.; Xu, M.; Ren, S.; Xie, W. CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α. Mol. Endocrinol., 2015, 29(11), 1558-1570.
[116]
Masuyama, H.; Mitsui, T.; Maki, J.; Tani, K.; Nakamura, K.; Hiramatsu, Y. Dimethylesculetin ameliorates maternal glucose intolerance and fetal overgrowth in high-fat diet-fed pregnant mice via constitutive androstane receptor. Mol. Cell. Biochem., 2016, 419(1-2), 185-192.
[117]
Yarushkin, A.A.; Kazantseva, Y.A.; Prokopyeva, E.A.; Markova, D.N.; Pustylnyak, Y.A.; Pustylnyak, V.O. Constitutive androstane receptor activation evokes the expression of glycolytic genes. Biochem. Biophys. Res. Commun., 2016, 478(3), 1099-1105.
[118]
Paul, D.S.; Teschendorff, A.E.; Dang, M.A.; Lowe, R.; Hawa, M.I.; Ecker, S.; Beyan, H.; Cunningham, S.; Fouts, A.R.; Ramelius, A.; Burden, F.; Farrow, S.; Rowlston, S.; Rehnstrom, K.; Frontini, M.; Downes, K.; Busche, S.; Cheung, W.A.; Ge, B.; Simon, M.M.; Bujold, D.; Kwan, T.; Bourque, G.; Datta, A.; Lowy, E.; Clarke, L.; Flicek, P.; Libertini, E.; Heath, S.; Gut, M.; Gut, I.G.; Ouwehand, W.H.; Pastinen, T.; Soranzo, N.; Hofer, S.E.; Karges, B.; Meissner, T.; Boehm, B.O.; Cilio, C.; Elding Larsson, H.; Lernmark, Å.; Steck, A.K.; Rakyan, V.K.; Beck, S.; Leslie, R.D. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat. Commun., 2016, 7, 13555.